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Abstract: In the past decade, the pharmaceutical industry and biomedical research sector have 

devoted considerable resources to pharmacogenomics (PGx) with the hope that understanding 

genetic variation in patients would deliver on the promise of personalized medicine. With the 

advent of new technologies and the improved collection of DNA samples, the roadblock to 

advancements in PGx discovery is no longer the lack of high-density genetic information cap-

tured on patient populations, but rather the development, adaptation, and tailoring of analytical 

strategies to effectively harness this wealth of information. The current analytical paradigm in 

PGx considers the single-nucleotide polymorphism (SNP) as the genomic feature of interest and 

performs single SNP association tests to discover PGx effects – ie, genetic effects impacting 

drug response. While it can be straightforward to process single SNP results and to consider 

how this information may be extended for use in downstream patient stratification, the rate 

of replication for single SNP associations has been low and the desired success of producing 

clinically and commercially viable biomarkers has not been realized. This may be due to the 

fact that single SNP association testing is suboptimal given the complexities of PGx discovery 

in the clinical trial setting, including: 1) relatively small sample sizes; 2) diverse clinical cohorts 

within and across trials due to genetic ancestry (potentially impacting the ability to replicate 

findings); and 3) the potential polygenic nature of a drug response. Subsequently, a shift in 

the current paradigm is proposed: to consider the gene as the genomic feature of interest in 

PGx discovery. The proof-of-concept study presented in this manuscript demonstrates that 

genomic region-based association testing has the potential to improve the power of detect-

ing single SNP or complex PGx effects in the discovery stage (by leveraging the underlying 

genetic architecture and reducing the multiplicity burden), and it can also improve power in 

the replication stage.

Keywords: variance components, pharmacogenomics strategy, pharmacogenomics replication, 

pharmacogenomics discovery, personalized medicine

Introduction
In the past decade, the pharmaceutical industry and biomedical research sector have 

devoted considerable resources to pharmacogenomics (PGx) with the hope that under-

standing genetic variation in patients would deliver on the promise of personalized 

medicine.1 While technological breakthroughs have been realized in high-density 

single-nucleotide polymorphism (SNP) genotyping and DNA sequencing, with 

similar advancements made in the understanding of disease etiology, the discover-

ies resulting from the investigations of genetic variation and drug response have 

been limited. The roadblock to progress in PGx discovery is no longer in obtaining 

high-dimensional genetic data on patient populations, but rather in how to effectively 
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translate the wealth of information available into value for 

clinical  development  programs. This subsequently requires 

advancements to be made in the analytics that inform PGx 

strategy.

In the context of patient stratification/selection being the 

ultimate goal, development of a clinically and commercially 

viable biomarker based on DNA sequence variation is a 

complex process that can be generally framed as a two-stage 

process: 1) identification of relevant genomic features (for 

example, genes, exons, and SNPs); and 2) translation of 

PGx discovery results into a patient subgroup. In this sense, 

 downstream success in PGx-driven patient  stratification/

selection strategies ultimately hinges on the ability to 

 identify the relevant genetic factors in the initial stage of PGx 

discovery. The focus of this manuscript is on the first stage, 

which also has applications in understanding the mode of 

action and drug target identification. It should be noted that 

the second stage is the focus of the field termed  “subgroup 

identification” (for example, Li et al2 and Lipkovich et al3), 

and is the critical next step in translating findings from the 

discovery stage into clinical and commercial value in the form 

of a diagnostic tool (for example, a laboratory-developed test, 

a clinical laboratory test, or companion diagnostic).

