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Abstract

A numerical framework for interstitial fluid pressure imaging (IFPI) in biphasic materials is

investigated based on three-dimensional nonlinear finite element poroelastic inversion. The

objective is to reconstruct the time-harmonic pore-pressure field from tissue excitation in

addition to the elastic parameters commonly associated with magnetic resonance elastogra-

phy (MRE). The unknown pressure boundary conditions (PBCs) are estimated using the

available full-volume displacement data from MRE. A subzone-based nonlinear inversion

(NLI) technique is then used to update mechanical and hydrodynamical properties, given

the appropriate subzone PBCs, by solving a pressure forward problem (PFP). The algorithm

was evaluated on a single-inclusion phantom in which the elastic property and hydraulic

conductivity images were recovered. Pressure field and material property estimates had

spatial distributions reflecting their true counterparts in the phantom geometry with RMS

errors around 20% for cases with 5% noise, but degraded significantly in both spatial distri-

bution and property values for noise levels > 10%. When both shear moduli and hydraulic

conductivity were estimated along with the pressure field, property value error rates were as

high as 58%, 85% and 32% for the three quantities, respectively, and their spatial distribu-

tions were more distorted. Opportunities for improving the algorithm are discussed.

Introduction

Magnetic resonance elastography (MRE) is a noninvasive, quantitative imaging technique that

characterizes material property distributions of biological tissues through application of appro-

priate constitutive models. Previous work has generally modeled biological tissue as a single

solid matrix that is linearly elastic, isotropic, and nearly incompressible, and has focused on

estimating the viscoelastic properties of breast [1–3], liver [4, 5], muscle [6–8], and prostate

[9]. Recent work in MRE involves measurements of brain tissue whose behavior is
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inadequately described by linear elasticity. Instead, some soft tissues like the brain may be bet-

ter represented as a biphasic material, in which fluid and solid phases coexist, and whose

mechanical behavior can be approximated by a porous elastic matrix with an infiltrating pore

fluid.

Experimental studies [10] have shown that brain tissue consists of a matrix of neurons and

glial cells containing both intracellular and extracellular fluid. Approximately 20% of tissue

volume consists of extracellular fluid which can move within the interstitium through the net-

work of capillaries and the lymphatic system and plays the role of an infiltrating pore fluid

from the modeling perspective. Furthermore, the network of neural and glial cells provides

structural support that acts as the porous elastic matrix. Mechanical testing results under con-

trolled drainage conditions also suggest the behavior of brain tissue is well described by a por-

oelastic model [11, 12].

Originally developed by Biot in 1956 [13, 14] for soil mechanics, the poroelastic model

assumes volumetric deformation of the solid matrix leads to fluid flow in the material, and

conversely, fluid forced into the material causes deformation of the matrix. The model was

extended to time-harmonic behavior by Cheng et al. [15] and later by Perrinez et al. [16] to the

frequency-domain equivalent set of equations for tissue elastography applications known as

poroelastic MRE.

So far, poroelastic modeling of brain tissue using finite elements have been successful in

capturing quasi-static deformation in hydrocephalus and edema [17, 18], as well as brain-shift

and interstitial pressure fluctuations during stereotactic neurosurgery [19–23]. However, the

time-harmonic pressure distribution that develops under the natural cerebrovascular pulsa-

tions at cardiac frequencies, which have been used as sources of motion in MRE (termed

intrinsic actuation) [24], has not been investigated to date. The pressure field in this case may

be interpreted as variation in the interstitial fluid pressure (IFP) of the tissue caused by the

blood pressure pulse. Solid tumors typically show increased IFP [25–28] which is a barrier to

the delivery of cancer therapy [29–32]. Elevated IFP of a tumor also indicates poor prognosis

for both chemotherapy and radiation therapy [33–35], and cases which respond well to ther-

apy often show a progressive decrease of IFP over the course of the treatment [36]. High IFP of

primary tumor has also been linked to greater chances of recurrence and distant metastases

[35, 37]. Moreover, compounds which lower IFP have been shown to increase the therapeutic

benefit of traditional cancer therapies due to more efficient uptake of therapeutic agents [38,

39]. Elevated IFP in tumors causes even greater obstacles for large molecules (including the

new generation of genetically engineered cancer therapies) because the dominant mechanism

of transport is convection, whereas smaller molecules can also travel by diffusion, which is not

as strongly affected by pressure [40]. In vivo measurements of IFP could provide valuable

information for treatment planning and monitoring of solid tumors.

Currently, direct measurements of IFP are limited to invasive techniques such as micro-

puncture and wick-in-needle which only yield measurements at discrete locations [29, 31, 41,

42]. Indirect IFP estimates based on longitudinal monitoring of the uptake of MR contrast

agents have been suggested [43–47]; however, these methods require long imaging times (2

hours in a mouse model) and at least two direct measurements of pressure to obtain quantita-

tive IFP images [44]. In-vivo testing has shown weak or no correlation between IFP estimates

derived from contrast uptake and direct measurements [45, 47, 48]. A method of accurately

imaging IFP in humans would be valuable; solid tumors with high IFP could be identified, and

treatments can be designed with the limiting effects of IFP in mind. IFP imaging would also be

useful for monitoring the efficacy of drugs designed to lower IFP to allow sufficient doses of

therapeutics to reach the tumor. Other applications include pressure related disorders such as

hydrocephalus, stroke, and edema.

