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Abstract: Nanotechnology is a tool that in the last decade has demonstrated multiple applications
in several sectors, including agroindustry. There has been an advance in the development of
nanoparticulated systems to be used as fertilizers, pesticides, herbicides, sensors, and quality
stimulants, among other applications. The nanoencapsulation process not only protects the active
ingredient but also can affect the diffusion, interaction, and activity. It is important to evaluate
the negative aspects of the use of nanoparticles (NPs) in agriculture. Given the high impact of the
nanoparticulated systems in the agro-industrial field, this review aims to address the effects of various
nanomaterials on the morphology, metabolomics, and genetic modification of several crops.
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1. Introduction

In the agro-industry area, nanotechnology is commonly used for generating products such as
fertilizers, herbicides, pesticides, fungicides, and nano-sensors [1]. These advances can help overcome
future demands in agriculture, increasing quality and crop yield, reducing pollution caused by
chemicals, or even protecting crops against environmental stresses [2].

While there are interesting applications of nanotechnology in agriculture, it is well known that we
still do not fully understand the negative effects that these materials can generate in the environment [3],
particularly in plant and living organisms. Many types of research have shown that nanoparticles
(NPs) at high concentrations can generate toxicological effects on crops such as lettuce, tomato, wheat,
and cucumber, just for mention a few of them [4–7].

Nanotechnology has many benefits that deserve to be explored for the solution of certain problems;
however, we must be aware that its application without care can lead to a series of issues to the
plants, animals, and finally to humankind. As addressed by Mishra et al. (2019) [8], it is important
to increase the nanoparticle safety awareness and build strong regulation systems so that we can
apply nanotechnology with safety and avoid environmental disasters. For example, the production of
nanoparticles (NPs) has been raised to the industrial level: more than 10,000 Tn of titanium dioxide
(TiO2) NPs were produced worldwide in 2010 [9], and it was estimated that 500 to 1000 Tn of CeO2,
FeOx, AlOx, ZnO NPs, and carbon nanotubes were produced every year only in the European
region [10].
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That is why in this review, we address a brief compendium of recent studies that have been made
to try to understand the effects of diverse NPs properties when they interact with several types of
plants, leading into some morphology, metabolomics, and genetic modifications.

2. Nanomaterials Classification

Nanomaterials are characterized by having a size between 1 and 100 nm in at least one of its
dimensions (length, height, and width) [11,12]. They display different properties (optical, electronic,
and chemical, among others) from their counterpart in bulk, due to a greater surface area as well as the
quantum properties that are presented on this scale [13]. These new properties have allowed us to find
unique applications.

Nanomaterials can be classified depending on how many of their dimensions are in the macro
scale: 0D includes the NPs whose dimensions are all on the nanoscale, 1D are the nanofibers and
nanowires that only have one dimension in the macroscale, 2D covers nanosheets and thin films,
and finally, 3D represents the materials in bulk [14].

Apart from classification by dimension, nanomaterials can be classified by their chemical nature.
This classification contains 4 main categories of nanomaterials: carbon, ceramic (metal oxides), metal,
and polymeric compounds [13]. Carbon-based nanomaterials include structures such as fullerenes,
graphene, and carbon nanotubes (CNTs) [15]; ceramic are inorganic solids made of metal–oxide
compounds such as TiO2, ZnO, and FeO2 [16]; and metals include nanomaterials based on Au, Ag,
Cu, and Ni. Organic nanomaterials include dendrimers, which are derived from organic NPs that are
generally symmetrical to the nucleus [15].

2.1. Metal Oxide NPs

Several metal oxide compounds offer photocatalytic characteristics such as, TiO2, ZnO, WOx,
SnO2, Fe2O3, CuO, ZrO2, and MoO3 [17]. When photocatalytic compounds interact with light whose
energy is greater than or equal to the bandgap, they promote an electron to the conduction band [18].
This creates a positive hole in the valence band, allowing the excited electron and the hole to generate
hydroxyl radicals and other reactive oxygenated species that are involved in degradation reactions [19].

To enhance the photocatalytic activity and production of reactive oxygen species, the metal oxide
NPs surface can be modified by metal ion doping or non-metal insertion [20], offering effects such
as increased mobility between electron and hole pairs, the formation of new energy states, and an
increase in the absorption of visible light [21]. In addition, non-metallic particles can be used to narrow
the bandgap or form intra-bandgap states [22].

The degradation processes of the catalysts mentioned above are mainly carried out in wastewater
treatments to remove recalcitrant and persistent pollutants such as dyes and pharmaceutical compounds,
and the catalysts even work as disinfection agents [23–26]. The remaining effluents are used for
watering some crop fields without any proper legislation [27,28], and no toxicology studies are well
substantiated yet, because the remained NPs in the effluents are considered not dangerous in low
concentrations. Nevertheless, a new research area is emerging to contribute some broader knowledge
to differentiate the pro and cons of using these materials in agriculture systems [29].

2.2. Metallic NPs

Metallic NPs have found many applications—for example, in medical diagnostic, antibacterial,
electrodes, and optics. These NPs are comprised of metals such as Au, Ag, Pt, Zn, and Ni (and alloys
between metals are also include in this classification [30]). NPs such as gold that are inert at bulk scale
become more chemically active when their size is decreased due to a larger spacing between atomic
coordinates, which allows their use in catalytic applications [31]
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2.3. Carbon-Based Nanomaterials

This category includes some famous structures such as nanotubes, nanofibers, fullerenes,
and graphene, due to their multiple structures and dimensions; these materials are commonly
referred to as nanomaterials [32,33]. Their applications include their use in solar cells, structural
materials, electronics, and semiconductors, which is mainly due to their interesting properties such
as semiconductor behavior, thermal conductivity, high structural properties, and light absorption
properties [30]. Carbon nanotubes are also classified depending on their number of walls, which can be
single-wall, double-wall, or multi-wall; the number of walls will modify their structural and conductive
characteristics [27,34].

3. Nanotoxicology

Nanotoxicology is a sub-discipline of toxicology [35]; it tries to understand the interaction
mechanisms of a nanostructured material with a living organism (plants, animals, or even human
beings). Some aspects of classical toxicology do not apply to the concept of NPs; according to classical
toxicology, “the dose makes the poison”: it is the concentration that determines whether a material can
be dangerous.

However, the toxicity of NPs does not correlate the dose related to mass, not only does the
concentration of NPs determine it poisonous level; the size, number of NPs, surface activity, modification,
and aggregation are some of the parameters that relate to the poisonous level of NPs [14].

The increasing demand for products containing NPs in production, waste, and water treatment
facilities makes it easier for these compounds to enter the environment by releasing the NPs [36].
In addition, it is well known that different types of NPs are being used to improve agriculture systems;
they can offer certain advantages, but there is a lack of knowledge regarding the complete toxicological
effects of nanoparticles to other biological systems such as fungus, insects, and animals.

It is difficult to know the effect that certain NPs can cause when they are interacting with a
living system. First, the physicochemical characteristics of the NP are the main cause of the generated
effects [37]; the morphology, surface charge, concentration, and size distribution are properties that if
they are modified individually can cause different results in the same system, as it is shown in Figure 1.
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The toxicological effects of the NPs are determined not only by the physicochemical characteristics,
but also by the experimental design synthesis, the exposure time over the plant, the development
phase in which the NP will come into contact with the plant, as well as the means of introduction and
interaction of the NPs. There are different methodologies to expose the plant to the NPs (Figure 2),
such as the direct injection of NPs into plant tissue [38], NPs spraying into leaves or any other part of the
plant [39], contaminating the soil with NPs or irrigating plants with NP suspensions [40], and infecting
cellular pollen or seeds [41–43].
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4. Nanotechnology in Agriculture

