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Abstract: Alcohol consumption is an important lifestyle factor that is associated with several health
conditions and a behavioral link with smoking is well established. Metabolic alterations after alcohol
consumption have yet to be comprehensively investigated. We studied the association of alcohol
consumption with metabolite patterns (MPs) among 2433 individuals from the European Prospective
Investigation into Cancer and Nutrition (EPIC)-Potsdam Study, and a potential modification by
smoking. Alcohol consumption was self-reported through dietary questionnaires and serum
metabolites were measured by a targeted approach. The metabolites were summarized as MPs using
the treelet transform analysis (TT). We fitted linear models with alcohol consumption continuously
and in five categories. We stratified the continuously modelled alcohol consumption by smoking
status. All models were adjusted for potential confounders. Among men, alcohol consumption
was positively associated with six MPs and negatively associated with one MP. In women, alcohol
consumption was inversely associated with one MP. Heavy consumers differed from other consumers
with respect to the “Long and short chain acylcarnitines” MP. Our findings suggest that long and short
chain acylcarnitines might play an important role in the adverse effects of heavy alcohol consumption
on chronic diseases. The relations seem to depend on gender and smoking status.

Keywords: alcohol; smoking; targeted metabolomics; metabolite patterns; lipid metabolites; amino
acids; acylcarnitines

1. Introduction

Alcohol consumption has been shown to be associated to several health outcomes [1–3]. Metabolic
alterations is one of the underlying mechanisms by which alcohol consumption exerts its effect
on health [4–6]. One approach to explore metabolic alterations is through an analysis of the
metabolome, a global analysis of small molecules emerging during human metabolism. The approach
of metabolomics holds promise for an improved understanding of the impact of alcohol consumption
on metabolic alterations. Several factors, such as genetic factors, dietary factors, and lifestyle factors,
have been consistently shown to influence the metabolome [7–9]. Importantly, heavy alcohol consumers
warrant attention since heavy drinking is associated with chronic diseases such as cardiovascular
disease (CVD) [10], cancer [11] and liver cirrhosis [12]. Alcohol and tobacco use act synergistically
on the risk of several diseases [11]. Thus, smoking may modify the association between alcohol
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and metabolites, but this has been investigated in only a few studies [13,14]. Thus, more studies
are warranted.

There have been four studies describing the association of alcohol consumption and serum
metabolites using a targeted metabolomics approach [15–18]. All of these studies reported that
self-reported alcohol consumption was primarily associated with sphingomyelins and phospholipids.
Furthermore, one of the aforementioned studies reported that alcohol consumption was associated
with specific acylcarnitines and amino acids [17]. All of these studies have investigated associations
of alcohol consumption with single metabolites. These studies corrected for multiple comparisons,
however, important alcohol-metabolite associations might have been missed due to the fact that
multiple testing increases the number of false negatives [19]. In order not to miss associations, and more
importantly, considering that metabolites, especially those in the same class, have a high degree of
intercorrelation, summarizing metabolites as patterns of metabolites would be an alternative approach.
Treelet transform analysis (TT) is a data-driven novel statistical approach that can be used to capture
interrelationships among metabolites and enables a good interpretability of groups of metabolites or
metabolite patterns (MPs) [20].

Due to the social and physiological gender differences in alcohol consumption [21], and gender
differences in metabolic profiles [22], it is necessary to specify gender-specific analyses a priori. Some of
the previous studies [15,17] conducted gender-specific analyses as a post-hoc decision. It is well-known
that subgroup analyses which have been pre-specified before data are available would eliminate data
selection [23].

The aim of the present study was to investigate the association between alcohol consumption and
gender-specific MPs, as well as a potential modification of these associations by smoking.

2. Materials and Methods

2.1. Participants and Study Design

European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam is a part of the
EPIC study and consists of 27,548 participants recruited from Potsdam and adjacent communities
from 1994 to 1998. Baseline information obtained included anthropometric measurements, personal
interviews on lifestyle habits, medical history, and blood sampling [24]. Written informed consent was
obtained from all study participants. The study was conducted in accordance with the Declaration of
Helsinki. Ethics approval was given by the Ethics Committee of the State of Brandenburg, Germany,
on November 7th, 1993.