Pressure imaging in poroelastic MRE

PLOS ONE | https://doi.org/10.1371/journal.pone.0178521 June 6, 2017 2 / 22

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0178521


This work develops a numerical framework for quantitative estimation of IFP images based

on a subzone-based, nonlinear inversion (NLI) MRE algorithm initially developed by Van

Houten et al. [49]. The inversion is posed as a constrained optimization problem whose objec-

tive is to minimize the least squares difference between a set of measured displacement fields

and those computed by a constitutive model. The overall problem domain is divided into a set

of overlapping subzones, and the inversion is performed on the individual subzones by apply-

ing the measured displacements as Dirichlet boundary conditions on the zone surface. A sig-

nificant advantage of the subzone-based approach is the opportunity for parallel computing,

which substantially reduces computational time and memory storage. This method has been

implemented to estimate both viscoelastic [3, 50, 51] and poroelastic [16, 24, 52, 53] material

properties. Poroelastic MRE yields estimates of fluid-related quantities (such as pore-fluid

pressure and hydraulic conductivity) in addition to elastic property distributions. Unfortu-

nately, pressure boundary conditions (PBCs) needed to solve the poroelastic governing equa-

tions are generally unavailable. Previous studies assumed homogeneous type I PBCs on the

exterior boundary as a simple practical approach with little physical rationale, and certainly no

measurement data. In this study, the unknown PBCs are estimated from the three-dimensional

full volume displacement data obtained from MRE as Neumann type (i.e., type II) by relating

the fluid flow through the boundary to spatial derivatives of the displacements via the govern-

ing equations of poroelastic mechanical motion. IFP is then calculated by solving the poroelas-

tic pressure equation for nodally distributed pore pressures through a standard finite element

formulation. The new algorithm is tested on a single-inclusion numerical phantom from

which synthetic displacement data is generated in the presence of added Gaussian noise.

Methods

Poroelastic Magnetic Resonance Elastography (MRE)

Poroelastic MRE has been described as a three-dimensional finite-element based NLI scheme

that enables estimation of mechanical and hydrodynamical properties from MR measurement

of displacement fields [16, 53] based on time-harmonic governing partial differential equations

written in the frequency domain as

r � mruþrðlþ mÞðr � uÞ � ð1 � bÞrp ¼ � o2ðr � brf Þu; ð1aÞ

rf o
2r � ðuð1 � bÞÞ þ r � ðbrpÞ ¼ 0; ð1bÞ

where u is the three-dimensional time-harmonic displacement vector with components u, v
and w; p denotes the scalar pore-pressure field; λ is Lamé’s first parameter; μ is the shear mod-

ulus; ρ and ρf refer to the bulk density and pore-fluid density, respectively; and ω is the actu-

ation frequency. By assuming time harmonic displacement and pressure fields, u and p
represent the complex-valued frequency-dependent time-invariant amplitude of displacement

and pore-pressure, respectively. The term β is related to properties of the poroelastic material

including hydraulic conductivity (κ), porosity (ϕ), and apparent mass density (ρa), and is given

by

b ¼
o�

2
rf k

i�2
þ okðra þ �rf Þ

: ð2Þ

A more compact form of the pressure Eq (1b) can be written as [54]

ioðr � uÞ � r � q ¼ 0; ð3Þ

Pressure imaging in poroelastic MRE
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where q is the fluid flow and defined as

q ¼ biou �
bi

rf o
rp: ð4Þ

The fluid flow is introduced to allow appropriate fluid-flow boundary conditions to be pre-

scribed in the finite element formulation. The Dirichlet (i.e. type I) and Neumann (i.e. type II)

boundary conditions are denoted as

u ¼ u0 on Gu;

p ¼ p0 on Gp;

n � sE ¼ f
0

on Gs;

n � q ¼ r0 on Gq;

ð5Þ

where Gu [ Gs ¼ Gp [ Gq ¼ G; n is the unit outward normal on the overall surface, Γ, and σE
is the Cauchy stress tensor defined for an isotropic, linear elastic material as

σE ¼ ltrðεÞI þ 2mε with ε ¼
1

2
ðruþruTÞ: ð6Þ

Poroelastic MRE reconstructs spatial images of mechanical and hydrodynamical properties of

biphasic tissues by minimizing the least squared error between a set of measured displacement

data and those computed from Eq (1) throughout the image acquisition volume. The estimated

material property distribution, θ?, is given by

y
?
¼ argmin P½y�; where P½y� ¼

1

2

Z

O

ðucðyÞ � umÞ
H
ðucðyÞ � umÞdO; ð7Þ

where uc and um denote the computed displacement fields and the measured MR displacement

data, respectively. The superscript H symbolizes the complex conjugate transpose, and θ repre-

sents the variables to be estimated including the shear modulus, μ, Lamé’s first parameter, λ,

and the hydraulic conductivity, κ. O refers to the domain of the entire set of observations. The

minimization problem is solved by iteratively updating the material property distribution, θ,

i.e.

ynew ¼ yold þ aDy; ð8Þ

where Δθ is the ‘search direction’ to ensure reduction of the objective function and α is a scal-

ing factor to promote convergence. Determination of the search direction often requires first

and (or) second derivative information of the objection function with respect to θ. Various

numerical methods such as gradient based algorithms (conjugate-gradient and quasi-Newton)

[55–57] and Hessian-based algorithms (Gauss-Newton) [49, 50, 52, 54, 58] have been

explored.

One common feature of these methods is that before updating the search direction, an esti-

mate of the pressure field, p, using the current material property distribution, θold, is needed.

This step is referred to as the forward problem (FP) in elastography. The finite element method

is commonly applied which produces a linear system of equations via discretization of the vari-

ational form of the poroelastic governing Eq (1) written as

½KðyÞ�
uc

p

� �

¼ fbg; ð9Þ

Pressure imaging in poroelastic MRE
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where K and b are the stiffness matrix and forcing vector. Once the search direction is deter-

mined, the material property distribution can be updated. This process is performed iteratively

until the convergence of θ. A diagram showing the iterative method for material property

reconstruction is presented in Fig 1. However, the algorithm suffers from two drawbacks:

1. Lack of reliable pressure measurements—For a well-conditioned forward problem, pressure

boundary conditions (PBCs) need to be prescribed on the surface of the body, but physical

measurements of interstitial pressure values are generally not available.