Currently, most drugs enter Phase II/III clinical 

 development with a hypothesis-generating PGx program 

due to a lack of prior empirical evidence on the drug–gene 

relationship with clinical response. This means that any ana-

lytical strategy for PGx discovery must be considerate to the 

unique stressors of translational research in the  clinical trial 

setting: 1) the relatively small sample sizes; 2) the diverse 

clinical cohorts within and across trials due to genetic ances-

try (potentially impacting the ability to replicate findings); 

3) the potential polygenic nature of a drug response; and 

4) the business implications of costs associated with both 

false positives and false negatives.4

Consider a hypothetical PGx study conducted on a 

placebo-controlled clinical trial with DNA samples assayed 

on an SNP genotyping platform in which the objective is to 

identify the genes/variants associated with treatment-specific 

efficacy. The common analytical approach used in this case 

is single SNP association testing (SSAT). Unfortunately, 

this analytical strategy has not delivered the desired value 

in terms of producing germline DNA-based classifiers with 

clinical utility for drug efficacy.1 Additionally, the rate of 

replication for single SNP associations is quite low (poten-

tially due to the impact of linkage disequilibrium [LD] on 

association testing and the differences in allele frequency 

between populations).5

Given this, it is necessary to consider a shift in the cur-

rent paradigm for discovery in PGx – specifically, should an 

individual SNP remain the primary genomic feature of inter-

est at the discovery stage, or should an alternative definition 

based on a set of SNPs be considered toward improving the 

chances of success? In the context of PGx discovery without 

prior information, we recommend defining the genomic fea-

ture of interest as a gene, since this represents a biologically 

relevant unit of genetic variation with structural annotation 

that is independent of ancestry and is generalizable across 

studies.

While the concept of gene-based testing has been the 

subject of recent research in genome-wide association studies 

of human disease,5–9 the PGx space has been slow to adopt 

this approach potentially due to the nontrivial translation of 

gene-based discoveries to a patient stratification/selection 

strategy. For a single SNP effect, moving from PGx discovery 

to patient stratification/selection is relatively straightfor-

ward, as patients can be assigned to a subgroup based on 

their genotype call at a single locus. For a gene-level effect 

(or multi-SNP effect), moving from PGx discovery to patient 

stratification/selection requires refinement steps toward iden-

tifying the critical SNPs and functional form necessary to 

define the patient subgroup. However, it is important to note 

that while the transition to patient stratification/selection is 

easier for single SNP effects, there are inherent limitations 

in terms of subgroup size (due to allele frequency) and it is 

possible that a single SNP may not be sufficient in defining 

a classifier with clinical and commercial utility. 

To realize the concept of gene-based testing, a variety of 

statistical methodologies have been developed to effectively 

harness the information captured by a set of SNPs, referred 

to herein more generally as region-based association test-

ing (RBAT), as these methods are not restricted to only 

considering a gene, and it may be of interest to consider 

an alternative unit of genomic variation depending on the 

objectives of a given PGx study.6–9 In this work, a comparison 

is made across SSAT, RBAT that jointly tests the effect of a 

set of SNPs in a gene, and RBAT that considers identifying 

a gene as significant based on the minimum adjusted single 

SNP P-value.

In general, we demonstrate that a genomic region-based 

testing strategy can: 1) be more powerful (by leveraging the 

underlying genetic architecture and reducing the multiplicity 

burden); 2) lend to the detection of complex genetic effects; 

and 3) improve the likelihood of replication. Here, we pro-

vide proof-of-concept (POC) evaluations in support of a 

genomic region-based testing strategy for PGx discovery and 
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 replication, and we offer an analytical framework conducive 

to tailoring and PGx study design.

Materials and methods
In most PGx studies, the number of genetic markers to be 

investigated in the PGx discovery stage (even in a candidate 

gene study) is larger than the available number (n) of samples 

(ie, number of genetic markers .n), and thus subgroup iden-

tification approaches (such as those by Li et al)2 are often not 

directly applicable, therefore it is often necessary to narrow a 

larger set of genomic regions to a focused set of genomic regions 

before estimating a genetic signature for the purpose of patient 

stratification. The evaluation of different analytical strategies to 

approach this prescreening (or discovery) step is the focus of 

this manuscript, where emphasis is given to association testing 

as the statistical method of choice for the initial screening.

Herein, the focus will be on common SNPs having a 

minor allele frequency (MAF) $5%. However, similar strat-

egies as described in this manuscript can be employed for 

low frequency (ie, 1%# MAF ,5%) or rare (MAF ,1%) 

variants, although some methods may not be applicable or 

may require adaptation in this context.