This current study comprises a subsample of EPIC-Potsdam and includes 2500 participants
(974 men and 1526 women) who were randomly selected in 2005 from all participants of EPIC-Potsdam
who had provided blood sample at baseline (n = 26,444) [25]. For the present analysis, participants of
the sub-cohort with missing data on serum metabolite concentrations (n = 33) and outliers of the MP
scores (n = 9) were excluded. Moreover, we excluded participants with alcohol consumption >300 g/d
(n = 2) due to the assumption that these participants might have pathophysiological changes that
also affect metabolism. Following the exclusion of 23 participants who were out of the age range of
recruitment (35–66 years) into the EPIC-Potsdam study, 2433 individuals (1499 women: 35–66 years,
and 934 men: 40–66 years of age) were left for the present analysis.

2.2. Assessment of Alcohol Consumption

Alcohol consumption was assessed at baseline using a validated, self-administered food frequency
questionnaire (FFQ) [26] and calculated based on the reported number of glasses of alcoholic beverages
consumed during the 12 months prior to recruitment. Using empirically derived definitions of alcohol
beverage-specific standard drinks in Germany, the number of glasses of intake was converted to grams
of alcohol per day (g/day).
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2.3. Assessment of Cigarette Smoking

The baseline questionnaire asked detailed questions on the history of cigarette smoking, including
the number of cigarettes smoked per day and the age at which the participants stopped smoking.
Based on the latter variable we calculated the time since cessation for former smokers (in years).

2.4. Assessment of Diet and other Lifestyle Variables

Habitual diet of the participants was also assessed by the self-administered, semi-quantitative
FFQ at baseline [26]. Overall, the FFQ included 158 food items (including beverages) where average
portion size and frequency of consumption during the previous 12 months had to be reported. During
the baseline examination, physical activity, medical history, and educational and occupational status
were assessed using standardized questionnaires. Moreover, anthropometric measures (height, weight
and waist circumference) were collected by study staff following standardized procedures [24].

2.5. Measurement of Serum Metabolites

Metabolites were measured in one-time collected baseline serum samples with the AbsolueIDQ
p150 kit (BIOCRATES, Innsbruck, Austria) by flow injection analysis tandem mass spectrometry
(FIA)-MS/MS [27] at the Genome Analysis Center (Helmholtz Zentrum München). The targeted
approach collected information on 163 predefined metabolites. These include small polar metabolites
such as acylcarnitines, amino acids, hexose (sum of six-carbon monosaccharides without
distinction of isomers), and lipids such as choline-containing phospholipids (Lyso-PC, diacyl-
and acyl-alkyl-phosphatidylcholines and sphingomyelins). Sample preparation and metabolite
quantification of these samples has been described previously [28]. In brief, at first 10 µL of serum were
pipetted onto filters with stable isotope-labeled internal standards on a 96-well plate. Then the plates
were dried in nitrogen stream and a derivatization of the amino acids with 5% phenylisothiocyanat
reagent was conducted. Next, the plates were dried again and the remaining metabolites were extracted
by internal standards using 5 mM ammonium acetate in methanol. After centrifugation and filtration,
the final extracts were diluted with MS running solvent. Analysis of final extracts was performed
with an API4000 triple quadrupole mass spectrometer (ABSciex, Framingham, MA, USA). Multiple
reaction monitoring in combination with internal standards were applied for the quantification
of metabolites, and concentrations were calculated in ‘mM’ using the MetIQ software package
(BIOCRATES, Innsbruck, Austria). Overall, 36 metabolites with high variance (in the upper 10%) or
below their limit of detection were excluded from the present analysis. Thus, the final metabolite set
consist of 127 metabolites (17 acylcarnitines, 14 amino acids; 1 hexose; 34 diacyl-phosphatidylcholines;
37 acyl-alkyl-phosphatidylcholines; 10 Lyso-PC; and 14 SM).

2.6. Statistical Analysis

Data analyses were stratified by gender. Basic characteristics for the overall sample and by gender
are presented as the mean ± standard deviation or as interquartile range for continuous variables
and as percentages for categorical variables. Differences between genders were calculated with the
T-test or Kruskal Wallis test for continuous variables and chi-square test (or Fisher’s exact test) for the
categorical variables.