2. High computational cost—Both the FP and Δθ needs to be computed repeatedly. While Δθ
can be calculated using subzone inversion methods, computation of p requires the solution

of the FP. The problem size for brain has 104-106 unknowns; therefore, making repeated

calculations for the complete imaging domain is impractical.

To address these issues, we developed a numerical framework which was built on the itera-

tive NLI method to estimate interstitial fluid pressure (IFP) as well as the mechanical and

hydrodynamical properties of poroelastic materials. The key elements of the interstitial fluid

presusre imaging (IFPI) numerical framework are described in the following section.

Fig 1. Iterative method for material property reconstruction in poroelastic MRE.

https://doi.org/10.1371/journal.pone.0178521.g001
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Interstitial Fluid Pressure Imaging (IFPI) algorithm

Pressure Forward Problem (PFP). In practice, MRE measures three-dimensional dis-

placement fields at all points in the acquisition volume. To take full advantage of the available

data, we present an efficient algorithm that computes the pressure field, p, given the displace-

ment data, u, and the current estimate of material property distributions.

Let S and V be the trial solution and weighting function spaces, respectively, such that

S ¼ fU ¼ ðu; pÞjui 2 H1ðOÞ; p 2 H1ðOÞ; u ¼ u0 on Gu; p ¼ p0 on Gpg;

V ¼ fW ¼ ðv; qÞjvi 2 H1ðOÞ; q 2 H1ðOÞ; v ¼ 0 on Gu; q ¼ 0 on Gpg;
ð10Þ

Multiplying the pressure Eq (3) with the weighting function, q, gives

hr � q; qi ¼ hior � u; qi; 8q 2 V; ð11Þ

where h�, �i denotes the inner product over the body O. Using the divergence theorem, the

boundary Conditions (5)4 and (10) result in

hq;rqi ¼ � hior � u; qi þ
I

Gq

r0qdGq; 8q 2 V; ð12Þ

and finally substituting Eq (4) into Eq (12) leads to

biou �
bi

rf o
rp

 !

;rq

* +

¼ � hior � u; qi þ
I

Gq

r0qdGq; 8q 2 V: ð13Þ

This system is solved using the finite element method and can be viewed as a Laplacian pres-

sure term driven by a source involving the volumetric deformation of the solid matrix,r � u.

Assembling terms containing the unknown pressure field, p, on the left side and known dis-

placements, u, on the right leads to

i
rf o
hbrp;rqi ¼ iohr � u; qi þ iohbu;rqi �

I

Gq

r0qdGq: ð14Þ

Note that the hydraulic conductivity, κ, is implicitly dependent on the parameter β and is spa-

tially varying in most biological tissues; therefore, β is kept within the integral. The finite ele-

ment discretization gives

p ¼ pj�j; q ¼ qk�k; ð15Þ

where pj and qk are the nodally discretized description of the pressure field on the trial and

weighting function spaces, respectively. A linear system can be formed to compute the nodal

values of p, i.e.

½Kp�fpg ¼ fbpg; ð16Þ

where the Kp matrix contribution from the k’th weighting function and j’th interpolation func-

tion is

Kpðk; jÞ ¼
i

rf o
hr�k; br�ji; ð17Þ

Pressure imaging in poroelastic MRE
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and the k’th weighting function contributes

bpðkÞ ¼ iohr � u; �ki þ iohbu;r�ki �

I

Gq

r0�kdGq: ð18Þ

The computational cost for PFP is lower than the full poroelastic forward problem since the

size of the linear system Eq (16) is only one fourth of the size of the poroelastic forward

Problem (9).

Note that the prescription of type II PBCs is not a necessary condition for a well-defined

forward problem. Instead, type I PBCs need to be imposed, at least partially on the surface, to

ensure the invertibility of the stiffness matrix Kp. In the case of prescribed type I PBCs over the

entire surface, the surface integral in the last term of Eq (18) is no longer required. Since no

reliable measurements of the actual pressure values are available, an estimate of the type II

PBC is derived from the full volume displacement data. The pressure field obtained from the

PFP will be updated throughout the IFPI process as the material properties and the type II

PBCs, r0, are optimized iteratively.

Type II Pressure Boundary Condition (PBC) estimation. From Eq (18), the PFP

includes the type II PBC, r0, in addition to the displacement field, u, and the hydraulic conduc-

tivity, κ. Here, the last term in Eq (18) is estimated from the full volume displacement data.

From the weak form Eq (13) of the pressure forward equation,

I

Gq

r0�kdGq ¼ biou �
bi

rf o
rp

 !

;r�k

* +

þ hior � u; �ki: ð19Þ

The termrp in Eq (19) can be computed from the elasticity Eq (1a), i.e.

rp ¼
1

1 � b
r � mruþrðlþ mÞðr � uÞ þ o2ðr � brf Þu
� �

: ð20Þ

Substituting Eq (20) into Eq (19) results in

I

Gq

r0�kdGq ¼
bioðrf � rÞ

ð1 � bÞrf
u;r�k

* +

þ hior � u; �ki

�
bi

rf oð1 � bÞ
r � mruþr lþ mð Þ r � uð Þð Þ;r�k

* +

;

ð21Þ

which requires the full volume displacement field, u, the hydraulic conductivity, κ (which is

implicitly in β), and the elastic parameters μ and λ. Even though the elastic properties μ and λ
of the solid phase do not appear explicitly in the pressure Eq (1b) (alternatively, Eq (3)), the

pore-pressure field, p, is related to the solid matrix properties via the estimated type II pressure

boundary values.