Association testing framework
Assume that genotype data from patients in a placebo-

 controlled, two-arm clinical trial will be collected, and that 

it is of interest to identify genetic markers with treatment-

specific effects. Testing for an association between a single, 

or a set of, genetic marker(s) and a univariate continuous 

outcome of interest in the context of PGx studies can be 

framed in a standard linear regression framework:

 y X T G G= + + + +τα β εT G GxTf f( ) ( ) ,  (1)

where y is the phenotype vector, α is a vector of coefficients 

(fixed effects) for covariates contained in X, β
T
 is the treat-

ment effect, T a vector of the treatment indicators for each 

patient (1= treated, 0= placebo), ƒ
G
(G) is a function of the 

genotype matrix with G representing a potential genetic main 

effect (ie, a prognostic effect), and ε∼N(0, σ2I) is the error 

term. The effect of interest when aiming to identify treatment-

specific effects is the interaction term, ƒ
GxT

(G). The functional 

form of ƒ determines what type of association testing is 

performed, as outlined in the following sections.

Single SnP association testing (SSAt)
SSAT is the most commonly used approach in PGx studies. 

The functional form f for SSAT reduces to,

 f fG j SNP GxT j SNP xTj j
( ) ( )G G TG= =β βand ,G  (2)

where G
j
 is the genotype matrix containing genotypes of 

SNP j, coded using a genotypic model, for patients i=1,...n. 

The test of interest is H SNP xTj0 0: β = , versus H SNP xTjα β: ≠0,  

where significance is determined via a g − 1 degree of 

freedom likelihood ratio test where g is the number of 

observed genotypes for SNP j. It is important to note that 

without the loss of generality, it is trivial to consider alter-

native codings/genetic models, such as additive, dominant, 

or recessive.

region-based association testing (rBAt)
As outlined in the introduction, SSAT has been used 

since the inception of PGx studies despite suboptimal 

performance in the context of translational research in 

the clinical trial setting (for example, in the case of rela-

tively small sample sizes, diverse cohorts, and potential 

polygenic effects of drug responses).4 Alternatively, RBAT 

approaches have the potential to improve power (by lever-

aging the underlying LD structure in genetic data and 

reducing the multiplicity  burden) and to detect complex 

PGx effects. While many RBAT approaches exist, this POC 

study will focus on contrasting the performance of SSAT 

with two exemplary RBAT approaches that are often used 

in disease genetics to demonstrate how these two types of 

association testing strategies can provide complementary 

information in the context of PGx studies.

Single SnP region-based association testing (SS-rBAt)
A straightforward approach to test the combined effect 

of a set of p SNPs that has been used in genetic analyses 

is to combine p P-values from SSAT using methods such 

as Fisher’s method to combine P-values or by using the 

 minimum P-value approach.10,11 This manuscript will con-

sider the latter (ie, the significance of a set of p SNPs in a 

genomic region),  evaluated via,

 
p p p padjusted p adjusted j adjustedR

j p
,min , , ,

, ,
,( , ) min ( ),1

1
…

…
=

=  (3)

where p
j,adjusted

 is the P-value of SNP j based on SSAT after 

adjusting for multiplicity (see the section titled, “Additional 

considerations for performance metrics” for details regarding 

multiplicity adjustment).

Fo r  t h e  p u r p o s e s  o f  t h i s  P O C  s t u d y,  t h e 

approach described in this section is suff icient and 

 computationally eff icient to demonstrate general 

 performance trends.
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Variance components region-based  
association testing (VC-rBAt)
A family of RBAT approaches that has gained popularity 

in recent years is known as kernel machine regression, and 

includes tests such as the sequence kernel association test.9 

These approaches can be framed in the context of a linear 

mixed model and they ultimately test whether a significant 

proportion of phenotypic variability can be explained by 

genetic variation within a region of interest. Specifically, the 

functional form ƒ can be written as,

 f and fG R GxT RxT( ) ( ) ,G G= =β β  (4)

where ββ σσR RN K G~ ( , ( ))0 2
1  and ββ σσRxT RxTN K G~ ( , ( ))0 2

2  

are assumed to be random effects following a multivariate 

normal distribution, with variance-covariance matrices K
1
(G) 