Nanoparticles find various applications in agriculture; China is one of the most advanced
countries in nanotechnology development for agriculture with 28 patents between 2011 and
2015 [44]. Nanotechnology can be applied in agriculture by producing nanofertilizers, nanoherbicides,
nanofungicides, and nanosensors (Figure 3). Nanofertilizers promote good development of the crop
by helping the necessary absorption of the micronutrients for proper plant development; they can
be manufactured of zinc, silica, and titanium dioxide [45], Cu NPs [46], and even polymeric NPs
as dendrimers acting as nanocarriers [47]. Nanopesticides generate protection against abiotic-type
stresses, their main application falls in the encapsulation of pesticides for controlled release, improving
the selectivity and stability of the pesticide, this allows reducing the expenses of pesticides and
increasing the lifetime of the active chemical compound [48].
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4.1. Nanofertilizers

A fertilizer is a natural or artificial substance that contains the chemical elements necessary to
improve the growth and productivity of plants and improve natural fertility by overcoming deficiencies
of micronutrients [49]. ZnO NPs showed perfect results to overcome zinc deficiency, particularly
for rice, by the foliar application of NPs. ZnO also improved the growth and yield parameters and
enhanced dehydrogenase enzyme activity [50]. Nanocomposites can also be used for delivering
micronutrients such as nitrogen [51]; one example is encapsulated urea modified hydroxyapatite NPs
in layers of montmorillonite (clay). These compounds enhanced the yield in rice (Oryza sativa) and slow
nitrogen release. Bioengineered NPs, such as membrane vesicles, were used to provide Zn to Brassica
oleracea by foliar fertilization, which resulted in high efficiency and distribution to the protoplast [52].

4.2. Nanoherbicides

New nanoformulations intend to reduce the negative impacts that herbicides and insecticides
have on the environment; these novel materials try to lengthen and extend the life of these chemicals
through controlled release, as well as provide their own protection of the chemical to environmental
factors such as degradation by UV radiation [53], as well as a greater selectivity protecting other species
of plants, microorganisms, and insects.

Polymeric NPs are the most used for encapsulating chemical compounds; their encapsulation
affects the diffusion and release rates of herbicides [54]. Chitosan/tripolyphosphate NPs were
used to encapsulate paraquat [55], which is a nonselective herbicide extensively used worldwide.
This nanoformulation proved to be less toxic than the pure compound while conserving its effectiveness
after encapsulation, showing true potential for protecting other plant species after herbicide treatment.

On the other hand, the use of photocatalytic NPs has been focused on herbicide degradation;
ZnO NPs can generate the mineralization of herbicide diquat under sunlight [56], and they can reduce
70% to 90% of glyphosate-based herbicide depending on the herbicide-to-photocatalyst ratio [57].
Titanium dioxide showed a higher degradation rate under solar irradiation of the imazethapyr herbicide,
which can be easily decomposed at lower temperatures, showing physisorption on the photocatalyst
surface [58]; also, the WO3–TiO2 nanocomposite showed 100% degradation of the imazapyr herbicide
after 120 minutes of UV exposure [59].
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4.3. Nanopesticides

Pesticide toxicity depends on chemical stability, solubility, bioavailability, photodecomposition,
and soil absorption [60]; the main objective of nanotechnology is to reduce those effects designing
nanocarriers that allow the slow release of pesticides [61].

Nanopesticides based on Cu, (Cu(OH)2) have shown negative effects on spinach plants inducing
alterations in metabolic profiles, reducing (29–85%) antioxidant molecules such as ascorbic acid,
alfa-tocopherol, threonic acid, 4-hydroxybutyric acid, ferulic acid, and total phenolic compounds [62].
These results showed that it is necessary to understand the nanoparticle exposure to living organisms
to ensure a safe relationship between nanotechnology and the ecosystem.

Higher yield, durability, and nutrients increase are the advantages offered by certain
nanostructured compounds applied to plants. However, the effects of these materials in the long term
are yet not fully understand, as these nano-compounds can provide nutrients and protection against
pests (insects, plants, bacteria); they also can induce stress in other species of the ecosystem, causing an
ecological risk [63].

Similarly to herbicides, polymer nanoformulations are the most attractive as pesticides or ways to
encapsulate [60]; again, photocatalytic materials find applications in the degradation of pesticides highly
harmful to the environment [64]. Pesticides such as chlorpyrifos, cypermethrin, and chlorothalonil
were degraded by TiO2 NPs under UVA irradiation, showing complete degradation after 30 min [65].
Meanwhile, Cu-doped ZnO was studied for monocrotophos pesticide degradation; Cu generates an
intermediate band to excite an electron from the valence band to the conduction band, increasing
optical absorption, decreasing the bandgap, and showing an intense degradation of monocrotophos
pesticides [66]. Table 1 shows multiple investigations of the use of NPs in agriculture.

Table 1. Agricultural applications of nanoparticles (NPs).

Nanoparticle Agricultural Use Ref

Metal oxide NPs

ZnO Remediation and fortification of rice with low concentrations of Zn
in soil. [50]

MnOx
Colorimetric nanosensor for indirect measurement of antioxidant

capacity. [67]

CuO, ZnO Both NPs facilitate bifenthrin insecticide uptake in Eisenia fetida
earthworms compared to only bifenthrim exposure. [68]

MnO Antifungal activity against soil-borne pathogens (P. nicotianae, T.
basicola) with possibility to control other plant pathogens. [69]

ZnO quantum dot Sensor for pesticide detection in water. [70]

Zeolite/Fe2O3
Nanofertilizer with less toxic effect toward humans compared to

other fertilizers. [71]

SiO2 Insecticide properties against leaf worm (Spodoptera littoralis). [72]

Yb2O3 Fluorescent sensor for imazapyr herbicide detection. [73]

TiO2 Antifungal activity against wheat rust. [74]

ZnO nanobuboids Pt/ZnO/AChE/Chitosan bioelectrode for sensing carbosulfan
pesticide in rice. [75]

CuO Biosensor for detection of Aspergillus niger fungus. [76]

ZnO Fungicidal activity against multiple pathogenic fungi of apple
orchards (Alternaria mali, Botryosphaeria dothidea, Diplodia seriata). [77]

Cu-TiO2
Electrochemical sensor for the selective detection of methyl

parathion pesticide. [78]

ZnO NPs enhances thiamethoxam insecticidal activity against Spodoptera
litura larvae. [79]

SnO2/Pd Nanosensor for the detection of fungal volatile organic compounds. [80]

Urea-loaded mesoporous
ZnAl2Si10O24

Nanofertilizer for slow delivery of urea and zinc. [81]
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Table 1. Cont.

Nanoparticle Agricultural Use Ref

ZnO Nanofertilizer with capacity to reduce arsenic and cadmium
contents in rice cultures. [82]

CuO Antifungal activity against plant pathogen Colletotrichum
gloeoesporioides [83]

SiO2

Maize nanofertilizer and low-dose pesticide for pest that can affect
maize during storage post-harvest (Sitophilus oryzae, Rhizopertha

dominica, Tribolium castaneum, Orizaephilus surinamenisis).
[84]

Metallic NPs

Cu nanowires Fertilizer for improved plant physiological performance and
agronomical parameters. [85]

Cu NPs Metal NPs for synergic action with conventional fungicides,
reducing fungicide uses. [86]

Zn and Cu NPs for increased quantity and quality in basil. [87]

Ag Fungicidal activity against agricultural pathogens. [88,89]

Au NPs for colorimetric detection of organophosphorus pesticides. [90]

Organic NPs

Ag@Chitosan Synergetic antifungal activity with Antracol fungicide against
Phytophthora capsici. [91]

Chitosan with Cu and
salicylic acid Nanofertilizer for obtaining higher crop yield. [92]

Alginate/chitosan
Chitosan/tripolyphosphate Nanocarrier for planth growth regulators (gibberellic acid) release. [93]

Zn–Chitosan Complex for crop Zn biofortinification. [94]

Carbon Nanomaterials

CNT–NH2 Biosensor for organophosphorus pesticide detection. [95]

Ionic liquid polymer
functionalized CNTs-doped

poly(3,4-ethylenedioxythiophene)
Coating for high selective extraction of carbamate pesticides [96]

C60-L-Threoninde NPs for decreasing pesticide load on the environment with plant
growth-stimulating abilities. [97]

Graphene oxide–Fe3O4 Antifungal agent against Plamopara viticola. [98]

Carbon dots Agent for increasing growth and photosynthesis. [99]

Graphene/Fe3O4 Agent for fungicide removal of triazole fungicides. [100]

5. Plant Stress

Plant stress is defined as any unfavorable condition or substance that affects the metabolism,
growth, or development of a plant. A plant organism can enter into a state of stress due to multiple
factors; these are divided into two types of categories, abiotic and biotic stresses, as seen in Figure 4 [101].
Abiotic stresses are generated by environmental factors such as light (visible, UV, IR), drought, salinity,
temperature, and pH [102].