One challenging task in solving Eq (21) is the calculation of second derivative terms,r �

ru andr(r � u). Since linear shape functions are currently assumed in the finite element for-

mulation, higher order derivatives of the displacement field are not defined. Therefore, multi-

dimensional polynomial fitting [59] is applied to produce a differentiable analytical expression

of the displacement as a function of (x, y, z). For example, a second order polynomial function

defined in three-dimensional space can be expressed as

f ðx; y; zÞ ¼ c0 þ c1x þ c2y þ c3z þ c4x2 þ c5y2 þ c6z2 þ c7xyþ c8yz þ c9xz; ð22Þ

where the coefficients, ci (for i = 1 to 9), of the polynomial regression model can be computed

Pressure imaging in poroelastic MRE
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using linear least squares [60]. Note that the six components of the complex-valued displace-

ment field u, [i.e. Re(u), Im(u), Re(v), Im(v), Re(w) and Im(w)], are approximated individually.

Higher order derivatives can then be calculated from the analytical approximation of u given

in Eq (22). Furthermore, the polynomial function is smoother than the raw measurement data;

thus, it can be regarded as a filtered version of both the displacement and its derivatives.

As part of algorithm development, we experimented with the highest order of polynomial

terms used in (22) to represent the displacement field, and varied the range from 4 to 12. We

found that if the number was too small the distribution was overly smoothed whereas if the

number was too large, the approximation was overly sensitive to data noise (results not

shown). We selected the highest order to be 10 as a tradeoff between over-filtering (number

too low) and noisy displacement approximation (number too large), and used this polynomial

representation in the algorithm to generate the outcomes shown in the Results section.

Subzone inversion. Given the size of the minimization problem in practical applications

(104-106 unknowns), computational load must be considered. An efficient algorithm has been

developed, which divides the domain O into a set of overlapping subzones and seeks minimi-

zation on the individual subzones with appropriate boundary values prescribed on the zone

surface [49, 50, 61]. The minimization Problem (7) becomes

y
?
¼ argmin P½y�; where P½y� ¼

1

2

XQ

z¼1

Z

Oz

ðuc � umÞ
H
ðuc � umÞdOz; ð23Þ

where O and Oz denote the domain of the total problem and a single subzone, respectively; Γ
and Γz are the associated boundaries of O and Oz. This subzone-based approach provides a

natural architecture for parallel computing, as each minimization problem at the subzone level

can be processed simultaneously. In the remainder of the presentation, superscript g refers to

variables at the global level whereas those with superscript z refer to variables at the subzone

level. Thus, the displacement field, the pressure field and the material property distribution in

O are denoted by ug, pg and θg. Type I and II PBCs prescribed on Γ appear as pg
Gp

and rgGq
. The

subzone-level variables are represented by uz, pz, θz, pz
Gp

and rz
Gq

. Note that the prescription of

pg
Gp

is required, at least partially, on Γ in order to avoid singularity of the stiffness matrix Kp.

Here, pg
Gp

is set to be a constant at an arbitrary boundary node as a reference value. Since only

the gradient of the fluid pressure appears in the poroelastic governing Eq (1), the pressure

images will be scaled by this single-node imposed type I PBC while the gradient of the pressure

will not be affected. A general procedure for IFPI is based on the following steps:

1. Take ugm from measurements, prescribe pgGp , and set an initial estimate of the material prop-

erty distribution, θg;

2. Estimate rgGq from Eq (21) given ugm and θg;

3. Solve the PFP, i.e. Eq (16), for the global pressure field pg based on ugm, θg, pgGp
and rgGq ;

4. Divide domain O into subzones and specify pzGp at the zone level from pg;

5. Solve the poroelastic FP Eq (9) for uz and pz using θz, uzGu and pzGp , where uzGu is a type I dis-

placement boundary condition defined by ugm;

6. Update θz via NLI.

7. Repeat steps 2-6 until convergence of θ.

Pressure imaging in poroelastic MRE
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A diagram illustrating the main elements of this IFPI algorithm is provided in Fig 2.

Numerical phantom

In order to validate the Fig 2 IFPI algorithm, a 6cm cube-shaped simulated phantom is consid-

ered with a single inclusion of size 3cm × 2cm × 2cm centered at x = 3cm, y = 3cm and

z = 4.8cm. Fig 3 shows the structure of the phantom, in which the inclusion is located near the

top of the cube. Displacement boundary conditions are set to be u = v = w = 0 (corresponding

to displacements in the x, y, and z directions, respectively, in the Fig 3 coordinate system) on

the top, u = v = 0 and w = 1e-2cm on the bottom of the phantom. Traction-free, i.e. n � σE = 0,

boundary conditions are specified on the rest of the surfaces. The PBC is set to be p = 0 over

the entire boundary. As shown in [62], the poroelastic model produces accurate mechanical

property images at low frequencies such as those observed in intrinsic brain motion. Thus, the

frequency, ω, is set to be 1Hz to ensure that the poroelastic model is applicable. The shear

modulus, μ, the Lambda modulus, λ, and the hydraulic conductivity, κ, for both the inclusion

and the matrix were specified based on values (ranging from 3000Pa to 6000Pa, 4500Pa to

9000Pa, and 1e-7m3s/kg to 1e-5m3/kg, respectively) observed during in vivo brain MRE [24].

