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A B S T R A C T

Several human pathogens can cause long-lasting neurological damage. Despite the increasing clinical knowledge
about these conditions, most still lack efficient therapeutic interventions. Gene therapy (GT) approaches comprise
strategies to modify or adjust the expression or function of a gene, thus providing therapy for human diseases.
Since recombinant nucleic acids used in GT have physicochemical limitations and can fail to reach the desired
tissue, viral and non-viral vectors are applied to mediate gene delivery. Although viral vectors are associated to
high levels of transfection, non-viral vectors are safer and have been further explored. Different types of nano-
systems consisting of lipids, polymeric and inorganic materials are applied as non-viral vectors. In this review, we
discuss potential targets for GT intervention in order to prevent neurological damage associated to infectious
diseases as well as the role of nanosized non-viral vectors as agents to help the selective delivery of these gene-
modifying molecules. Application of non-viral vectors for delivery of GT effectors comprise a promising alter-
native to treat brain inflammation induced by viral infections.
1. Introduction

Several human pathogens can cause long-lasting symptoms and
devastating effects on life quality of patients [1,2]. Viral infections can
often lead to neurological symptoms, and while some pathogens can
invade the Central Nervous System (CNS) directly triggering inflamma-
tion, others affect normal brain function by inducing severe systemic
immune responses. In most cases, the factors that lead to increased sus-
ceptibility of individuals to develop neurological complications following
viral infections remain unknown. In addition, although clinical knowl-
edge about these diseases has improved in recent years, efficient thera-
peutic interventions are still lacking [3]. Therefore, gene therapy can
emerge as a strategy to target neuroinflammation and brain damage
caused by infectious diseases.

Gene therapy (GT) approaches comprise strategies to modify or adjust
the expression or function of a gene, thus providing therapy for human
diseases. GT agents comprise recombinant nucleic acids (DNA or RNA)
which can adjust, repair, replace, add or remove a given gene sequence
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[4]. Plasmid DNAs, anti-sense oligonucleotides, small interfering RNA
(siRNA)-lipid complexes, live viruses, and genetically engineered cells
are examples of effectors used in GT [5]. A wide range of GT agents and
delivery techniques have been designed and tested as treatment for many
disorders [6] including cardiovascular, muscular, metabolic, hemato-
logical, ophthalmological and neurological diseases [7–9]. Viral en-
cephalitis are especially interesting for GT application due to the smaller
timeframe between disease onset and diagnosis, compared to chronic
neurodegenerative diseases. Therefore, GT strategies can be employed at
early stages, before irreversible tissue damage is established.

Since recombinant nucleic acids used in GT have physicochemical
limitations and can fail to reach the desired tissue, viral and non-viral
vectors are applied to mediate gene delivery. Although viral vectors
are associated to high levels of transfection, non-viral vectors are safer
and have been further explored. Different types of nanosystems consist-
ing of lipids and polymeric materials are applied as non-viral vectors. In
this review, we will discuss potential targets for GT intervention in order
to prevent brain damage associated with infectious diseases as well as the
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role of organic and inorganic non-viral vectors as agents to help the se-
lective delivery of these gene-modifying molecules. Therefore, the aim of
this work is to highlight the application of non-viral vectors for delivery
of GT effectors, as an alternative to treat brain inflammation induced by
viral infections.

2. Methods

Searches were performed in PubMed, Google Scholar and Science
Direct. Search terms were divided into three groups, as follows: group 1
(“gene therapy”, “transfection”, “siRNA”, “miRNA”, “gene silencing”,
“CRISPR-Cas9”, “neuroinflammation”); group 2 (“viral infection”, “viral
neuroinflammation”, “brain”, “glial cells”, “WHO”, “neurological disor-
ders”, “encephalitis”, “treatment”, “malaria”, “Zika”, “Herpes Simplex
Virus”, “Human Immunodeficiency Virus”, “West Nile Virus”, “SARS-
CoV-2”); group 3 (“viral vectors”, “non-viral vectors”, “liposomes”,
“cationic lipids”, “helper lipids”, “endocytosis”, “lipoplexes”, “inorganic
nanoparticles”, “gold nanoparticles”, “quantum dots nanoparticles”,
“graphene quantum dots”, “carbon quantum dots”, “polymer nano-
particle”, “dendrimers”, “branched polymers”, “polyplexes”, “cationic
polymers”, “sponge effect”, “polymeric micelles” and “lipopolyplexes”).
Searches were performed using different combinations of words from
groups 1, 2 and 3; 1 and 3 or 2 and 3. Only articles published after 2010
were considered, but relevant publications cited by these articles were
also added to the study.