In the case of biotic stresses, these are produced by living beings, such as microorganisms, insects,
viruses, and even other plant species that can induce plant stress. Both types of stresses (abiotic and
biotic) can cause damage to the plant [103]. Plants need to adapt to these environmental conditions in
order to improve their survival rate by evolution. Plants generate specialized compounds by modifying
primary metabolic routes; with these new types of compounds, vegetative organisms can adapt more
easily to new conditions. In the worst cases, the organisms cannot overcome the stress, and the survival
rates drops drastically [104].
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5.1. Abiotic Stress

Major yield deficiencies, crop damage, and changes in the growth rate in plants are caused by
abiotic stresses such as drought, salinity, the presence of heavy metals, and extreme heat and cold
weather; each problem becomes more difficult to overcome due to climate changes and environmental
pollution. The effect towards the plant may vary due to the time of exposure, phases of plant growth,
and combination with other types of stress such as biotic stresses [105]. These types of environmental
stresses are inevitable processes that can result in significant alterations in plant metabolism [106].

5.1.1. Metal Stress

Metals above 5 g/m−3 are considered heavy metals; 17 of 53 heavy metals are important for living
organisms, such as iron, zinc, manganese, copper, and molybdenum [107]. The rest of the heavy metals
are toxic for the environment such as lead, mercury, arsenic, cadmium, and chromium; these metals
can affect the biochemical parameters in plants [108]. The presence of heavy metals in plants is a high
priority concern to assure secure products for human consumption.

Metals that are classified as micronutrients for plants can also generate toxic effects toward plants
when they are present at high concentrations, such as zinc, which inhibits Fe, Cu, Mn, Ca, and Mg
uptake in Oryza sativa (L.) when present at concentrations of 1.5–8.5 mM [109]. Chickpea treated with
molybdenum solutions from low to high concentrations (1 × 10−5

−2 mg·L−1) caused reduced growth
at the highest concentration, generated an iron deficiency of young leaves, and reduced the number of
flowers, leaves, and pods [110]. Manganese at concentrations of 3 and 6 mM caused growth inhibition
for rice seedlings, also increasing the superoxide anion (O2

−)-inducing oxidative stress and causing
antioxidant levels imbalance [111].

Pollution caused by heavy metals can be observed around the globe, increasing the negative
effects on development, metabolomics, product yield, and quality in plants [112]. The plants can fight
heavy metal poisoning by minimizing their uptake, but if the plant cannot deal with the presence of
the heavy metals, effects on metabolism transport processes, membranes, and cellular structure can be
observed [113].
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Reactive oxidant species are produced normally in the plant by the chloroplast, mitochondria,
and peroxisomes metabolism, but when facing certain kinds of stress as it has been discussed, the plant
can enter in oxidative stress, and heavy metals can also generate this effect in plants [114].

Cadmium (Cd), cobalt (Co), and lead (Pb) were tested on pea seeds, inducing a complete failure
of germination and seedling growth at high metal concentration [115]. Heavy metal ions have the
ability to replace cations in binding sites, inactivating enzymes and producing reactive species, leading
to DNA damage, protein degradation, and amino acid oxidation. Antioxidants such as phenolic
compounds, ascorbic acid, tocopherol, glutathione, and carotenoids are well known to bind heavy
metal ions and reduce and even inhibit reactive species [116].

LmSAP is a gene and member of the stress-associated proteins (SAP) that is present in the
transgenic tomato, and it enhanced the plant tolerance to heavy metals such as cadmium and
manganese. It accumulated more cadmium, copper, and manganese compared to the neutral plant
but shows decreased levels of hydrogen peroxide and higher superoxidase dismutase, catalase,
and peroxidase activity [117].

In this way, it is possible to relate the metals stress to the use of the metals themselves as NPs or
even in its oxidized form.

5.1.2. Nanoparticle Stress

Metallic NPs

It is known that reactive oxygen species (ROS) production by metallic NPs depends on structural
properties such as the size, shape, and surface area [118]; one example is Allium cepa cells, which showed
a dose and size-dependent generation of reactive oxygen species, causing enhanced lipid peroxidation
and chromosome aberrations when root hair interacts with gold NPs at different sizes (15, 30,
and 40 nm) [119].

Ag NPs can release Ag+ ions having separately repercussion over vegetal systems; there is no
agreement that Ag NPs toxicity is due to the release of these ions or the nanoparticle interaction itself.
To address these uncertainties, both NPs and Ag ions toxicity were compared in Arabidopsis thaliana,
and the results showed that NPs reduced plant rood elongation and vegetative growth while Ag+

showed less affectation, showing also a weaker effect on reducing photosynthetic pigment content
than the NPs [120]. Arabidopsis thaliana also treated with Ag NPs showed modifications in plasma
membrane conductance, also inhibiting root elongation and leaf expansion [121].

Fewer studies for metallic copper NPs (Cu) are made compared to gold and silver NPs, but the
interaction on Cu NPs was studied on mung bean (Phaseolus radiates) and wheat (Triticum aestivum),
where it was also found that toxicity is mainly due to NPs rather than the release of cupric ions; Cu NPs
were able to reduce the growth rate for both species [122].

Barley plants exposed to Ag NPs enhanced root and shoot length at 0.1 mM, which is attributed
to the augmentation of enzyme activities, while higher concentrations (0.5, 1 mM) cause reduced
root and shoot lengths. NPs also caused a decrease in chlorophyll content and other photosynthetic
pigments [123]; Table 2 shows more studies of metallic NPs interacting with plants.
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Table 2. Effects detected by the interaction of metallic NPs over different crops.

NPs Concentration Plant Effect Ref

Ag 10, 100,
1000 mg·L−1

Lettuce
(Lactuca sativa)

No sign of phytotoxic effect on foliar
application, Ag NPs were trapped in

lettuce leaves.
[124]

Au 31.25 nm
Rice, perennial

ryegrass, radish,
and pumpkin

Positive charged NPs are taken by the root,
while negative charged are easily

translocated into shoots.
[125]

Ag 0, 5, 10, 20,
and 40 mg·L−1

Mung bean
(Phaseolus radiates)

and sorghum
(Sorghum bicolor)

Seedling growth affected by NPs, growth
rate of P. radiatus not affected by Ag in

soil media.
[126]

Phytochemical
capped Au NPs 5–15 mg·L−1 Maize Boosted germination of aged maize seed. [127]

Ag 10, 100, 200, 500,
1000, 2000 mg·L−1

Carrot
(Daucus carota L.)

Reduced germination rate, seed growth,
seed protein, increased chlorophyll,

and H2O2 content.
[128]

Ag and Au 10 and 30 mg·L−1
Chrysanthemum,
gerbera, and cape

primrose

Ag inhibits rhizogenesis in chrysanthemum
and gerbera, Au enhances root regeneration

(gerbera), while both NPs increase cape
primrose micropropagation.

[129]

Au 10 µg·L−1 Arabidopsis thaliana NPs enhance seed yield, germination rate,
growth, and radical scavenging activity. [130]

Au and Ag 5.4 mg·L−1 Onion
(Allium cepa L.)

Au at 5.4 ppm enhances germination, plant
height, leaf length, leaf diameter without
toxicity symptoms; Ag improved onion

seeds germination.

[131]

Au 0, 10, 25, 50 and
100 mg·L−1 Brassica juncea

Foliar spray increases plant height, stem
diameter, seed yield (10 ppm), and reduced

sugar content (25 ppm).
[132]

Fe, Cu, Ni 0.0125 to 1.0 M Triticum vulgare L.

Fe NPs stimulated growth compared to
control, Ni and Cu NPs caused toxic effects
on growth as metal content elevated, they

also caused at low concentrations root
growth reduction.