Fig 2. Schematic of IFPI algorithm.

https://doi.org/10.1371/journal.pone.0178521.g002
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A poroelastic global forward problem, GFP, Eq (9) is solved which computes the displacement,

u, and pressure, p, fields based on the time-harmonic poroelastic model Eq (1) with the pre-

scribed boundary conditions and property distributions. In IFPI, the material properties and

the pressure field are considered as unknowns. Computed displacements (from the GFP) act

as synthetic measured data, um (e.g., from MRE), and the algorithm described in the Subzone

Inversion section is followed. In these numerical experiments, the type I PBC, pg
Gp

, is set to

zero on a single exterior boundary node at x = y = z = 0, and type II PBCs, rgGq
, are estimated

using Eq (21) at the rest of the boundary points. The resulting material property distribution,

θ, and the pressure field, p, are compared with values from the GFP. To quantify errors

between reconstructed estimates and original GFP solutions, a normalized root mean squared

(RMS) error is tabulated, defined as

Df :¼
k fFP � fINV k

k fFP k
; with k ð�Þ k:¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i¼1

ð�Þ
2

i

s

; ð24Þ

where fFP and fINV are material property or pressure values from the GFP and IFPI reconstruc-

tion, respectively.

Two cases are considered: the first reconstructs μ and λ but assumes κ to be known; the sec-

ond estimates κ along with the elastic properties, μ and λ, (and are referred to as two parameter

and three parameter reconstructions, respectively, in the rest of the paper and the subsections

below). A simple Gaussian noise model of increasing percentage (1%, 5%, 10%, and 15%) is

added directly to the GFP-derived displacement data as a way of representing uncertainty in

the measurement system and testing the algorithm in the presence of noise. We did not try to

model the MRI system noise from which MRE data is derived in practice. We have used the

Gaussian noise approach successfully in the past when investigating new algorithms and meth-

ods associated with MRE property estimation [16, 52, 53], even though it is a simplification of

reality. The lower percentages (i.e., 1%, 5%) are indicative of variability in displacement data

observed in repeated measurements of the same phantom with MRE, and yield outcomes com-

parable to those obtained in physical experiments [53, 54]. The higher percentages (i.e., 10%,

15%) are included to explore the limits of algorithmic performance with excessively noisy data.

Fig 3. Geometry of the numerical phantom consisting of a homogeneous background and a single

inclusion.

https://doi.org/10.1371/journal.pone.0178521.g003
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Results

Spatial derivative estimation from displacement data

In this subsection, results are presented to demonstrate that spatial derivatives of the displace-

ment field are computed correctly when represented by higher order local polynomials, similar

to (22), even in the presence of noise as high as 15%. Fig 4 shows the real parts of the displace-

ment data in the x direction for different levels of noise and the corresponding estimations of

the second order term,r � ru, from multi-dimensional polynomial fitting (using polynomials

with highest order 10). The magnitudes of the displacement vary from -2e-5 to 2e-5 and occur

mostly along the x direction. The characteristic length scale of this variation is about one third

of the cubic edge length, i.e., 2cm. Since @2u/@x2 is dominant inr � ru, the magnitude ofr �

ru can be approximated by

½r � ru� �
@

2u
@x2

� �

�
4e � 5

0:022
¼ 0:1; ð25Þ

which agrees well with the polynomial-fitted results. Small distortions are found in Fig 4(g)

and 4(h) when noise levels reach 10% and 15%, but in general, these higher order derivative

terms are estimated effectively. The results were generated from simple compression of the

numerical phantom (in the z direction in Fig 3) as the driving conditions (along the bottom

surface as shown in Fig 3) which produced sizable components in a shearing (x) direction rela-

tive to the bottom surface excitation.

Two parameter reconstruction (μ and λ estimated, κ known)

Material properties used in the GFP for this case are listed in Table 1. The inclusion is set to be

twice as stiff as the background, while the hydraulic conductivity, κ, is assumed to be homoge-

neous throughout the domain. Displacement inputs, um, for the IFPI algorithm were obtained

by solving the GFP with added noise. Finite element meshes used to compute the GFP and

IFPI solutions were the same.

Fig 4. (a-d) Maps of the real displacements, u, in the x direction at slice y = 4.2cm for noise levels of 1%, 5%,

10% and 15%, respectively. (e-h) Corresponding maps ofr � ru estimated from polynomial fitting of the

displacement data. Images in (a-d) are displayed in units of mm and images in (e-h) are given in units of cm−1.

https://doi.org/10.1371/journal.pone.0178521.g004
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Fig 5(a) and 5(c) present the real and imaginary parts of the pressure field, p, from the GFP.

The corresponding pressure fields reconstructed from the IFPI algorithm (i.e. Fig 2) with 1%

data noise are shown in Fig 5(b) and 5(d). Images represent x-z planes in Fig 3 at different

positions of y. Corresponding shear modulus images for two of the four planes in Fig 5 appear

in Fig 6.

Figs 7 and 8 show reconstructed images of the estimated pressure field (Fig 7) and shear

modulus distribution (Fig 8) in the x-z plane at y = 3cm for increasing noise levels of 5%, 10%,

and 15% (true distributions appear in Fig 5(a) and 5(c), upper right image for p, and Fig 6(a)

for μ). In the higher noise cases, we also averaged the displacements spatially prior to polyno-

mial fitting and used these distributions to estimate the PBCs needed for the IPFI algorithm.

IPFI results from the spatially averaged displacement data are shown in the figures as well.