2.7. Identification of Metabolite Patterns

We divided the 127 included serum metabolites into two groups; small polar metabolites (amino
acids, fatty acids, and sugar compounds) and lipids (sphingomyelins and phosphatidylcholines).
The TT was used to derive MPs by reducing the dimensions of metabolites in each group to a few
components. Prior to the TT, we log-transformed all metabolites in both groups. Thus, TT was used to
create the correlation matrix of 32 small polar metabolites and 95 lipid metabolites in both men and
women. We selected a favorable range (3–9) of (Treelet) metabolite components or patterns. Next,
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three successive 10-fold cross-validations of each number of components in 5 and 10 Monte Carlo
repetitions were performed. The cut-level with the highest frequency was chosen as the optimal
cut-level, and its corresponding number of components was used for the TT. In three stability runs
we evaluated the stability of components using the bootstrap method—80% bootstrap-samples of
the original data with 100 replications. We named the components according to the metabolites
contributing to high loadings. We computed component MP scores for each individual by summing
the standardized metabolite concentrations weighted by their loadings, across all metabolites. Thus,
the MP scores are standardized values. Individuals with a high metabolite pattern score have a
higher level of the metabolites contributing to these patterns as compared to individuals with a lower
score. TT was performed using Stata SE14 (Stata Statistical Software: Release 14. College Station, TX:
StataCorp LP, USA).

2.8. Multivariable Adjusted Linear Regression

Based on literature, we selected covariates such as body mass index (BMI), age and physical activity
that are related to both alcohol consumption and metabolites profiles [29–43]. The minimum adjustment
set of covariates was derived by a directed acyclic graph (DAG). Thus, model 1 is the unadjusted
model; model 2 was adjusted for age, waist circumference-predicted BMI, physical activity index and
socioeconomic status; and model 3 was additionally adjusted for food items (eggs, dairy products, fish,
meat), nutritional supplements, and medication. Furthermore, for women we additionally adjusted
model 3 for contraceptives and hormone replacement therapy.

We fitted linear regression models for the association between alcohol consumption (measured as
a continuous variable) and MP scores. We modelled the continuous variable per 12 g/day (one standard
drink in Germany). Additionally, in order to differentiate heavy consumers from other groups,
we modelled established categories of alcohol consumption [44]): light (>0 to ≤2 g/d (m); >0 to ≤1 g/d
(w)), below recommended limit (below RL) (>2 to ≤24 g/d (m); >1 to ≤12 g/d (w)), light to moderate
(>24 g/d to ≤60 g/d (m); >12 g/d to ≤30 g/d (w)) and heavy (>60 g/d (m); >30 g/d (w)). One-way analysis
of variance (ANOVA) was used to test the overall association of the categorical alcohol variable with
the MP scores. For the MPs where we found a significant association, we analyzed the pairwise mean
difference in the MP scores using Tukey’s Honest significant difference test.

To investigate the modifying effect of smoking, we stratified the continuous alcohol regression
models by smoking status (non-smoker; former smoker and current smoker) for those alcohol-metabolite
associations in which we found significant results.

In sensitivity analysis, for the MPs scores that were not significantly associated with alcohol in
the continuously modelled alcohol intake at p < 0.05, we investigated whether there was evidence
of nonlinearity using second-order polynomial regression models. The results of this analysis are
shown in Table S1 and Table S2. The model fit of a nonlinear model as compared to its linear model
counterpart was assessed by ANOVA. The statistical analysis was performed with the open source
software R (version 1.1.442).

3. Results

3.1. Characteristics of the Study Population

Demographic characteristics for the study population are presented in Table 1. The mean age
of study participants was around 50 years, with men being slightly older than women (52 compared
to 49 years). Men also had higher BMI and waist circumference, and likely to be more educated and
full-time employed as compared to women. Almost all men reported having drunk alcohol in the year
previous to enrolment. Approximately half drank alcohol that was “below the recommended limit”
and around one third were “moderate” drinkers. As for men, almost all women drank alcohol in the
year previous to enrolment. The majority of women drank alcohol that was “below the recommended
limit” and nearly one-fifth of the women were “moderate” drinkers. The median alcohol consumption
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at enrolment for women and men was around 5 g/d and 20 g/d, respectively. Almost three-quarters of
the women and more than half of men were never smokers and, consequently, more men than women
were current smokers. CVD was more prevalent in men, while cancer was more prevalent in women.