3. Potential targets for gene therapy in brain inflammation
caused by viral infections

As infectious diseases are emerging or re-emerging due to urbaniza-
tion and climate changes, the population is susceptible to viral epidemics
and pandemics [10]. Neurotropic viruses invade the CNS and have great
affinity for neural cells, having reemerged as public health threats. Other
pathogens, which do not show specific tropism for neural tissue, can still
induce immune responses that affect brain homeostasis and blood-brain
barrier (BBB) integrity, leading to altered CNS function [11,12], cerebral
edema, encephalitis and myelitis [13]. Table 1 shows a list of pathogens
most frequently associated to brain damage and some of the potential
targets for intervention by GT. For some of these conditions, prototype
Table 1
Viral infections and encephalic manifestations. The main viruses frequently associate
most widely used approaches to prevent or treat these conditions.

Pathogens Neurological manifestations Frequency of neu
manifestations

West-Nile WNND, Meningitis, encephalitis, acute flaccid
paralysis and coma

1 in every 150 in

Zika in newborns CZS, brain calcifications, hydrocephaly,
Microcephaly seizures and developmental delay

6–12% of infecte
will result in CZS
normocephalic b
seizures, 2.3% p
microcephaly

Zika in adults Encephalitis, meningitis, meningoencephalitis,
myelitis, memory impairments, cognitive
declines, sensory polyneuropathy and Guillain-
Barr�e syndrome

6 of 41 patients
infection had ne
manifestation

Herpes simplex virus Herpes simplex encephalitis (HSE) HSE in children
adults

HIV Stages of HIV-Associated Neurocognitive
Disorder (HAND): asymptomatic
neurocognitive impairment (ANI), mild
neurocognitive disorder (MND) and HIV-
associated dementia (HAD)

23.24 per 1000 p
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GT agents have been developed and tested at some level. The main
findings concerning the development of GT agents to treat viral-induced
brain inflammation are illustrated in Fig. 1.

4. Approaches for gene delivery in encephalitis: non-viral vectors

Although GT strategies are promising alternatives to treat several
diseases, there are some challenges that need to be overcome when
designing a new gene therapy system [36]. Since nucleic acids are large
and negatively charged, they do not freely cross the cell membrane.
When delivered as free molecules, they are susceptible to cellular en-
donucleases and renal clearance. Therefore, a delivery vector should be
applied to allow effective cellular internalization and transfection of
nucleic acids [37–39]. Accordingly, both viral and non-viral vectors have
been effectively employed in gene therapy [40]. Table 2 summarizes
studies that have applied vectors for gene therapy delivery for treatment
of viral encephalitis. Adenoviral, adeno-associated viral and lentiviral
vectors are some examples of viral vectors applied in these cases [41].
Viral systems present high transfection potential and constant expression
of therapeutic genes [40].

Even though viral vectors have been the most frequently used vehi-
cles for GT delivery, they present disadvantages such as the high cost, the
risk of provoking undesired immune response and the limited size of the
genetic material that can be incorporated [48,49]. In addition, product
quality protocols and the mean shelf-life of products involving the use of
viral vectors are unknown in most cases [50]. Therefore, the application
of non-viral transfection for GT strategies rises as a promising, cheaper
and safer approach.