RMS errors in the estimated pressure field, p, and shear modulus, μ, distributions are

Table 1. Material properties used in two parameter reconstruction.

material property μ λ κ
matrix 3000Pa 4500Pa 1e-7m3s/kg

inclusion 6000Pa 9000Pa 1e-7m3s/kg

https://doi.org/10.1371/journal.pone.0178521.t001

Fig 5. Estimated pressure, p, images at y = 0.8cm, 3cm, 4.2cm and 5.4cm in left-right clockwise

orientation from 1% noisy data in the two parameter case. (a-b) Real part of the pressure field from GFP

(true, left) and IFPI (estimated, right), respectively. (c-d) Imaginary part of the pressure field from GFP (true,

left) and IFPI (estimated, right), respectively. Images appear in units of Pa defined by the scalebars shown.

https://doi.org/10.1371/journal.pone.0178521.g005
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Fig 6. Estimated shear modulus, μ, images at y = 3cm and 5.4cm with 1% noisy data in the two

parameter case. (a-b) Assigned (true) shear modulus values (left image pair). (c-d) Reconstructed shear

modulus from IFPI (right image pair). Images appear in units of Pa defined by the scalebar shown.

https://doi.org/10.1371/journal.pone.0178521.g006

Fig 7. Estimated pressure, p, images at y = 3cm for noise levels of 5%, 10%, and 15% (left to right) in

the two parameter case. (a-c) Real component of the pressure field estimate. (d-f) Real component of the

pressure field from spatially averaged displacement data. (g-i) Imaginary component of the pressure field

estimate. (j-l) Imaginary component of the pressure field estimate from spatially-averaged displacement data.

Images appear in units of Pa.

https://doi.org/10.1371/journal.pone.0178521.g007

Fig 8. Estimated shear modulus, μ, images at y = 3cm for displacement noise levels of 5%, 10% and

15% (left to right) in the two parameter case. (a-c) Shear modulus images. (d-f) Shear modulus images

from spatially-averaged displacement data. Images appear in units of Pa defined by the accompanying

scalebar.

https://doi.org/10.1371/journal.pone.0178521.g008
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summarized in Table 2 as a function of noise level. The reconstruction errors from the spatially

averaged data are also included (images not shown in Figs 7 and 8).

Three parameter reconstruction(μ, λ and κ estimated)

In these numerical experiments, κ is unknown and assumed to vary spatially. As a result, it is

reconstructed along with the elastic parameters, μ and λ. The material properties used in the

GFP for this case are summarized in Table 3. Again, the inclusion is set to be twice as stiff as

the background, but this time the hydraulic conductivity, κ, is also different (higher) in the

inclusion relative to the background. As in the previous example, displacement inputs, um, for

the IFPI algorithm were obtained by solving the GFP and adding noise to the GFP results. The

finite element meshes were used to compute the GFP and IFPI solutions were the same. A sim-

ilar series of figures (to those shown for the two parameter case in the previous section) is pre-

sented, starting with estimates of pressure field, shear modulus and hydraulic conductivity

distributions for 1% noise followed by illustrations of the effects of increasing levels of dis-

placement data noise on IFPI algorithm performance.

Specifically, Fig 9 shows reconstructed real and imaginary components of the pressure field

relative to the true values computed with the GFP for the properties in Table 3 with 1% dis-

placement data noise. In this case, the influence of the heterogeneous inclusion (which now

has a higher κ value compared to the background) on the resulting pressure distribution is evi-

dent, but captured spatially and quantitatively fairly accurately (* 30% RMS error, see Table 4

below). Corresponding shear modulus, μ, and hydraulic conductivity, κ, images appear in

Fig 10 and show similar levels of agreement, although the shear modulus image is less accurate

quantitatively compared to the two parameter reconstruction case (RMS errors *30% vs

*10% for two parameters), and the hydraulic conductivity is degraded further (RMS errors

*40%). RMS errors at different noise levels (from 1% to 15%) are summarized in Table 4.

They increase to more than 100% (almost 80% for pressure) for noise levels of 10% or more

and the images are spatially distorted. Averaging the noisy displacement data does not offer

any significant improvement.

Discussion

In this paper, an interstitial fluid pressure imaging (IFPI) algorithm that estimates both full

field pressure distributions and material property maps from measured displacement data was

developed and evaluated in a numerical phantom consisting of a background region

Table 2. RMS errors in estimated quantities from the two parameter case.

noise level 1% 5% 10% 15% h1%i h5%i h10%i h15%i

μ 0.1024 0.2262 0.3695 0.5328 0.0945 0.1637 0.3058 0.4772

p 0.2184 0.2550 0.3023 0.2884 0.2178 0.2523 0.3021 0.2856

h�i represents the spatially averaged results.

https://doi.org/10.1371/journal.pone.0178521.t002

Table 3. Material properties used in three parameter reconstruction.

material property μ λ κ
matrix 3000Pa 4500Pa 1e-7m3s/kg

inclusion 6000Pa 9000Pa 1e-5m3s/kg

https://doi.org/10.1371/journal.pone.0178521.t003
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Fig 9. Estimated pressure, p, images at y = 0.8cm, 3cm, 4.2cm and 5.4cm in left-right clockwise

orientation from 1% noisy data in the three parameter case. (a-b) Real part of the pressure field from GFP

(true, left) and IFPI (estimated, right), respectively. (c-d) Imaginary part of the pressure field from GFP (true,

left) and IFPI (estimated, right), respectively. Images appear in units of Pa.

https://doi.org/10.1371/journal.pone.0178521.g009

Table 4. RMS errors in estimated quantities from the three parameter case.

noise level 1% 5% 10% 15% h1%i h5%i h10%i h15%i

μ 0.2951 0.5795 1.4321 1.7754 0.2939 0.5788 1.4968 1.7533

p 0.2878 0.3191 0.7781 0.7460 0.2901 0.3212 0.7850 0.7652

κ 0.4022 0.8542 1.9411 1.9183 0.4124 0.9441 2.378 1.9856

h�i represents the spatially averaged results.

https://doi.org/10.1371/journal.pone.0178521.t004

Fig 10. Estimated shear modulus, μ, and hydraulic conductivity, κ, images at y = 3cm with 1% noisy

data in the three parameter case. (a-b) Assigned (true) and reconstructed shear modulus values. (c-d)

Assigned and reconstructed hydraulic conductivity values from IFPI estimation. Shear modulus images

appear in units of Pa whereas hydraulic conductivity images are shown in units of log10(m3/kg).

https://doi.org/10.1371/journal.pone.0178521.g010
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containing an embedded inclusion with increased material property parameters. Displacement

fields were generated from the numerical phantom having assigned material property parame-

ters by solving the governing poroelastic model equations on the domain. Gaussian noise was

added to the resulting displacements and the noisy values were used as synthetic data for IFPI

estimation of the original pressure and material property distributions. The new IFPI approach

eliminates the need for type I (Dirichlet) boundary conditions on the pressure field (which

were assigned based on little physical rationale and no measurement data in the past) in favor

of estimating type II (Neumann) pressure boundary conditions through the governing poroe-

lastic equations by applying the differential operators to the measured mechanical motion.