Table 1. Characteristics of the study population at the time of recruitment (1994–1998) in EPIC-Potsdam
by gender.

Number of Participants Total Men Women p-Value

2433 934 1499

Participant characteristics
Age1, years 50.46 (8.89) 52.61 (7.87) 49.13 (9.22) <0.001
BMI1, kg/m2 26.14 (4.33) 26.80 (3.63) 25.73 (4.68) <0.001

WC1, cm 85.90 (12.87) 94.18 (9.98) 80.74 (11.73) <0.001
Education, university2 929 (38.2) 490 (52.5) 439 (29.3) <0.001

Full time employment (≥35 h/week)2 1435 (59.0) 607 (65.0) 828 (55.2) <0.001
Physically active, moderately inactive2a 956 (39.3) 348 (37.3) 608 (40.6) 0.157

Alcohol consumption3 8.54 (3.01, 20.6) 19.62 (8.92, 33.82) 5.16 (2.02, 10.76) <0.001
Alcohol consumption2 <0.001

Non-Consumersb 72 (3.0) 31 (3.3) 41 (2.7)
Lightc 272 (11.2) 61 (6.5) 211 (14.0)

Below recommended limitd 1403 (57.7) 479 (51.3) 924 (61.6)
Light to moderatee 547 (22.5) 296 (31.7) 251 (16.7)

Heavyf 139 5.7) 67 (7.2) 72 (4.8)
Smoking status2 <0.001

never smokerg 1627 (66.9) 553 (59.2) 1074 (71.6)
former smokerh 352 (14.5) 175 (18.7) 177 (11.8)
Current smoker 454 (18.7) 206 (22.1) 248 (16.5)

Number of cigarettes2 <0.001
≤ 15, CPD 291 (64.1) 102 (49.5) 189 (76.2)

16–24, CPD 112 (24.7) 63 (30.6) 49 (19.8)
≥ 25, CPD 51 (11.2) 41 (19.9) 10 (4.0)

Prevalent Diseases2

Cancer 127 (5.2) 30 (3.2) 97 (6.5) 0.001
Stroke 27 (1.1) 18 (1.9) 9 (0.6) 0.005

Myocardial infarction 54 (2.2) 42 (4.5) 12 (0.8) <0.001
Medication2

Lipid-lowering Drugs 130 (5.3) 65 (6.9) 65 (4.3) 0.007
Antiphlogistika 5 (0.2) 4 (0.4) 1 (0.1) 0.149

Diuretics 57 (2.3) 21 (2.2) 36 (2.4) 0.916

Abbreviation: BMI, body mass index; cm, centimeter; CPD, cigarettes per day; kg, kilogram; m, meter; WC,
waist circumstance; y, years; 1 Mean and standarddeviation in parentheses; 2 number and percentages; 3 median
and interquartile range; a Cambridge physical activity index; b No consumption [no use of alcohol at enrolment/past
12 months]; c Light (>0 to ≤2 g/d (m); >0 to ≤1 g/d (w)); d below recommended limit (below RL) (>2 to ≤24 g/d (m);
>1 to ≤12 g/d (w)); e light to moderate (>24 g/d to ≤60 g/d (m); >12 g/d to ≤30 g/d (w)); f heavy (>60 g/d (m); >30 g/d
(w)); g Consisted of never smokers and ex-smoker who gave up smoking for ≥15years; h Ex-smoker who gave up
smoking for ≤15 years.