[133]

Metal Oxide NPs

Despite not being fully recognized as a type of stress, NPs may fall into the category of abiotic
stressors of non-biological origin, since they are not commonly produced by organisms such as bacteria
or insects, as mentioned above. Several effects are observed in their interaction with plants; the stress
levels and their effects on the plants will be influenced by their characteristics [134].

The uptake and translocation of NPs are many caused by root and leave exposure, where NPs
interacting with roots can accumulate on the root surface or interact with root tissue and be translocated
by the symplastic pathway, which involves a cell-to-cell transport where NPs with sizes lower than
50 nm are able to get through the cell wall. Transport on this pathway can diffuse passively or actively
by transporters in the root plasma membrane [135,136]; alternatively, on the apoplastic pathway, NPs of
larger sizes (approximately 200 nm) are able to penetrate cell wall pores and then get through the
space between cells (intercellular space) [136–138]. Leave uptake and translocation is believed to occur
in two pathways: the cuticula pathway, where NPs penetrate through the cuticula, and the stomatal
pathways, which involves NPs getting through stomatal openings [136,139,140]. Once the NPs are
internalized, xylem and phloem pathways can transport NPs further away to other sections [136].

Hydroponic rice cultures treated during 14 days with TiO2 NPs at concentrations of 110 mg·L−1,
250 mg·L−1, and 500 mg·L−1 caused biomass and antioxidant defense reduction [141]. Furthermore,
an increase in the concentration of glucose-6-phospahte, glucose-1-posphate, succinic, and isocitric acid
was found, while sucrose, isomaltulose, and glyoxylic acid concentration was decreased. According to
the research of Al–Oubaidi [142], the TiO2 NPs showed an increase in phenolic and flavonoids
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compounds in Cicer arietnum when exposed to concentrations of 0.5 mg·L−1, 1.5 mg·L−1, 3 mg·L−1,
4 mg·L−1, and 5 mg·L−1 [142].

Secondary metabolites can be increased deliberately to obtain a certain kind of product useful to
human beings, mainly in medicinal plants. Stevia rebudiana plants treated with CuO and ZnO showed
that the presence of these NPs generates toxic free radicals, and an increase of the concentration of
these NPs results in the increase of the stress levels, enhancing all antioxidant activities. In conclusion,
these NPs can be used as abiotic elicitors to produce plants with high antioxidants content [143].

Even though the size of the plant is enlarged by the presence of NPs, some results have found a
decrease in total biomass. Arabidopsis thaliana in contact with TiO2 (100–1000 mg·L−1) showed an
enhancement in root growth but a decrease in total biomass and chlorophyll content as the concentration
of TiO2 increases. High concentrations of TiO2 NPs cause lipid peroxidation, affecting antioxidant
response and altering biosynthetic genes, which cause changes in vitamin E content [144].

Some types of metal oxide NPs found application in agriculture by promoting plant growth.
ZnO NPs synthesized by green methods with an average size of 35 nm showed that when applied to
wheat crops at concentrations of 15, 62, 125, 250, and 500 mg·L−1, better growth is observed than that
with control seeds; the root and shoot length showed significant enhancement, suggesting that ZnO
NPs can be an ideal source of Zn micronutrients to the wheat plant development [145].

Spray treatment of Fe2O3 and ZnO on wheat showed accelerated plant height, leaf area, and shoot
dry weight with no negative effects on chlorophyll content; also, leaf Zn and Fe content were
increased with the spray treatment of NPs [146], while α-Fe2O3 in contact with Citrus maxima showed
accumulation by plant roots and a decrease in chlorophyll content, implying chloroplast sensitivity
toward iron oxide NPs [147].

As discussed above, changes in nanoparticle characteristics (morphology, concentration,
size distribution, etc.) can lead to different results. For example, the toxicological effects of uncoated and
citric acid-coated cerium oxide NPs were studied on tomato plants [148], showing that at 500 mg·kg−1,
both types of NPs increased shoot length, while bulk cerium and acid-coated cerium NPs cause a shoot
length decrease and an increase in catalase activity.

The physicochemical properties of the NPs are vital for understanding their interaction, uptake,
and distribution along with the plant system. Since every plant species has different anatomy,
the toxicological data can be complicated to study; even though some studies try to explain the
biodistribution and uptake of NPs along different plants, more studies and research are needed [149].
Plant toxicity is affected by the general characteristic of the NPs (size, morphology, type of coating in
some cases, concentration, electrical charge, crystal structure, etc.), type of application, and the applied
experimental method, as shown in Table 3 [150].

Table 3. Effects detected by the interaction of metal oxide NPs over different crops.

NPs Concentration Plant Effect Ref.

ZnO, CuO and
CeO2

100, 500,
and 1000 mg·kg

DW−1
Sweet potato Yield affected at high concentrations [151]

CuO 0.1, 1.0,
and 10.0 g·L−1 Duckweed Changes in, growth rate,

and photosynthetic content [152]

Fe2O3
20, 50,

and 100 mg·L−1 Maize Decrease in root length at concentrations of
50 and 100 mgL−1 [153]

TiO2 10 and 40 mg·L−1 Dragonhead Increase in plant shoot and essential oil
content [154]

ZnO 2000 mg·L−1 Maize and rice Root elongation significantly decreased [155]

TiO2 1000 mg·L−1 Wheat Early growth parameter adversely affected [156]

CeO2
1000 and

2000 mg·kg−1 Romaine lettuce Lower chlorophyll content and biomass
production [157]
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Table 3. Cont.

NPs Concentration Plant Effect Ref.

TiO2 100–1000 mg·L−1 Thale cress
Chlorophyll content reduction, plant

biomass modification, and antioxidant
enzymes alteration

[144]

CeO2 250–500 mg·kg−1 Tomato Increase in shoot length and
chlorophyll content [148]

CoFe2O4 1000 mg·L−1 Tomato No effects on germination, root
length improved [6]

NiO2 120 mg·kg−1 Wheat
Reduction in plant growth, increase in

antioxidant content and photosynthesis
inhibition

[158]

ZnO 15, 62, 125, 250,
and 500 mg·L−1 Wheat Enhancement in root and shoot length [145]

CuO 5, 10,
and 20 mg·L−1 Alfalfa and Lettuce Decrease in root and shoot length,

modification in enzyme activity [159]

Al2O3 2000 mg·L−1 Maize Slightly toxic to root elongation [155]

TiO2 10 mg·L−1 Mug bean
Modification in shoot length, root length,

chlorophyll content, and total soluble
leaf protein

[160]

CuO 10 mg·L−1 Thale cress Root damage [161]

CuO 500–1000 mg·L−1 Watermelon CuO NPs increased biomass and produce
more fruit than untreated controls [162]

γ-Fe2O3
100, 250, 500, 1000,
and 2000 mg·L−1

Maize (Zea mays L)
and rice (Oryza

sativa)

γ-Fe2O3 caused the highest seed
germination percentage and seedling vigor

index at 500 ppm for both crops
[163]

TiO2, SiO2 1000 mg·L−1 Maize seedlings
(Zea mays L.)

SiO2 reduced shoot length and shoot fresh
weight; TiO2 caused a pigment

content reduction
[164]

TiO2
30, 50,

and 100 mg·kg−1
Wheat (Triticum

aestivum)

NPs enhanced root and shoot length and
nutrient content in shoots (Ca, Cu, Al, Mg),

crude protein content enhanced with
50 mg·L−1 exposure

[165]

Fe2O3 500 mg·kg−1 Wheat

Fe2O3 enhanced root length, plant height,
biomass, and chlorophyll content, NPs

were translocated to the leaves and caused
root tip damage

[166]

CuO 0.2–300 µg·mL−1 Lettuce
(Lactuca sativa L.)

Inhibition of seed germination and radicle
growth (40 µg·mL−1); S-nitrosothiols levels

in radicles showed direct dose–response
to NPs.

[167]

Al2O3 0.4, 1, and 2 mg·L−1 Lettuce
(Lactuca sativa L.)