Local high-order polynomial fitting of measured displacements yielded smoothed functional

forms that enabled computation of second order spatial derivatives without overwhelming

noise amplification. Numerical experiments of two and three material property parameter

IFPI reconstructions were evaluated.

In the two parameter case, the pressure field, p, was estimated along with two mechanical

property parameters (shear modulus, μ, and Lamé’s first parameter, λ) while other properties

(hydraulic conductivity, κ) were constant and assumed to be known. Under these conditions,

the original type I pressure boundary conditions (p = 0) specified on Γ (to generate the syn-

thetic displacement data) were recovered accurately (see Fig 5). The real and imaginary parts

of the pressure field changed from zero on the surface to -5 and 5 Pa through the center of the

phantom, and estimated pressures captured the correct spatial behavior but tended to underes-

timate their corresponding true values. Specifically, estimated pressure fields mirrored the true

distributions spatially, and quantitatively, their values had RMS errors near 20% with 1% dis-

placement noise (see Fig 5 and Table 2) that approached 30% when noise levels increased to

15% (see Fig 7).

Overall, the shape of the pressure distribution was insensitive to noise in this case, as were

the underlying pressure values, although RMS errors did grow by 10% (from 20% to 30%, see

Table 2) under the highest noise conditions. The pressure field’s immunity to displacement

data noise results, in part, from the fact that the pressure images are relatively insensitive to the

estimated shear modulus (the recovery of which is sensitive to the level of displacement data

noise as disussed further below). The relative insensitivity of pressure to the estimated shear

modulus is observed by substituting Eq (21) into Eq (18) which yields

bpðkÞ ¼
iobuðr � brf Þ

ð1 � bÞrf
;r�k

* +

þ
bi

ð1 � bÞrf o
ðr � mruþrðlþ mÞr � uÞ;r�k

* +

: ð26Þ

Multiplying ρf ω/βi on both sides of the pressure Eq (16) leads to

p /
o2uðr � brf Þ

1 � b
þ

1

b
ðr � mruþrðlþ mÞr � uÞ; ð27Þ

which implies that the pressure field, p, is proportional to the supposition of two terms. In the

two parameter reconstruction tests, the first term is dominant when the hydraulic conductiv-

ity, κ, (implicitly in β) is specified, in which case, the material properties, μ and λ, appearing in

the second term have less influence on the resulting pressure images.

In the two parameter case, the recovered shear modulus, μ, localized the heterogeneity as a

stiffer inclusion with the same property difference as the assigned values (*3000Pa) but with

peaks in the inclusion and background about 1000Pa lower than the numbers in Table 1 (see

Fig 6). The underestimation of material properties may result from underestimation of the

type II pressure boundary conditions from the polynomial-fitted displacement data. Not sur-

prisingly, the jump change in shear modulus at the inclusion interface was smoothed in the
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estimated property profile over a distance of about 3 mm which is comparable to the finite ele-

ment mesh resolution. When displacement data noise increased from 1% to 5%, RMS errors

in shear modulus increased from near 10% to about 20% (see Table 1). Here, the spatial distri-

bution of shear modulus remained relatively similar, although more variation in shear modu-

lus values did occur near the inclusion surface closest to the outer boundary of the numerical

phantom (see Fig 8). Further spatial degradation of the shear modulus map, especially within

the inclusion and near the outer boundaries of the numerical phantom, resulted from further

increases in displacement data noise, to the point where localization of the inclusion was com-

promised (with 15% noise). Fortunately, high quality MRE displacement data are represented

by the lower noise levels considered here (i.e, 1% and 5%), and the higher levels of noise that

were evaluated are not expected in practice.

The extent to which the two parameter model and these estimation results would be clini-

cally acceptable, or even informative, remains to be determined. Hydraulic conductivity is not

well characterized as a tissue property in the biomedical literature, and as a result, the degree

to which it is an important parameter that could be exploited clinically is unknown. κ is often

assumed to be homogeneous for simplicity, and published mechanical property results esti-

mated under these conditions appear to be reasonable at least in the normal brain [24]. Even if

estimating hydraulic conductivity spatially proves to be unproductive (e.g., is not necessary, or

informative, or is too difficult), questions remain about whether the RMS errors in property

values observed here are tolerable. The 20%–30% error in estimated property values is high

from a quantitative perspective and could limit the ability of the technique to resolve property

differences on the order of these variations. No doubt smaller errors are desirable. However,

spatial distributions of property change are still evident, and contrast is recovered despite the

RMS errors in property values. The degree to which high accuracy in absolute property values

is needed, or is important clinically, is not yet understood, and errors on the order of those

reported in the studies presented here may be acceptable.