3.2. Identification of Metabolite Patterns

For men, we identified three small polar MPs and six lipid MPs with cumulative explained
variance of 64.82% and 47.67%, respectively. The small MPs were named “Amino acids, sugar
and free and short chain acylcarnitines (AAs, SUG, ACs)”, “Long and short chain acylcarnitines
(ACs I)” and “Medium and long chain acylcarnitines (ACs II)”, and the lipid patterns were named
“Diacyl-glycerophosphocholines and acyl-alkyl-phosphatidylcholine I (diacyl PCs, acyl-alkyl PCs
I)”, “Sphingomyelins (SMs)”, “Lyso-phosphatidylcholines (lysoPCs)”, “Diacyl-phosphatidylcholines
(diacyl PCs)”, “Diacyl-phosphatidylcholines and acyl-alkyl-phosphatidylcholine II (diacyl PCs,
acyl-alkyl PCs II)” and “Acyl-alkyl-phosphatidylcholine (acyl-alkyl PCs)”. The explained variance and
stability of each MP are shown in Table S3 and Table S4.
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For women, we identified four small polar MPs and three lipid MPs with cumulative explained
variance of 67.04% and 66.64%, respectively. The small MPs were named “Amino acids, sugar and
free and short chain acylcarnitines (AAs, SUG, ACs)”, “Long and short chain acylcarnitines (ACs I)”,
“Medium and long chain acylcarnitines (ACs II)”, “Short and medium chain acylcarnitines (ACs III)”
and the lipid patterns were named “Diacyl-, acyl-alkyl-, lyso- phosphatidylcholines and sphingomyelins
(diacyl, acyl-alkyl, lysoPCs, SMs)”, “Diacyl- and acyl-alkyl-phosphatidylcholine (diacyl, acyl-alkyl
PCs)” and “Acyl-alkyl- and lyso-phosphatidylcholine (acyl-alkyl, lysoPC)”. The explained variance
and stability of each MP are shown in Table S5 and Table S6. All metabolites in both genders were
positively loaded on their MPs.

3.3. Multivariable Analyses of the Association between Alcohol Consumption and Metabolite Patterns

After adjusting for age, sociodemographic and lifestyle factors, medications and chronic
disease-related medication, a 12-g intake of alcohol per day was significantly associated with an
increase in “ACs I” (β = 0.189, 95% CI: 0.136–0.242), “ACs II” (β = 0.149, 95% CI: 0.089–0.209), “diacyl,
acyl-alkyl PCs I” (β= 0.076, 95% CI: 0.017–0.136), “diacyl PCs” (β= 0.117, 95% CI: 0.085–0.149), “lyso PCs”
(β = 0.035, 95% CI: 0.006–0.064), “diacyl PCs, acyl-alkyl PCs II” (β = 0.126, 95% CI: 0.084–0.168) and
a decrease in “SMs” (β = −0.055, 95% CI: −0.105–−0.005), in men (Figure 1a). Additionally, a 12-g
intake of alcohol per day was significantly associated with a decrease in “SMs” (β = −0.055, 95% CI:
−0.105–−0.005). Among women, a 12-g intake of alcohol per day was significantly associated with a
decrease in “acyl-alkyl, lysoPC” (β = −0.102, 95% CI: −0.171–0.032) units (Figure 1b).

Figure 1. Associations between alcohol consumption in g/d and metabolite pattern scores at the
time of recruitment (1994–1998) in EPIC-Potsdam; adjusted for age, sociodemographic and lifestyle
factors, medications and chronic diseases-related medication. Changes in metabolite patterns scores
with increased 12-g intake of alcohol per day in (a) men and (b) women; Abbreviation: AAs, SUG,
ACs, Amino acids, sugar and free and short chain acylcarnitines, respectively; ACs I, Long and short
chain acylcarnitines; ACs II, Medium and long chain acylcarnitines; ACs III, Short and medium chain
acylcarnitines; acyl-alkyl, lysoPC, Acyl-alkyl- and lyso-phosphatidylcholine; diacyl, acyl-alkyl PCs,
Diacyl- and acyl-alkyl-phosphatidylcholine; diacyl, acyl-alkyl, lysoPCs, SMs, Diacyl-, acyl-alkyl-,
lyso- phosphatidylcholines and sphingomyelins.