Non-viral transfection approaches include physical methods such as
electroporation, biolistic, microinjection, laser, heat exposure and ul-
trasound, which can injure the cell during the transfection process [51,
52]. Chemical methods are alternative non-viral approaches of trans-
fection and frequently involve the use of compounds such as calcium
phosphate, DEAE-dextran, cationic lipids, and cationic polymers
[52–54]. Cationic lipids and polymers can be part of nanosystem struc-
tures since they directly interact with the negative charge from nucleic
acid.

Biomaterials have been employed to structure non-viral vectors,
mediating a more controlled gene delivery than viral vectors, which
d to brain damage are listed, as well as the frequency of these symptoms and the

rological Available
treatments

References

fections Limited to
supportive care

FULTON et al., 2020 [14]; SANTINI et al.,
2022 [15]; YAKASS; FRANCO; QUAYE,
2020 [16]; ZIDOVEC-LEPEJ et al., 2021
[17]

d pregnancies
, 60% of
abies presented
resented

No available
treatments

BARBEITO-ANDR�ES et al., 2020 [18];
BENAZZATO; RUSSO; BELTR~AO-, 2022
[19]; CAMPOS COELHO; CROVELLA, 2017
[20]; SOUZA et al., 2019 [21]; TAKAHASHI;
UI-TEI, 2020 [22]

with Zika
urological

No approved drug
treatments or
vaccines

ARTAL; ARAUJO, 2020 [23];
BIDO-MEDINA et al., 2018 [24]; SOUZA
et al., 2019 [21]

6% and 13% in Acyclovir,
antivirals and
anticonvulsants

BARTOLINI et al., 2019 [25]; DA SILVA
et al., 2016 [26]; LIU et al., 2019a [27];
MCGRATH et al., 1997 [28]; SELLNER;
TRINKA, 2012 [29]; SOLBRIG et al., 2006
[30]

eople Lacks effective
medical treatment

HOLROYD et al., 2020 [31]; HWANG et al.,
2007 [32]; SACKTOR, 2018 [33]; TSAI
et al., 2017 [34]; WINSTON; SPUDICH,
2020 [35]



Fig. 1. Potential sites of GT intervention in brain inflammatory conditions associated to infectious diseases. Human pathogens as West Nile Virus (WNV), Zika
virus (ZIKV) and Herpes-simplex virus (HSV) are known to directly infect neuronal cells, stimulating the release of chemokines and cytokines from glial cells, also
causing BBB disruption. Although the mechanisms involved in WNV and human immunodeficiency virus (HIV) neuroinvasion are not completely elucidated, it is
possible that both viruses cross the BBB inside T cells, causing neural cell infection and glial activation. Mechanisms of SARS-CoV-2 brain damage are also not fully
elucidated yet, but studies have shown that the virus can directly infect glial cells, while others have shown that the cytokine storm could be involved in brain damage.
Glial activation allows the release of cytokines and chemokines that could be targeted by iRNA. For example, miR-129 was shown to reduce IL-6 and TNF-α expression
in the brain. miR-21 mediates anti-inflammatory effects, controlling astrogliosis, while downregulation of miR-124 and miR-711 coincides with the resting state from
microglia. Besides, gene therapy can also be applied to reduce viral replication, such as the siRNA that targets UL-39 gene. Created with BioRender.com.

Table 2
Studies that have already applied gene therapy for viral encephalitis.