representing the main effect due to genetic variability and  

K
2
(G) = T ⊗ K

1
(G) used for the region-by-treatment interaction –  

ie, the effect of interest – where ⊗ denotes the element-wise 

(Hadamard) matrix product. K
1
 and K

2
 are also called kernels, 

and they measure the genetic similarity between individuals; 

several choices for these kernels are available. Since this POC 

study focuses on common SNPs, an unweighted Identity-by-

State kernel will be utilized for all evaluations.7

The test of interest for this specific RBAT approach then 

simplifies to the variance component test, H RxT0
2 0: σ =  versus 

H RxTα :σ 2 0 , and thus this approach will be referred to herein 

as variance components RBAT (VC-RBAT). Significance 

will be determined using a linear score test introduced by 

Qu et al8 that allows for testing the significance of a variance 

component in the presence of a nuisance variance compo-

nent (ie, σ R
2) and has desirable properties when sample sizes 

are small.

For additional details around VC-RBAT approaches, 

please refer to Qu et al8 and Wu et al.9

Simulation study to evaluate analytical 
strategies to identify subgroup-defining 
genetic markers
Phenotypic and genotypic data were simulated to mimic 

clinical trial conditions and realistic human genetic variation. 

Assume that a candidate gene study evaluating common 

SNPs across 25 genes is being conducted as part of a Phase II 

(or Phase III) placebo-controlled clinical trial with 400 treated 

and 400 placebo patients. For the purpose of this POC study, 

all patients are Caucasians of European ancestry. Details 

around the simulation of phenotypic and genotypic data are 

given in the following sections.

Simulation of phenotypic data
The simulation study outlined in this section aims to evaluate 

SSAT, SS-RBAT, and VC-RBAT in a focused set of  realistic 

scenarios. Since the end goal of many PGx studies is to 

identify a subgroup of patients with enhanced treatment 

effects (ie, patient stratification), continuous outcomes were 

simulated (assuming that a subgroup solely defined by genetic 

markers exists) using the following model:

 y T S T Si i T i S i i SxT i= + + + +α β β β ε0 , (5)

where S
i
 is an indicator variable for subgroup membership, 

β
S
 the subgroup main effect (ie, a prognostic effect), β

SxT
 is 

the enhanced treatment effect of patients belonging to the 

subgroup, and ε σi N~ ( , )0 12=  the error term.

Assume that a weak treatment effect with a small effect 

size is observed in the overall population:

 

∆ = ∈ − ∉
= ∈ − ∉ =

T E Y i T E Y i T

E Y i T E Y i T

( ( | ) ( | ))/

( ( | ) ( | ))/ . ,

σ
1 0 3

 (6)

where ∆
T
 is the scaled treatment effect (ie, the difference in 

means between the treated and placebo patients) scaled by 

the standard deviation. Furthermore, assume that the treat-

ment effect can be partitioned into a genetic and a nongenetic 

component via the subgroup-by-treatment interaction:

 

∆ = = + −

= + = +

T

SxT T
SxT T

C C

S S

0 3 0 3 1 0 3. . ( ) .

| | * | | * ,

*

β
σ

β
σ

β β
 (7)

where C is the proportion of the treatment effect explained 

by genetics (ie, subgroup membership) and |S| is the sub-

group size. Thus, βSxT C f=0 3 1. * /  and βT C= −( ) * .1 0 3 

with C ∈{ , . , . , , }0 0 1 0 2 1…  was used to simulate outcomes. 

Note that for the purpose of this POC study, no subgroup 

main effect was assumed (ie, βS =0 was used for all 

simulations).