NPs absorbed by root promoted
macronutrient uptake, adsorption,

and aggregation of NPs limited
translocation to root

[168]

Al2O3 1.25 to 5 µM Allium cepa Micronuclei and DNA damage with an
increase in concertation [169]

TiO2, Fe2O3, CuO 50 and 500 mg·kg−1 Wheat
(Triticum aestivum)

Fe, Zn, and essential amino acid content
decrease with CuO application, TiO2

increased amino acid accumulation, Fe2O3
increase cysteine and threonine contents

[170]

Carbon Based Nanomaterials

Some studies find carbon-based nanomaterials as ideal products for increasing plant yield quality
as fertilizers, products for protecting plants such as pesticides and herbicides. However, their interaction
and effects will depend on the plant and the nanomaterial characteristics. Carbon-based nanomaterials
can increase the formation of reactive oxygen species [33]; also, they have the ability to get through
various types of cells depending on the size. Some studies claim that carbon nanotubes larger than
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200 nm accumulate in subcellular organelles, while smaller nanotubes (30–100 nm) can penetrate the
vacuole and nucleus [171] as well as have effects on the soil bacterial community [172].

Rice plants exposed to several carbon nanomaterials (nanotubes, C60, graphene) showed that
those materials have the ability to increase water content in seeds and also have the ability to be
upward translocated to leaves [173]. Enhanced water uptake by carbon nanomaterials was also found
in Cicer arietinum treated with water-soluble carbon nanotubes (wsCNTs) enhancing the root, shoot,
and branching growth rate. The increase in water retention could be due to the attachment of CNTs to
root surfaces or inner parts such as vascular bundles. The alignment of the nanomaterial is believed to
enhance the capillarity absorption of water; also, it is suggested that CNTs serve as tubular membranes
for molecular transport [174]. Table 4 shows more studies of carbon-based nanomaterials interacting
with plants.

Table 4. Effects detected by the interaction of carbon-based nanomaterials over different crops.

NPs Concentration Plant Effect Ref

Mesoporous carbon 0, 10, 50,
and 150 mg·L−1

Rice
(Oryza sativa L.)

Decrease in root and shoot length
(150 mg·L−1) and increase of

phytohormones.
[175]

Multiwalled CNTs
10, 100, 200, 500,

1000,
and 2000 mg·L−1

Carrot
(Daucus carota L.)

No change in seed germination, decrease in
in seed protein level and H2O2 content,

increase in chlorophyll content
(500 mg·L−1).

[128]

C60 and salicylic acid 0, 125, 250, 500,
and 1000 mg·L−1

Feverfew
(Tanacetum patthenium L.)

Improved growth at higher concentrations,
the maximum increase of flower at

1000 mg·L−1, increase in chlorophyll
content at low C60 levels.

[176]

Graphene 500–2000 mg·L−1 Cabbage, tomato, red
spinach, lettuce

Plant growth and biomass inhibition,
dose-dependent reduction of leaves

number, reactive oxygen species (ROS),
and cell damage increase; no significant

toxic levels were found in lettuce.

[177]

Graphene oxide (GO),
GO quantum dots,

and reduced GO (rGO)

0.5, 5,
and 50 mg·kg−1 Wheat

Decreased mineral elements, upregulation
of sugar content, rGO downregulates

proteins and reduces globulin, prolamin,
amylose, and amylopectin.

[178]

Graphene oxide 0, 30,
and 60 mg·L−1 Lettuce

Increased total length, hair root numbers
(30 mg·L−1), foliar application improved

quality of lettuce, increase in sugars,
proteins, and vitamin C (30 mg·L−1).

[179]

Graphene nanosheets 0.1, 0.2, and 0.3
g·L−1

Pepper, (Capsicum
annuum L.), eggplant,

(Solanum melongena L.)

Improvement plant yield and growth, no
membrane damage detected, nanosheets

located inside the chloroplast, stimulation
of sugars, and rise of H2O2.

[180]

Multi-walled CNTs 0, 25, 50,
and 100 mg·L−1

Sweet basil
Ocimum basilicum L.

NPs induces plant growth and elevates
essential oil content, high dosages

(100 mg·L−1) lead to toxicity in plant tissue.
[181]

Multi-walled
CNT-carboxylic acid

functionalized
Single-wall CNTs

(SWNT)

1 and 10 mg·kg−1 Tomato
Carbon nanotubes (CNTs) did not affect

plant growth and height, SWNT increases
salicylic acid content.

[182]

MWCNTs 0, 125, 250, and 500
µg·mL−1 Cucurbita pepo L.

Reduction of germination percentage, shoot
length, biomass, increase in

oxidative damage.
[183]

CNTs 0.01 to 1000 g per
ton of seeds White mustard Germination energy and viability inhibited

by all concentrations except 0.01 g·t−1. [184]

MWCNTs 0 and 500 mg·L−1 Onion
(Allium cepa L.)

Increase levels of plant height, chlorophyll
rate, and leaf area. [185]

ZnO/MWCNTs 0, 2, 5, 10, 15, 20,
and 40 µg·mL−1

Onion
(Allium cepa L.) Enhanced seedling growth. [186]
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Table 4. Cont.

NPs Concentration Plant Effect Ref

Carbon dots 0, 10, 20,
and 30 mg·L−1 Lactuca sativa L. Increase production yield, growth rate,

and decrease of nitrates content. [187]

MWCNTs 0, 10,
and 50 mg·L−1 Maize and soybean

MWCNTs accumulated in xylem and
phloem, stimulation of growth in maize
and growth inhibition in soybean was

observed, dry biomass of treated maize was
higher than control.

[188]

As can be noticed, the use of diverse NPs as stress promoters in plants shows some effects related to
the growth, biomass yield, and effects over the self-defense mechanisms of the plant. These self-defense
mechanisms such as the production or inhibition of secondary metabolites by the reactive oxygen
species (ROS) production may point to the optimal conditions according to the NPs application dose
or exposure to the plants. In addition, NPs characteristics are crucial to obtain crops with maximized
quality and nutrient content.

To assure the preservation and reproduction of plants, the primary metabolism plays a major role;
it is involved in growth and energy production processes. It is characterized by the production of
carbohydrates, proteins, and fatty acids, which are required for plant nutrition and sustaining primary
and secondary metabolism [189].

The presence of secondary metabolites is related to external changes, environmental conditions,
physical and chemical attacks, or even competitor organisms that can trigger the production of these
compounds in plant tissue [190,191].

Primary and secondary metabolites can be produced in different plant sections, such as leaves, roots,
and the stem, with varying concentrations at distinct stages of plant development, such as seedling,
maturity, and fruit/flower production [104]. Secondary metabolites are the chemical compounds
responsible for the medicinal value of some plants [192]. These compounds are in concentrations of
parts per million (ppm), so to increase the total content of these secondary metabolites in the plant,
several molecules called elicitors are used to activate the plant defense system and force it to produce
the desired secondary metabolites, which are also called phytohormones or phytochemicals [193].
Although the main use for these phytochemicals is for medicinal purposes, they are used as flavorings,
agrochemicals, fragrances, colors, biopesticides, and food additives [193].

The presence of secondary metabolites into plants can fluctuate according to the types and level
of the applied stress, such as drought, salinity, temperature, biotic factors (pests, competitive species,
fungus, viruses). In addition, factors such as radiation, chemical stress, which includes NPs, seasonal
variation, and region/location can also affect plant metabolism [194].

Many secondary metabolites have very interesting applications in fields such as dyes, cosmetics,
flavoring, odor, nutraceuticals, and medicinal preparations. Although their presence in plants are in
low concentrations, stress-inducing agents can be used to activate plant defense mechanism to trigger
and increase the secondary metabolites production [102].

6. Plant Elicitors

The stress-inducing agents are called elicitors. The elicitors can be classified as biotic (fungal
homogenates such as Phytophthora, Aspergillus, and Alternaria, insects, microorganisms) and abiotic
elicitors (salinity, temperature, light, wounds, and metallic ions, among others). Recently, it was
found that several NPs can also act as elicitors, forcing the plant to defend itself against them, and in
consequence, the plant produces the desired metabolite [190].
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6.1. Nanoparticle Elicitors

6.1.1. Metallic NPs

Cobalt NPs with 10 nm of diameter have shown a potential application for enhancing artemisinin
(medicine compound) content at low concentrations, where 5 mg·L−1 of cobalt NPs caused an
inhibition of certain genes in Artemisia annua suspension cultures, which caused the increase of
artemisinin content [195]. An improvement of the medicinal qualities in Calendula officinalis L. was also
achieved using silver NPs in combination with methyl jasmonate, where both compounds increased
saponin content by 177% compared to control, while all treatment reduced anthocyanin and flavonoid
content [196].