Questions on the clinical role and significance of hydraulic conductivity as a recoverable tis-

sue property parameter motivate the three parameter case studies. When hydraulic conductiv-

ity was estimated in the reconstruction, accuracy of the pressure field recovered from IFPI

decreased. Since hydraulic conductivity, κ, influences how easily fluid flows through the

porous solid matrix [54], it has a strong effect on motion attenuation and apparent compress-

ibility of the medium. When allowed to vary in the inclusion relative to the phantom back-

ground, κ distorted the pressure distribution in the neighborhood of the inclusion, and

created a more complex pressure distribution as illustrated in Fig 9. With 1% displacement

data noise, the IFPI algorithm recovered the spatially more complicated pressure field

throughout the phantom with RMS errors approaching 30% (see Table 4). Increasing noise in

the displacement data became more problematic, although pressure estimation performance

was similar for 5% noise (30% RMS errors), but degraded more substantially at noise levels of

10% and 15%. Shear modulus and hydraulic conductivity estimates followed suit. They were

spatially and quantitatively acceptable with 1% displacement noise (RMS errors of 30% and

40%, respectively, in Table 4), and localized the inclusion correctly, although with more spatial

smoothing at the inclusion interface (jump change in material property values occurred over

distances of 6 mm vs 3 mm in the two parameter case), and reduced property differences

between inclusion and background relative to the assigned values. Again, these degraded prop-

erty image characteristics were exacerbated by increasing levels of displacement data noise.

The primary algorithmic challenge is controlling noise amplification in the estimation process,

especially when more property parameters are added, in this case hydraulic conductivity, for

which sensitivity to displacement data change is low. When noise is substantial in the mea-

sured data, the reconstruction algorithm alters the iterative property updates to minimize
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differences between calculated displacements and noisy data, which could generate unrealistic

property values and distributions. Another source of error arises from using the conjugate gra-

dient method for minimization with a single starting estimate that gets trapped in a local mini-

mum in the high-dimensional property parameter space.

Some limitations and opportunities for improvement in the study are worth noting. First,

the impact of data-model mismatch that occurs inevitably, when experimental data is acquired

from materials (and tissues) which approximate poroelastic behavior, has not been considered.

Here, synthetic data was generated under the ideal conditions of perfect data-model match

which does not exist in practice. Nonetheless, we have found that performance observed in

numerical experiments similar to those described in this paper do reflect algorithm behavior

under experimental conditions, certainly in phantoms, and we would expect images compara-

ble to those reported here, to be obtained experimentally. Second, the mechanical deformation

of the numerical phantom in the test cases considered was simple and represented by uni-

directional compression. More complex driving conditions will, in principle, produce more

complicated displacement distributions with greater shear/compression wave interactions

within and throughout the medium that could challenge the pressure boundary condition esti-

mation from displacement data within the IFPI algorithm. Similarly, the phantom, itself, was

geometrically simple and contained a single, geometrically similar inclusion. Consideration of

more complex geometries and material property distributions is certainly warranted and

would benefit from future studies. We have followed this approach with success during the

development of similar MRE algorithms in which numerical experiments in simple test cases

are conducted to explore basic algorithm behavior and are followed by more complex numeri-

cal and physical experiments in future studies. Third, algorithmic performance and noise sup-

pression need to be improved, especially in the more challenging three parameter case. One

option might be to interleave property updates with serial estimates (e.g., shear modulus then

hydraulic conductivity) rather than estimating them simultaneously to improve numerical sta-

bility and sensitivity to hydraulic conductivity by first stabilizing the shear modulus estimate.

Multi-start and/or global optimization methods could also diminish effects from local minima.

Introducing spatial priors, for example based on MRI intensity, would down-sample and stabi-

lize the property parameter space and could generate improved estimates, although at the risk

of introducing substantial bias.

Conclusions

Key features of this work are summarized below:

• A numerical framework for interstitial fluid pressure imaging (IFPI) of a biphasic material

under time-harmonic excitation is developed, which uses displacement data from intrinsic

MRE that incorporates nonlinear inversion and poroelastic modeling. A subzone approach

is employed to leverage efficient parallel computation and memory storage. PBCs for the for-

ward problem are defined as Neumann type (i.e. type II) and estimated based entirely from

the full volume displacement data available from MRE. When solving the individual subzone

inversion problems, type I PBCs are prescribed on the subzone surfaces by transferring the

resulting global pressure field from the PFP. This additional step requires only one-fourth of

the computational time needed for the full poroelastic forward problem (GFP).

• Two parameter and three parameter reconstruction experiments have been performed on a

simulated single-inclusion phantom with noisy displacement data. The displacement and

pressure fields were obtained by solving the full GFP with specified material property distri-

butions, which in turn were used for validation of the inversion scheme. In addition to the
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elastic parameters, the hydraulic conductivity associated with the fluid phase was estimated.

In the two parameter case, the material property and IFP images were accurate to within

30% in the presence of added noise up to 5% but degraded more significantly as displace-

ment data noise reached 10% and 15%. The error rates in the three parameter case increase

more dramatically, up to 58%, 85% and 32% for shear moduli, hydraulic conductivity and

pressure, respectively, even at the low noise level of 5%. Some improvements in image qual-

ity were observed with spatial filtering of the noisy displacement data.

• Future studies are needed to explore the utility of the proposed algorithm in recovering the

pressure distribution along with other hydrodynamical properties, first in experimental

physical phantoms and then in brain tissue in vivo. While the numerical studies reported

here demonstrate the feasibility and potential of the IFPI technique, they do not incorporate

or consider the data-model mismatch that inevitably arises from the mathematical approxi-

mations of physical systems. The extent to which these errors are manageable or similar to

those observed in the past warrants further investigation. Given no reliable way exists to

measure IFP non-invasively, experimental studies of the IFPI algorithm are certainly worth

pursuing from a variety of medical perspectives, and hopefully, will demonstrate that impor-

tant information can be derived for diagnosis and treatment of cancer and pressure related

diseases such as hydrocephalus.
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