Virus Gene target Vector Reference

HSV-1 siRNA against bifunctional polynucleotide phosphatase/kinase (PNKP) Lipofectamine 2000 Yue et al. (2013) [42]
HSV-1 siRNA against ribonucleotide reductase enzyme (gene UL-39) Rhabdovirus glycoprotein (RVG-9R) Da Silva et al. (2016) [26]
JEV shRNA against non-structural viral enzymes (NS3 and NS4A) Lipofectamine 2000 Yuan et al. (2016) [43]
HIV siRNA against Nef protein Carbosilane dendrimer Serramía et al. (2015) [44]
HIV miRNA-34a for downregulation of negative regulator of NFκB signaling Lipofectamine™ RNAiMAX Periyasamy et al. (2016) [45]
HIV Beclin1 siRNA PEI nanoparticles Rodriguez et al. (2021) [46]
ZIKV siRNA targeting small extracellular vesicles Rabies virus glycoprotein derived peptide (RVG) Zhang et al. (2022) [47]
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usually show limited tissue tropism and random delivery [55]. Hence,
stimuli-responsive biomaterials have been applied to constitute
multi-functional nanosystems [56]. In this review, nanotechnology from
non-viral vectors such as lipid and polymeric nanosystems are high-
lighted along with their application in GT as promising strategies to treat
viral encephalopathies. Fig. 2 shows some non-viral vectors forming
complexes, highlighting their different components and exemplifies how
poly(β-amino ester) (PBAE) could condensate nucleic acids to form
polyplexes.

The prefix “nano” represents a scale reduction of 10�9 fold, in which
1 nm (nm) is one billionth of a meter, also equivalent to 10 Å. Nano-
technology refers to the ability to manipulate or control matter, by
physical or chemical means, in order to obtain materials on a nanometer
scale, with functional properties (i.e., optical, magnetic or electrical)
different from the macroscopic bulk materials [57]. Particular properties
3

and functions of the substances can be changed or enhanced as their size
is scaled down, enabling the development of new applications for ma-
terials in diverse fields [58]. Specifically in nanomedicine, nanodevices
can be used as efficient delivery systems owing to their advantages over
ordinary conventional dosage forms. Nanoparticles can interact with
biological systems with high specificity. Due to their smaller size, these
nanoparticles show increased tissue penetration, effectively delivering
drugs or biologically active substances into cells. Nanostructures
reportedly aid in protecting substances from degradation, causing fewer
plasma fluctuations and, consequently, reducing adverse effects associ-
ated with its use [59,60]. Also, by altering the surface properties of
nanomaterials with the addition of ligands, it is possible to target tissues
in a more specific and controlled way [61].

Nanotechnology can help to design safe and efficient non-viral gene
delivery systems to overcome deficiencies normally associated with

http://BioRender.com


Fig. 2. – Examples of lipid and polymeric nanosystems, lipoplexes and polymeric micelles with their respective structures to form complexes with nuclei
acid or plasmids. Physical-chemical interactions are highlighted due to their advantages: (A) charge interactions between nucleic acid and cationic lipids or polymers,
allowing gene incorporation; (B) cationic charges that could lead to sponge effect and improve interaction with glial cell membranes; (C) functionalization of lipids or
polymers with polyethylene glycol (PEG) and peptides which prevent opsonization and facilitate endocytosis, respectively; (D) polycation interaction with nucleic
acids in lipopolyplexes; (E) plasmid incorporation inside of polymeric nanocapsules. Phospholipids: 1,2-Dioleoyl-3-trimethylammonium-propane (DOTAP), 1,2-di-O-
octadecenyl-3-trimethylammonium propane (DOTMA), dipalmitoylphosphatidylcholine (DPPC), 1,2-Dierucoyl-sn-glycero-3-PC (DEPC), polyethyleneglycol (PEG),
polyethylenimines (PEI), poly(L-lysine) (PLL), poly(2-N-(dimethylaminoethyl) methacrylate) (PDMAEMA) and poly(β-amino ester) (PBAE). Created with
BioRender.com.
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genetic drugs. Nanodevices can reduce genetic drug degradation and,
consequently, enhance its stability by blocking the access of nucleases
[62]. Genetic drugs formulated as nanoparticles can avoid the renal
filtration and present extended blood half-life and biodistribution [63].
Nucleic acids carry highly negative charges and their electrostatic
repulsion with cell membrane results in poor cellular uptake. Vectors can
cover up the negative charges, promoting its absorption. Also, by active
targeting, nanocarriers can ensure a preferential accumulation of genetic
drugs in the brain [62,63]. Nanocarriers are generally classified as
organic and inorganic nanomaterials, depending on their chemical na-
ture. Fig. 3 exemplifies how the chemical nature from these nanosystems
can facilitate their interaction with the targeted glial cells. Fig. 3 also
highlights the main advantages of each system and how they can provide
better interactions with the cell which improve transfection rates.
4.1. Lipid nanosystems

Lipid nanosystems have been widely studied for delivery of small
drug molecules and have been proposed as a relevant alternative for the
development of non-viral carriers for GT agents [64]. Lipid-based
nanosystems include solid lipid nanoparticles (SLNs), liposomes, nano-
emulsions, nanosuspensions and micelles. Liposomes and micelles are
examples of amphiphilic nanocarriers systems.