A comparative study between Ag NPs and Ag+ ions toward metabolism in Arabidopsis thaliana
where a hydroponic exposure of NPs at 1.0 and 2.5 mg·L−1 affected more the plant shoot and root
growth compared to the ions, a stronger stimulation of energy metabolic pathways such as trucarboxylic
acid cycle and sugar was achieved by NPs causing an accelerated metabolic response toward silver
NPs, which led to reduce plant yield [197].

Metal alloy NPs and their plant interaction need more research to comprehend their effects.
Silybum marianum was treated with several monometallic and metallic alloys such as (Ag, Au, Cu,
Ag–Cu, Au–Cu, and Ag–Au) at different ratios, where all NPs increased germination frequency,
shoot and root development at different ratios depending on the nanoparticle. In addition, Ag–Cu and
Ag–Au alloys were able to increment phenolic content, while other NPs treatments were able to also
increase flavonoid content [198]. Table 5 shows multiple types of research with metallic NPs modifying
the secondary metabolites contents in several plant species.

Table 5. Multiple findings toward metabolomics effects in plant due to metallic NPs treatment.

NPs Plant Type Nanoparticle
Characteristics

Experiential
Conditions Effects Ref

Ag Rice Size 18.6 nm 0, 10, 20,
and 40 mg·L−1

Increased content of chlorophyll a
and carotenoid content, elevation of

catalase (CAT), APX, and GR activity.
[199]

Ag Arabidopsis

Triangular
(47 ± 7 nm),

spherical (8 ± 2 nm),
decahedral
(45 ± 5 nm)

100 µM

Spherical NPs enhanced anthocyanin
accumulation in seedlings; the three

morphologies induce protein
accumulation.

[200]

Ag
Fenugreek
(Trigonella

foenum-graecum)

Synthetized by
reduction of silver

nitrate.

0, 20, 40,
and 60 mg·L−1

Improved shoot length, leaves,
and plant number, an increase of

photosynthetic pigments (chlorophyll
and carotenoids), phenolics,

flavonoids, and tannins.

[201]

Ag Wheat and tomato 17 nm 100 mg·L−1

(10 days exposure)

Ag NPs had no significant effect on
germination, and pigment content on
wheat and tomato exposed to Ag NPs

caused a reduction in chlorophyll.

[202]

Ag Cucumber
(Cucumis sativus) Size: 20 nm. Foliar application

(4 and 40 mg/plant)

NPs caused an activation of
antioxidant defense, upregulation of

phenolic properties, and altered
membrane properties.

[203]

Ni Triticum aestivum L. 5 nm 0.01, 0.1, 1,
and 10 mg·L−1

Suppression of root growth at 1 and
10 mg·L−1, the content of chlorophyll

decreased due to NPs, carotenoids
content decreased in a

dose-dependent manner, flavonoid
content also decreased.

[204]

Ni Corianderum
sativum L. 20 nm 20, 40,

and 80 mg·L−1

NPs decrease relative to water
content, photosynthetic pigments,

root and shoot elongation,
antioxidant activity decreased in a
concentration-dependent manner.

[205]
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6.1.2. Metal Oxide NPs

Metal oxide NPs can act as elicitors; the nanoparticle characteristics and interaction between
NPs and plants discussed in the previous sections are key facts that can generate different results
in plant elicitation. Oxide NPs affect antioxidant enzymes such as super superoxide dismutase
(SOD), peroxidase (POX), and catalase (CAT), while also stimulating the production of bioactive
compounds [206].

Titanium dioxide showed an elicitation of secondary metabolism in Salvia officinalis obtaining
the highest phenolic and flavonoid contents at 200 and 100 mg·L−1, respectively. Monoterpenes
(mayor component in essential oils) were increased in plants exposed to 200 mg·L−1 of TiO2 NPs.
Monoterpenes increase could be considered as a defense mechanism against free radicals generated by
the NPs [207]. Meanwhile, Mentha piperita L. treated with 150 mg·L−1 of TiO2 NPs also showed an
increase in essential oil contents by 105.1% compared to control. Increased essential oil content can
be due to the elicitor effect of TiO2, through jasmonic acid and methyl-ester signaling. The menthol
content increase in Mentha piperita L. can be due to an increased expression of reductase enzyme by the
NPs [208].

Stevia rebaudiana callus was treated with ZnO NPs, where plants treated with 100 mg·L−1 showed
increased phenolic and flavonoid content. ZnO NPs generate reactive oxygen species enhancing
antioxidant responses [143]; also, ZnO NPs with 34 nm in size (1 mg·L−1) almost doubled the steviol
glycosides content in Stevia rebaudiana, while the secondary metabolites content showed a decline after
crossing 1 mg·L−1 [186]. The germination stage can also be promoted via nanoparticle interaction;
Capsicum annuum L. in contact with ZnO NPs showed improved seed germination, increasing seed
vigor up to 123.50%, 129.40%, and 94.17% at 100 ppm, 200 ppm, and 500 ppm, respectively. In addition,
there was an increased phenolic compounds concentration and antioxidant activity on seedling radicles
due to a phytotoxic effect caused by ROS [209].

Airborne NPs also play an important role in ecology safety. Barley plants were treated with
cadmium oxide (CdO) NPs (7–60 nm) in air. CdO NPs were directly absorbed by leaves, inducing
changes in the primary metabolites content—mainly amino acids and saccharides (tryptophan and
phenylalanine), while the secondary metabolites content remained unchanged [210].

The production of bioactive compounds can be achieved through hairy root cultures, CuO NPs
elicited Chinese cabbage hairy roots, highly increasing the total phenolic and flavonoid contents,
showing an efficient technique for nutraceutical uses [211]. The toxicological effects of CuO NPs were
studied in Brassica rapa seedlings, and CuO NP-treated showed enhanced reactive oxygen species
and hydrogen peroxide production, which could have caused DNA damage. Due to NPs stress,
glucosinolate, and phenolic compounds content were significantly increased in the seeding process,
while the chlorophyll, carotenoid, and sugar content decreased [211].

Mn2O3 NPs of 30 nm were tested in Muraishige and Skoog (MS) culture medium with
concentrations of 25 mg·L−1, 50 mg·L−1, 100 mg·L−1, and 200 mg·L−1, showing morphological changes
in root and shoot fresh weight. Physiological parameters such as chlorophyll and hydrogen peroxide
content at low concentrations of the NPs showed enhance growth and increase in the secondary
metabolites synthesis (alkaloids, phenolics, and flavonoids) [212]. Table 6 shows multiple types of
research with metal oxides modifying the secondary metabolites contents in several plant species.

Table 6. Multiple findings toward metabolomic effects in plant due to metal oxide NPs treatment.

NPs Plant Type Nanoparticle
Characteristics Experiential Conditions Effects Ref.

TiO2, ZnO Beetroot ≤ 40 nm size Culture cell (0.25,
0.50 ml·L−1 NPs).

ZnO and TiO2 improved
chlorophyll content, plant growth,
and carotenoid (terpenes) content.

[213]

Fe3O4, CuO Lepidium draba
Particle size of 60 nm

and 55 m2g−1

surface area

Seed culture
(0, 1, 5, 10, 20,

and 40 mg·L−1).

CAT and POD activity enhanced
by both NPs, increased

concentration of sulforaphane.
[214]
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Table 6. Cont.

NPs Plant Type Nanoparticle
Characteristics Experiential Conditions Effects Ref.

Fe3O4
Hyoscyamus
reticulatus L.

Nanoparticle solution
provide by Nanozaino

Co., Tehran, Iran.

Hairy root culture with
different concentrations

(0, 450, 900, 1800,
and 3600 mg·L−1).