In men, except for “diacyl, acyl-alkyl PCs I”, the categorical alcohol variable was significantly
associated with the previous MP scores from the linear model (“ACs I”, “ACs II”, “diacyl PCs”,
“diacyl PCs, acyl-alkyl PCs II”, “lysoPCs” and “SM”). Among women, the categorical alcohol variable
was significantly associated with the “acyl-alkyl, lysoPC”-MP. Table 2 represents the results of the
multiple comparisons in all male participants. “Heavy” consumers had a significantly higher “ACs
I” score compared to all other groups. They also have a higher “ACs II” score as compared to
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the “below RL”, “light” and “non-consumers” groups. With the exception of “light to moderate”
consumers, “heavy” consumers have a higher “diacyl PCs” and “diacyl PCs, acyl-alkyl PCs II” score
compared to almost all other consumer groups. In addition, they have a lower “SMs” score compared
to “non-consumers” and “below RL”. There was no significant difference between alcohol groups
for “lysoPCs” in men and “acyl-alkyl, lysoPC” in women. Due to the absence of evidence of a linear
association, we fitted the second order polynomial regression for “AAs, SUG, ACs” and “acyl-alkyl PCs”
in men, and among women, for “AAs, SUG, ACs”, “diacyl, acyl-alkyl PCs”, “diacyl, acyl-alkyl, lysoPCs,
SMs”, “ACs I”, “ACs II”, “ACs III”. There was also no indication of a non-linear alcohol-metabolite
pattern association for all aforementioned MP scores (Table S1 and Table S2). In fact, the nonlinear
models were not significantly better when compared to their linear model counterparts.

Table 2. Mean score differences of male participants at the time of recruitment (1994–1998) in
EPIC-Potsdam in six metabolite patterns.

Metabolite Patterns Groups of Alcohol Consumers Mean Score*

ACs I

Heavy 0.952a
Light to moderate 0.372b

Below RL −0.098c
Light −0.317c

Non-consumers −0.283c

ACs II

Heavy 0.715a
Light to moderate 0.227ab

Below RL −0.106bc
Light −0.604c

Non-consumers −0.208bc

SMs

Heavy −0.240b
Light to moderate 0.198ab

Below RL 0.261a
Light 0.066ab

Non-consumers 0.592a

diacyl PCs

Heavy 0.541a
Light to moderate 0.228a

Below RL −0.008b
Light −0.015b

Non-consumers −0.183b

diacyl PCs, acyl-alkyl PCs II

Heavy 0.461a
Light to moderate 0.254a

Below RL −0.009b
Light −0.194b

Non-consumers −0.581b

Abbreviation: ACs I, Long and short chain acylcarnitines; ACs II, Medium and long chain acylcarnitines;
diacyl PCs, Diacyl-phosphatidylcholines; diacyl PCs, acyl-alkyl PCs II, Diacyl-phosphatidylcholines and
acyl-alkyl-phosphatidylcholine II; SMs, Sphingomyelins. Means followed by the same letter did not differ
significantly (Tukey test, p > 0.05). Number of participants in each consumer group: non-consumers (n = 31),
light (n = 61), below RL (n = 479), light to moderate (n = 269) and heavy consumers (n = 67); * mean of standard
deviation score.

We further examined the association between the continuously modelled alcohol consumption
and MPs stratified by smoking status. The results are represented in Table 3. In men, the positive
association of alcohol consumption with the “diacyl PCs, acyl-alkyl PCs I” MP was only consistent in
never smokers, the inverse association of alcohol consumption with “SMs” MP was only consistent in
current smokers, and the positive association of alcohol consumption with “ACs I”, “ACs II”, “lysoPC”
and “diacyl PCs” MPs were consistent in both in never smokers and current smokers. In women,
we found that the inverse association of alcohol consumption with “acyl-alkyl, lysoPC” MP was only
consistent in current smokers.
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Table 3. Linear regression models stratified by smoking status in men and women at the time of
recruitment (1994–1998) in EPIC-Potsdam.