Simulation of genotypic data and assignment  
of patients to genetically defined subgroups
Subject-level genotype data for 254 common variants in an 

exemplary 63.3 kb region of the ABCA1 gene  (chromosome 9: 

107627259–107690527; relative to human genome GRCh38 

reference assembly and Human Annotation Release 104; see 

Figure S1) was simulated using haplotypes from individuals 

of European ancestry, as downloaded from the 1000 Genomes 

Project.12
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To allow for comparison across different scenarios, a sub-

group size |S| of 30% was targeted across various subgroup 

definitions. Subgroup membership for each patient was 

determined using the following three POC scenarios (note 

that AA denotes the major homozygote):

1. Enhanced treatment effect is driven by a single SNP 

located in an LD block:

S
if G AB BB

if G AAi
i rs

i rs

=
=
=







1

0
11790326

11790326

,

,

,

 

2. Enhanced treatment effect is driven by a single SNP not in 

LD with other SNPs (ie, maximum pairwise r2 of 0.2):

S
if G AB BB

if G AAi
i rs

i rs

=
=
=







1

0
199894164

199894164

,

,

,

 

3. Enhanced treatment effect is driven by two SNPs located 

in the same gene (but in different LD blocks):

S
if G AA or if G AA

otherwisei
i rs i rs=

= =



0

1
4100654 12347784, ,

Note that the MAFs of SNPs rs11790326, rs199894164, 

rs4100654, and rs12347784 are 0.19, 0.19, 0.08, and 0.09, 

respectively, generating subgroup sizes of approximately 

30% for all three scenarios.

Additional considerations and performance metrics
For each of the 30 scenarios outlined in the sections titled, 

“Simulation of phenotypic data” and “Simulation of geno-

typic data and assignment of patients to genetically defined 

subgroups”, 1,000 datasets were simulated and randomly 

combined to generate 500 pairs of trials representing a dis-

covery trial and a replication trial.

For each trial, P-values for SSAT, SS-RBAT, and VC-

RBAT were recorded for all variants in the ABCA1 region 

or the entire ABCA1 region, respectively. For computational 

efficiency, P-values for the remaining 24 genes and 3,546 

independent variants across these genes were drawn from 

a uniform distribution, since only variants in gene ABCA1 

provided a genetic contribution to the treatment effect.

For the discovery trial, multiplicity adjustment was per-

formed using a Bonferroni correction for 25 tests for VC-

RBAT and 3,800 effective tests for SSAT (after consideration 

to dependency among SNPs). Significance was determined 

using an alpha-level α
1
 of 0.05 or 0.20 (as an alternative, 

relaxed threshold in the case where more risk is acceptable at 

the discovery stage). For the replication trial, the multiplicity 

adjustment was performed using a Bonferroni correction, 

adjusting for the number of genes/SNPs that were signifi-

cant at alpha-level α
1
 in the discovery trial for VC-RBAT or 

SSAT, respectively. Significance in the replication trial was 

determined using an alpha-level α
2
 of 0.05.

For each scenario, the following performance metrics 

were estimated:

1. Power of VC-RBAT and SS-RBAT to detect ABCA1 in 

the discovery trial using alpha-level α
1
;

2. Power of SSAT to detect the subgroup-defining SNPs in 

the discovery trial using alpha-level α
1
;

3. Power of VC-RBAT and SS-RBAT to discover and 

replicate ABCA1 using alpha-levels α
1
 and α

2
; and

4. Power of SSAT to discover and replicate the subgroup-

defining SNPs using alpha-levels α
1
 and α

2
.

Note that power to discover and replicate in metrics 3 and 

4 was calculated as the proportion among the 500 dataset 

pairs where the unit of interest (ie, the SNP or gene) was 

significant after multiplicity adjustment in the discovery trial 

using alpha-level α
1
, and significant after multiplicity adjust-

ment in the replication trial using alpha-level α
2
.

Additionally, type 1 error was estimated for scenarios 

where C=0 (ie, no genetic contribution to the treatment 

effect exists).