Antioxidant enzyme activity
increased, hyoscyamine and
scopolamine elicited by NPs.

[215]

CeO2
Phaseolus

vulgaris var.
CeO2 rods 67*8 nm,

93.8 m2g−1 surface area.

Root exposure with NPs
suspensions of 62.5, 125,

250, and 500 mg·L−1.

Increase in soluble protein content
by 204% at 500 mg·L−1. [216]

ZnO, Fe3O4
Hypericum
perforatum.

Nanoparticle powder
obtained from Plasma

chem, Germany.

Cell culture with
concentrations of (0, 50,

100, and 150 ppb).

Enhanced production of hypericin
and hyperforin. [217]

CuO Stevia
rebaudiana.

40–100 nm synthesided
by co-precipitation

method.

Murashige and Skoog
medium (MS) (0, 0.1, 1,

10, 100,
and 1000 mg·L−1).

CuO oxidative stress activates the
production of antioxidative

molecules (phenols, flavonoids),
CuO also enhanced rebaudioside

A and stevioside (steviol
glycosides) production.

[218]

ZnO-polyethylene
gycol (PEG),

ZnO-polyvinyl
pyrrolidone (PVP),

CuO-PEG and
CuO-PVP and

CuO, ZnO.

Stevia
rebaudiana

ZnO (34 nm), ZnO–PEG
(26 nm), ZnO–PVP

(32 nm), CuO (47 nm),
CuO–PEG (27 nm),
CuO–PVP (27 nm),

synthetized by chemical
co-precipitation.

Murashige and Skoog
medium (1 and

10 mg·L−1).

Metal oxide NPs capped with
polymers resulted in larger steviol
glycosides content, total phenolic

content, and total flavonoid
content compared with uncapped

metal oxide NPs.

[219]

Ag–SiO2 Artemisia annua. Core–shell structure
(101.8 nm)

Hary root cultures (400,
900, 1800,

and 3600 mg·L−1).

Increased artemisinin content,
enhaced activities of catalase

(CAT).
[220]

TiO2 Salvia officinalis.
TiO2 anatase (10–15 nm),

200–240 m2
·g−1

surface area.

Solution sprayed to
plants (0, 10, 50, 100, 200,

and 1000 mg·L−1).

Treated plants showed increased
antioxidant activity, the highest
concentrations of phenols and

flavonoids were observed at 200
and 100 mg·L−1.

[207]

CuO Brassica rapa
spp. pekinensis 25–55 nm particle size. Hairy root cultures (0, 50,

100, and 250 mg·L−1)

CuO elicited glucosinolates
content; also, phenolic

compounds were highly enriched.
[211]

Bulk and nano
TiO2

Hyoscyamus
niger L.

10–15 nm,
200–240 m2

·g−1.

Solution sprayed to
plants (0, 20, 40,
and 80 mg·L−1)

Increases superoxide dismutase
(SOD) by nano and bulk TiO2,
highest alkaloid (hyoscyamine

and scopolamine) content
registered in nano TiO2 at 80 and

20 mg·L−1.

[206]

Fe2O3Fulvic acid
coated FeeO3,

Fe-EDTA

Soybean
(Glycine max L.) 5 nm particle size

Foliar and soil exposure
to NPs (15, 30, and 60

mg/pot) for eight weeks

No stress and growth disorders,
Fe2O3 and fulvic acid-coated

enhanced chlorophyll content,
plant biomass, and root

development.

[221]

γ-Fe3O3Fe3O4
Muskmelon

(Cucumis melo)
γ-Fe3O3 (20 nm)
Fe3O4 (20 nm)

Soil irrigation (100, 200,
and 400 mg·L−1) for

4 weeks

Increase chlorophyll and fruit
weight at concentrations of

200 mg·L−1 for both types of NPs.
[222]

TiO2

Wheat
(Triticum
aestivum)

Anatase/rutile mixture
(80:20); 21 nm and

35.65 m2
·g−1 surface area

Soil irrigation (5, 50,
and 150 mg·L−1) for

21 days.

During treatment, roots
upregulated monosaccharides and

azelaic acid, triggering tyrosine
metabolism; leaves showed

upregulation of reserve sugars
and tocopherol, phenulalanine,

and tryptophan pathways.

[223]

CuO Rice
(Oryza sativa L.)

Size ranging from 40 to
80 nm

Hydroponic treatment
(62.5, 125,

and 250 mg·L−1).

Suppression of growth rate of rice
seedlings; chlorophyll and

carotenoid content in leaves
decreased with NPs exposure.

[224]

TiO2
Rice

(Oryza sativa L.) Anatase (5–10 nm) Soil exposure to NPs
(0.1–100 mg·L−1).

Increased biomass (>30%), the
photosynthetic rate decreased at

10 and mg·L−1 (17.2%), NPs
caused a downregulation of

energy consumption in
metabolism.

[225]

Fe3O4
Maize

(Zea mays)

30 nm NPs,
hydrodynamic diameter

of
231.4 ± 17.38 nm, z

potential of 17.97 mV

Soil exposure during
4-week treatment (50

and 500 mg·kg−1).

No impact on biomass and
photosynthesis, increased Fe

accumulation in roots,
metabolomics pathways related to

defense were inactivated after
NPs exposure.

[226]
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Table 6. Cont.

NPs Plant Type Nanoparticle
Characteristics Experiential Conditions Effects Ref.

Al2O4, NiO Nigella arvensis L. NiO (5–8 nm)
Al2O4 (5 nm)

Hydroponically grown
tissues

(50, 100, 1000,
and 2500 mg·L−1).

Plant biomass increased at 50 and
100 mg·L−1 (Al2O3) and

50 mg·L−1 (NiO), while higher
concentrations decreased biomass;
increase in antioxidant capacity,
total saponin content, and total

phenolic content in plants treated
with 100–2500 mg·L−1 of Al2O3.

[227]

Al2O4
Arabidopsis

thalian

Al2O3 hydrodynamic
diameter of

687.34 nm at 0 h,
878.82 nm at 12 h,

and 908.97 nm at 24 h
exposure

10-day exposure of
98 µM Al2O3.

No evidence of toxicity on
photosynthesis, growth, and lipid
peroxidation; NPs increased root

weight, length, and the
transcription of

antioxidant-related genes.

[228]

NiO Chinee cabbage 10–20 nm 50, 250, and
500 mg·L−1.

Chlorophyll, carotenoid,
and sugar contents were reduced,
while proline and anthocyanins

were upregulated in NiO
NPs-treated seedlings.

[229]

TiO2

Radish
(Raphanus
sativus L.)

86 nm, zeta
potential average of −7.0

mV, hydrodynamic
diameter of

405 nm

Foliar application of NPs
from 10 to 1500 mg·L−1.

NPs caused an increase of
photosynthesis and total phenols
concentration, while higher doses

of TiO2 contribute to
instantaneous water-use

efficiency.

[230]

Fe3O4

Pumpkin
(Cucurbita
maxima L.)

10–40 nm
Hydroponic treatment of
pumpkin seedlings for 1

week (100 mg·L−1).

Fe3O4 were found on pumpkin
phloem sap revealing

nanoparticle translocation;
secondary metabolite analysis

shows a reduction in the
oil-related metabolites such as

methoxyacetic acid, 4-tetradecyl
ester eicosane, and heneicosane.

[231]

CeO2

Bean
(Phaseolus
vulgaris L.)

10−30 nm, surface area
of 30–50 m2

·g−1

Plants grown in solid
medium (25, 50,

and 100 mg·L−1).

Ce accumulated in roots and
translocated to aerial parts, NPs
caused tissue-specific metabolic

reprogramming.

[232]

CuO Brassica rapa 25–55 nm

Seedling grown in
culture boxes

(50, 250, and 500 mg·L−1

of NPs).

Chlorophyll, carotenoid,
and sugar content decreased;

proline and anthocyanins were
enhanced with CuO treatment;
ROS, malondialdehyde (MDA)

and hydrogen peroxide
production were enhanced

by NPs.

[233]

CeO2

Spinach
(Spinacia
oleracea)

Diameter of
approximately 4 nm

Foliar exposure for
4 weeks (0.3 and 3 mg

per plant).