Metabolite Patterns Never Smoker Former Smoker Current Smoker

β (CI) p-Value β (CI) p-Value β (CI) p-Value
Men 1

ACs I 0.206
(0.137–0.276) <0.001 0.094

(−0.052–0.240) 0.208 0.192
(0.072–0.312) 0.002

ACs II 0.169
(0.084–0.254) <0.001 0.026

(−0.120–0.173) 0.726 0.141
(0.013–0.268) 0.032

diacyl PCs, acyl-alkyl
PCs I

0.097
(0.015–0.178) 0.021 0.013

(−0.153–0.179) 0.877 0.037
(−0.077–0.151) 0.523

SMs −0.035
(−0.101–0.032) 0.308 −0.057

(−0.198–0.084) 0.430 −0.137
(−0.252–−0.023) 0.020

lysoPC 0.043
(0.004–0.081) 0.030 −0.029

(−0.120–0.061) 0.525 0.075
(0.016–0.134) 0.014

diacyl PCs 0.127
(0.084–0.170) <0.001 0.082

(−0.015–0.178) 0.100 0.119
(0.054–0.185) <0.001

diacyl PCs, acyl-alkyl
PCs II

0.153
(0.096–0.210) <0.001 0.121

(0.005–0.238) 0.043 0.109
(0.026–0.192) 0.011

Women 2

acyl-alkyl, lysoPC −0.068
(−0.150–0.014) 0.104 −0.127

(−0.361–0.107) 0.289 −0.184
(−0.362–−0.007) 0.043

Abbreviation: ACs I, Long and short chain acylcarnitines; ACs II, Medium and long chain acylcarnitines;
acyl-alkyl, lysoPC, Acyl-alkyl- and lyso-phosphatidylcholine; diacyl PCs, Diacyl-phosphatidylcholines; diacyl,
acyl-alkyl PCs I, Diacyl-glycerophosphocholines and acyl-alkyl-phosphatidylcholine I; diacyl PCs, acyl-alkyl PCs
II, Diacyl-phosphatidylcholines and acyl-alkyl-phosphatidylcholine II; lysoPCs, Lyso-phosphatidylcholines; SMs,
Sphingomyelins. 1 Men: never smoker, n = 553; former smoker, n = 175; current smoker n = 206. 2 Women: never
smoker, n = 1074; former smoker, n = 177; current smoker, n = 248.

4. Discussion

Our key finding was that alcohol consumption was associated with a number of metabolite
patterns in men, an increase of the “ACs I”, “ACs II”, “diacyl, acyl-alkyl PCs I”, “diacyl PCs”,
“lyso PCs” and “diacyl PCs, acyl-alkyl PCs II” MPs and a decrease in “SMs” MP. Among women,
alcohol consumption was associated with a decrease of “acyl-alkyl, lysoPC” MP. Moreover, our results
indicate that men consuming heavy alcohol differed from other consumers with respect to the “AC I”
MP. Additionally, our study identified apparent smoking-related differences in the relation between
alcohol consumption and MPs. These findings suggest that the impact of alcohol and smoking on
health outcomes could be through their effect on changes in metabolite profiles.

Our result of the positive association between alcohol consumption and diacyl-, lyso- and acyl-alkyl
PCs is consistent with previous studies that used targeted metabolomics [15–18]. Previous findings of a
negative association between alcohol consumption and acyl-alkyl PC [15–18] could only be replicated
in women. Moreover, in accordance with previous studies [15–18], we found a negative association
between lysoPC (in women) and SMs (in men). In addition, our finding that alcohol consumption is
positively associated with acylcarnitines is also in concordance with other results [15,17,18].

A possible explanation for our observed association between alcohol consumption and decrease of
sphingomyelins is that alcohol stimulates sphingomyelinase activity [45–47]. Moreover, our observed
association between alcohol consumption and decreased lysoPC might indicate less lipid remodeling
in the membranes due to higher alcohol consumption [15]. Our results indicate that lipid profiles
(e.g., diacyl-, lyso- and acyl-alkyl PCs and sphingomyelins) are particularly influenced by alcohol
consumption. Since we know that lipids play an important role in energy metabolism it seems that
alcohol consumption is associated with changes in energy metabolism.

Three studies investigated alcohol–metabolite associations with gender-specific differences using
targeted metabolomics [15,17,18]. Our finding of alcohol–metabolite associations with gender-specific
differences is consistent with the results from one of these studies [18]. In more detail, Jaremek et al. [18]
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identified specific profiles of 10 and 5 metabolites (sphingolipids and glycerophospholipids) in men
and women, respectively, which separated participants with a consumption of <40 g/d and ≥40 g/d
in men, and <20 g/d and ≥20 g/d in women. However, only three (for men) and two (for women) of
the metabolites could be replicated in small samples. One explanation for these findings could be
gender differences in alcohol metabolism due to body composition, genetic factors, gastric and hepatic
alcohol dehydrogenase, and gastric absorption [48]. However, the authors [15] used a dichotomous
categorization of alcohol consumption which might be suboptimal [49]. Furthermore, the reference
group (<40 g/d and <20 g/d for men and women, respectively) included individuals exceeding the
alcohol consumption recommended limit of 12 g/d for women and 24 g/d for men. It is possible
that this categorization has an influence on the study results as there is probably an alcohol-specific
metabolic dose-effect.