Results
This section summarizes the results (see Table 1; 

Figures 1 and 2) from the simulation study outlined in the 

section titled, “Simulation study to evaluate analytical strat-

egies to identify subgroup-defining genetic markers”. The 

following general observations were made for the scenarios 

considered in this POC study:

PGx discovery stage:
• In the context of no PGx effect, type 1 error is preserved 

(ie, the probability of a false positive is controlled at the 

desired level);

• If the PGx subgroup-defining SNP is located in a region 

of high LD, RBAT approaches considered here gener-

ally outperform SSAT, where the multimarker approach 

(ie, VC-RBAT) had improved power over the single SNP 

region-based approach (ie, SS-RBAT);

• If the PGx subgroup-defining SNP is not in LD with 

any other SNP in the region then, as expected, SSAT 

and SS-RBAT have comparable power and VC-RBAT 

Table 1 type 1 error in the PGx discovery stage

Approach α1=0.05 α2=0.2

VC-rBAt 0.044 0.184
SS-rBAt 0.046 0.192
SSAt 0.046 0.192

Abbreviations: PGx, pharmacogenomics; VC-rBAt, variance components region-
based association testing; SS-rBAt, single single-nucleotide polymorphism region-
based association testing; SSAt, single single-nucleotide polymorphism association 
testing.
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has negligible power due to the inability to leverage 

information captured by other SNPs in LD with the PGx 

subgroup-defining SNP; and

• In the context of a multi-SNP effect, both RBAT 

approaches have higher power than SSAT.

PGx replication stage:
• RBAT approaches demonstrate the potential to improve 

the power to replicate PGx findings across the scenarios 

evaluated in the POC; and

• Relaxing the alpha threshold (ie, taking more risk) in 

the discovery stage improves the power to replicate PGx 

findings across the scenarios evaluated in the POC.

In summary, the results of the POC study presented here 

demonstrate that the performance of the selected statistical 

frameworks is dependent on both the true underlying PGx 

effect, as well as on the genomic architecture in the region 

where the PGx subgroup-defining SNP is located. Although 

in many scenarios power is limited across all approaches, this 

demonstrates the value of considering alternatives to SSAT, as 

these region-based approaches may provide complementary 

information not obtained by SSAT.

Discussion
To appreciate the need for advancement in PGx, one can 

start by taking inventory of the success in this space since 

the approval of Herceptin® (Genentech, Inc., South San 

Francisco, CA, USA) (the first drug with PGx/biomarker 

information on its label). A review of the United States 

Food and Drug Administration’s (FDA’s) table of pharmaco-

genomic biomarkers in drug labeling1 revealed that only 12% 

of drugs since Herceptin had PGx/biomarker information 

in their label and only 14 of these labels direct clinicians to 

utilize testing prior to prescription. Clearly, there is room for 

improvement in PGx-driven patient stratification/selection 

for therapeutic development and intervention; however, the 

current paradigm and PGx analytics are failing to produce 

biomarkers with clinical and commercial utility.1

While technological advancements tend to follow Moore’s 

law,13 similar advancements are not necessarily realized in the 
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Figure 1 Power estimates for the PGx discovery stage for all scenarios.
Notes: Power estimates of VC-rBAt and SS-rBAt to detect ABCA1 and the power of SSAT to detect the subgroup-defining SNPs in the discovery trial using alpha-level 
α1 are shown for all scenarios considered in this POC study. Scenario 1 (A and B): Enhanced treatment effect is driven by a single SnP located in an LD block. Scenario 2 
(C and D): Enhanced treatment effect is driven by a single SnP not in LD with other SnPs. Scenario 3 (E and F): Enhanced treatment effect is driven by two SnPs located 
in the same gene (but in different LD blocks).
Abbreviations: VC-rBAt, variance components region-based association testing; SS-rBAt, single single-nucleotide polymorphism region-based association testing; 
SSAt, single single-nucleotide association testing; PGx, pharmacogenomics; SnPs, single-nucleotide polymorphisms; POC, proof-of-concept; LD, linkage disequilibrium.

www.dovepress.com
www.dovepress.com
www.dovepress.com


Pharmacogenomics and Personalized Medicine 2014:7 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

223

Discovery and replication of PGx effects

space of analytics. Specifically, the analytical “breakthroughs” 

in the space of personalized medicine have not translated to 

the desired impact at the patient level, especially in the area of 

drug effectiveness, as noted by the review of the FDA’s table. 

To our knowledge, aside from variations in the cytochrome 

p450 enzymes, no genes have been identified that harbor 

germline DNA variation, which impacts drug efficacy in a 

clinically relevant manner. At this point, incorporating better 

analytical strategies in the early stages of PGx discovery is 

necessary to deliver empirical evidence toward transforming 

the personalized medicine landscape.