Photosynthetic pigment content,
plant biomass, lipid peroxidation,

and plant biomass were not
affected, while both doses caused
downregulation of amino acids

and reduction of Zn and Ca
in leaves.

[234]

Y2O3
Maize

(Zea mays L.)

NPs size (30 nm),
hydrodynamic size

(300.5 ± 14.1 nm)
Zeta potential

(5.27 ± 0.03 mV)

Seed germination in
plastic tubes with

concentrations of 10, 30,
50, 100, and 500 mg·L−1,

for 6 days

NPs had no effect on germination
rates; peroxidase (POD) and

catalase (CAT) were enhanced by
NPs, polar metabolites showed a
dose-dependent increase in NPs.

[235]

6.1.3. Carbon-Based Nanomaterials

Although some studies claim that carbon-based nanomaterials have potential applications in
agriculture, some experiments have shown hazardous effects in several plant species, plant growth,
oxidative stress, water channels, secondary and primary metabolism, and gene expression [236].
Graphene in contact with wheat (Triticum aestivum L.) at low concentrations (250 mg·L−1) caused root
elongation. As claimed by other studies, it is believed that root elongation is caused by an elongation
of cell walls when interacting with NPs. Even though root elongation was achieved, an exposure to
500 mg·L−1 causes short root hairs as compared to control, which is believed to be an effect of ROS
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interactions. Meanwhile, lower concentrations of graphene caused SOD and POD bursts, while higher
concentrations caused an inhibition of these enzymes [237]. This is known as a hormesis effect, where
low doses of certain compounds cause toxic effects, while higher doses decrease those effects [238–240].

In case of carbon nanodots, it was found that they can be used as a highly efficient defense system
against abiotic stresses, improving crop performance. Rice (Oryza Sativa L.) showed an alleviation of
salt stress when incubated with CDs. The alleviation is believed to be caused by the ROS scavenging
properties of QDs lowering the exposure of these radicals to seedlings and minimizing oxidative
damage, which was related to a lower accumulation of POS, SOD, flavonoids, and phenols content
compared to control [241].

One important aspect to consider is the interaction between nanomaterials and other contaminants
such as heavy metals. Some of them have the ability to sequester heavy metals to remediate soil and
protect the plant, but it can be possible that some NPs increase the toxic effect of certain compounds.
As it is shown, in wheat plants treated with graphene oxide (GO), the nanomaterial caused cellular
damage, augmenting arsenic uptake. Both compounds caused an inhibition of carbohydrates and
disrupted fatty acids. While enhancing amino acid and secondary metabolism, GO also caused the
reduction of As(V) to As(III), increasing its toxicity [242].

Fullerol C60(OH)20 showed an increase in plant biomass and fruit yield when exposed to bitter
melon (Momordica charantia). In addition, it also increased its medical content of two known antidiabetic
compounds (charantin and insulin). Even though some carbon-based nanomaterials can increase water
uptake, fullerol caused no impact in water uptake [243].

Another structure of carbon-based nanomaterials are single-walled carbon nano-horns, which have
been tested in several crops such as barley, corn, rice soybean, switchgrass, tomato, and a tobacco cell
culture. The findings elucidate that carbon nano-horns can increase the germination of selected species
and increase organ growth in corn, tomato, and soybean. Meanwhile, tobacco cell culture showed
increase growth levels [244].

Foliar exposure to multi-walled CNTs on Salvia verticillara L., a medicinal plant, showed increased
levels of oxidative stress in leaves, as well as decreasing photosynthetic pigments. CNTs also increased
rosmarinic acid, leading to future applications for enhancing pharmaceutical metabolites contents
by carbon nanomaterials [245]. Table 7 contains multiple research studies showing metabolomics
modifications by carbon nanomaterials.

Table 7. Multiple findings toward metabolomics effects in plants due to carbon-based
nanomaterials treatment.

NPs Plant type Nanoparticle
Characteristics Experiential Conditions Effects Ref

MWCNTs

Rose
periwinkle

(Catharanthus
roseus)

Young’s modulus:
1200, tensile strength:

150, density 2.6
g·cm−3, thermal

conductivity: 3000
W·m−1

·k−1, electron
conductivity:

10−5-10−7 S·m−1.

Seeds are grown in MS
medium at 0, 50, 100,

and 150 mg·L−1

Increase in plant growth, biomass,
root length, a slight increase in
chlorophyll and carotenoids,

increase in proteins, CAT,
and POX enzymes.

[246]

MWCNTs Satureja
khuzestanica

Diameter of 15 nm
and 50 µm.

Callus culture 0, 25, 50,
100, 250, and 500

µg·mL−1

Enhanced flavonoids and phenols
content in callus culture at 100

and 250 µg·mL−1.
[247]

MWCNTs Thymus
daenensis

50 µm length, 233
m2·g−1 surface area,
100 s·cm−1 electrical
conductivity, 3000

W·m·k−1.

MS media, 0, 125, 250,
500, 1000, and 2000

µg·mL−1

Increased seedling biomass and
height, highest total phenolic

content, total flavonoid content,
and antioxidant activity achieved

with 250 µg·mL−1.

[248]

GO
Gala apple

(Malus
domestica)

Particle diameter:
50–200 nm, thickness:

0.8–1.2 nm.

0, 0.1, 1, and 10 mg·L−1

(40 days’ treatment)

Inhibition of lateral roots
(0.1–10 mg·L−1), GO increases
CAT, POD, and SOD activities,

0.1 mg·L−1 increases auxin efflux
carrier and auxin influx genes

transcription.

[249]
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Table 7. Cont.

NPs Plant type Nanoparticle
Characteristics Experiential Conditions Effects Ref

Single-bilayer GO Faba bean
(Vicia faba L.) Size: 0.5–5 µm 0, 100, 200, 400, 800,

and 1600 mg·L−1

Decrease in growth, catalase,
and ascorbate peroxidase activity,

increase in electrolyte leakage.
[250]

Carbon nano-horns Arabidopsis
thaliana

Pipe diameter: 2–5,
pipe length:
10–20 nm

0, 0.01, 0.05, 0.1, 0.3, 0.5,
1, 5, 10, 50,

and 100 mg·L−1

Single-wall carbon nano-horns
altered sugar and amino acid

content at 0.1 mg·L−1 and
increased secondary metabolites

such as nicotinamide, purines,
and flavones.

[251]

GO Rice
Sheet thickness
1.12 nm, lateral
length 0.5–2 µm

0.01–1.0 mg·L−1
Upregulation of phenylalanine,

secondary metabolism, inhibition
of aquaporins.

[252]

7. Conclusions

Nanotechnology is an effective tool for the improvement of the agricultural industry. However,
it expresses different behaviors to their counterparts in bulk in such a way that the nanotoxicological
effects are based on totally different parameters that are not based on the number of doses with respect
to the mass. Instead, characteristics such as the aggregation, morphology, concentration, surface
modification, and size define the level of toxicity of nanomaterials, and in turn, the possible diverse
biochemical effects they can cause in plants.

Regardless of its origin either as a product with a specific purpose for agriculture or its possible
introduction to the environment through the mishandling of wastes that contain nanomaterials, it is
imperative to know for sure the toxicological effects that nanostructured systems can cause on plant
organisms. Thus, it is crucial to create strict and efficient regulations with which their misuse can be
prevented by protecting other plant species whose interactions with certain nanomaterials generate
highly adverse effects for their development.

The secondary metabolites when discovered were considered low-interest compounds. However,
they are products that over time have increased their value for commercial use in dyes, fragrances,
flavorings, and even bioactive compounds for medical areas. Stressful environmental factors such as
temperature, radiation, salinity, droughts, floods, the presence of insects, microorganisms, and viruses
have shown the mechanisms by which plants can increase the synthesis of the so-called secondary
metabolites or phytochemicals. The use of elicitors increases the global production of phytochemicals;
thus, we consider that this is an area with high opportunities where the toxicological effects of diverse
nanomaterials can be exploited for the induction of plant stress, leading to secondary metabolites
productions that can surpass the commonly used elicitors.
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