Our finding of men consuming heavy alcohol having increased metabolite pattern scores of
“ACs I” compared to all other consumer groups suggests that heavy alcohol consumption might have
distinctive metabolic effects. This may also be due to consumption of different or specific types of
alcohol that may be peculiar to heavy consumers. Furthermore, it could be speculated that heavy
consumers of alcohol already have altered pathophysiological changes in metabolism. One such
pathophysiological change is mitochondrial dysfunction [50] and acylcarnitines which we observed in
relation to heavy drinking might be potential biomarkers of mitochondrial dysfunction [51,52]. This
suggests that long and short chain acylcarnitines might play a key role in the adverse effects of heavy
alcohol consumption on chronic diseases such as the development and progression of atherosclerosis.

Interestingly the previously observed association between alcohol consumption and “ACs I”,
“ACs II”, “lysoPC” and “diacyl PCs” are consistent in never and current smokers. The fact that these
MPs in never and current smokers are linked to alcohol consumption indicates that these MPs are
dependent on metabolite functions that are similar in both never and current smokers, one of which
is the resting metabolic rate [53]. Since this association is no longer evident in former smokers, we
speculate that either smoking cessation actually has metabolic effects or smoking cessation products
may have masked these effects. The inverse association of alcohol consumption with lipid metabolites,
“SMs” MP in male smokers, and “acyl-alkyl, lysoPC” MP in female smokers is noteworthy. Cigarette
smoke and condensed tar contains free radicals, such as reactive oxygen species which promote
peroxidation of lipids [54].

We explored non-linear associations between alcohol consumption and MPs. We found no
evidence of nonlinearity for MP scores that were not significantly associated with alcohol in the linear
model. This is consistent with the results obtained in [17]. In contrast, a study by Würtz et al. [55]
found evidence of nonlinearity for alcohol–metabolite associations. It should, however, be noted that
measured metabolites of the present study differ from the study by Würtz et al. [55]. Therefore, one can
argue that observed differences in alcohol–metabolite associations are partly due to the differently
measured metabolites.

Only one [17] of the current studies that investigated alcohol–metabolite associations adjusted the
model for food items such as meat, fish and dairy products, despite evidence that these food items
are linked to alcohol consumption and have a direct effect on serum metabolites [39–43]. We also
captured the interrelationship among metabolites using a novel statistical approach, TT. The relevance
of our approach in exploring MPs rather than single metabolites is that in other reports in which
metabolites were explored individually, interpretation of these results was difficult. TT is a method
that outperforms other dimension reduction methods in terms of interpretability of components [20,56].
Besides, unlike the hypothesis-based approaches, TT and other data-driven methods may be more
optimal as they are based on the variation of the metabolites in specific populations. A strength of our
study is the large sample size.

Our study focuses only on a limited subsample of metabolites; thus, we cannot rule out that
other alcohol–MP associations might exist. Furthermore, the present study measured metabolites at a
single-time point. However, metabolite concentrations do vary over time, therefore, future studies
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need to consider repeatedly measured metabolites. Another limitation of our study is that alcohol
consumption was self-reported, which could introduce a potential measurement bias [57]. Future
studies should consider complementing self-reported alcohol consumption with objective measures or
biomarkers [58]. Biomarkers of alcohol consumption such as alcohol-ethanol that are detectable in
noninvasively collected bio-samples like the urine [58]. Additionally, using second-order polynomial
regression models might have underestimated nonlinear associations.

5. Conclusions

In conclusion, our findings suggest that the relation between alcohol consumption and groups
of serum metabolites depends on gender and smoking status. Groups of metabolites such as long
and short chain acylcarnitines might play an important role in the adverse effects of heavy alcohol
consumption on chronic diseases. Alcohol consumption and smoking exhibit a synergistic effect on
some metabolites. Generally, metabolomics is a powerful tool and provides additional information
about metabolic pathways in alcohol metabolism. This approach has potential in various areas and
helps us to improve our understanding of metabolic pathways in the relation of alcohol with health
outcomes. Nevertheless, future studies are needed to replicate our findings, focus on the gender-specific
differences, and investigate a wider range of metabolites.
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