It is subsequently proposed that consideration be given 

to a paradigm shift in what is generally the most commonly 

applied analytical strategy in the PGx discovery stage – 

 specifically, shifting away from starting at the smallest 

unit of genetic variation (ie, a single variant) to starting at 

a larger unit of genetic variation (ie, aggregating informa-

tion across genomic regions, such as from a gene). For the 

purposes of this manuscript, the genomic region was defined 

as the gene due to its consistent definition across clinical 

trial populations, ethnicities, and so on;5 however, there 

is nothing that precludes other biologically relevant units 

of genomic variation, such as an exon or a pathway, from 

being considered.

While various frameworks/methodologies exist for 

evaluating the impact of a genetic variation within a region, 

two exemplary RBAT approaches were implemented in this 

POC simulation study. The results outlined in the Results 

section demonstrate that RBAT approaches, independent of 

the statistical framework chosen (ie, SS-RBAT or VC-RBAT), 

tend to provide the following:

1. Improved power to detect either single SNP or complex 

PGx effects (dependent on the LD structure in the region 

where the PGx subgroup-defining SNP resides); and

2. Improved power to replicate PGx findings (ie, the ability 

to discover a PGx effect and then replicate it in a subse-

quent trial).

Understanding that genomic variation within a specific 

region impacts drug response is the critical first step toward 

developing a patient stratification/selection strategy. The pre-

vailing thought in this manuscript is that it is first necessary to 

identify the correct genomic region and then to subsequently 

refine these findings toward understanding which specific 

variants are driving the response. To this point, while the 

topic of developing a companion diagnostic (to determine 

who to treat) or a laboratory-developed test (to help inform 

physician practice patterns) is often discussed,14 it is first 

necessary to implement a rigorous analytical strategy capable 

of both discovering the important genes/variants and identify-

ing patients based on this set of important genes/variants (ie, 

subgroup identification). Future analytical work is needed 

to refine and effectively utilize gene-level findings, with 

an emphasis in the field of subgroup identification, as this 

will be integral in translating PGx findings to value – that 

is, delivering tailored, PGx-guided therapeutic development 

and intervention strategies.

α1=0.05, α2=0.05

VC-RBAT: power to detect ABCA1
SS-RBAT: power to detect ABCA1
SSAT: power to detect subgroup defining SNP 1
SSAT: power to detect subgroup defining SNP 2
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Figure 2 Power estimates for the replication of PGx effects for selected scenarios.
Notes: Power estimates to discover and replicate (ie, performance metrics 3 and 4) for a targeted scenario where the genetic contribution to the treatment effect is 60%. 
Power was calculated as the proportion among the 500 dataset pairs where the unit of interest (ie, the SNP or gene) was significant after multiplicity adjustment in the 
discovery trial using alpha-level α1 (ie, 0.05 in A and 0.2 in B) and significant after multiplicity adjustment in the replication trial using alpha-level α2 (ie, 0.05 in A and B). 
Similar observations were made across the entire range of genetic contributions.
Abbreviations: VC-rBAt, variance components region-based association testing; SS-rBAt, single single-nucleotide polymorphism region-based association testing; 
SSAt, single single-nucleotide association testing; SnP, single-nucleotide polymorphism; PGx, pharmacogenomics.
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Perhaps the most significant contribution of this manu-

script is the provision of a framework to inform PGx strategy 

development via tailored simulations. For clinical develop-

ment programs to realize the added value of PGx, tailored 

analytical strategies should be incorporated in the early stages 

of discovery to increase the chances of success at achiev-

ing your ultimate goal (whether that be the  development 

of a diagnostic for patient stratification, understanding the 

mechanism of action for a drug, or identifying new drug 

targets). Emphasizing analytics will be paramount in real-

izing the potential of PGx and personalized medicine for 

the pharmaceutical and biotechnology industries, providers, 

payers, and patients.
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Figure S1 Linkage disequilibrium plot of ABCA1 region used for simulation studies.
Abbreviation: MAF, minor allele frequency.
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