Phospholipids are amphiphilic molecules composed of phosphati-
dylcholine head groups and two hydrophobic hydrocarbon chains tails
that, in aqueous environment, assemble to form different structures such
as bilayers and vesicles [65]. Liposomes are self-assembled, closed
4

spherical vesicles composed of an aqueous core surrounded by one or
more phospholipid bilayers. Conventional liposomes are synthesized
from natural or synthetic phospholipids with or without cholesterol,
which is added to improve liposomes fluidity and stability, altering the
bilayer rigidity [66].

Depending on their size and number of bilayers, liposomes can be
classified in unilamellar vesicles (ULV) and multilamellar liposomes
(MLV). ULV are enclosed by one lipid bilayer and according to their size
can be divided into three categories: small unilamellar vesicles (SUV,
<100 nm), large unilamellar vesicles (LUV,>100 nm) and giant uni-
lamellar vesicles (GUV,>1 μm). Multilamellar liposomes consist of more
than one lipid bilayer, usually with diameters of hundreds of nanometers.
Size and membrane lamellarity will influence liposomal encapsulation
efficiency and circulation time [67].

Due to their structure, liposomes can simultaneously entrap sub-
stances of different polarities: hydrophilic molecules can be encapsulated
into the core of the vesicles while hydrophobic active substances are
incorporated into the lipid bilayer. As delivery systems, lipid nano-
systems have the advantage of being highly biocompatible, non-toxic and
biodegradable [60]. Lipid bilayers of liposomes, analogous to the cell
membrane, protect substances from enzymatic degradation and immu-
nologic/chemical inactivation, allowing their sustained release [68,69].
Various ligands, as polymers (polyethylene glycol - PEG) and poly-
saccharides (dextran, mannose), targeting molecules or aptamers, can be
attached to the surface of liposomes, in order to extend blood circulation
time and improve targeting efficiency [70]. PEG-modified liposomes are
denoted as “stealth liposomes” and are used as a strategy to hinder

http://BioRender.com


Fig. 3. Different nanosystems have different forms of interacting with glial cells. Internalization via ligand (A.1) initiates with the functionalization of nano-
system surface. Polymeric nanoparticles and carbon quantum dots can present facilitated endocytosis due to clathrin-mediated uptake mechanism (A.2). Cellular
uptake can also be mediated by the interaction between cationic phospholipids from liposomes or micelles and cell membrane (A.3). After the uptake, nanosystems can
be targeted by lysosomes disrupting their structure and leading to nucleic acid release. In the case of cationic polymers, such as PEI, the polymeric nanoparticles suffer
the sponge effect where PEI can absorb protons leading to influx of chlorate and water, resulting in the lysossomal rupture and the easiest gene release (C). This last
step could be improved using dendrimers due to their ramified structure with end terminal that can be easily functionalized (D). Created with BioRender.com.
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opsonization by the reticuloendothelial system, resulting in an increased
half-life and consequent better target accumulation than conventional
liposomes [66].

The overall surface charge of the liposomal system is determined by its
phospholipid composition. Most lipid carriers employed for GT delivery
are formed by hydrophilic cationic head groups that contain amino groups
and hydrophobic tails [52]. Cationic lipids such as 1,2-Dioleoyl-3-trimethy-
lammonium-propane (DOTAP), cetyltrimethylammonium bromide
(CTAB) and 1,2-di-O-octadecenyl-3-trimethylammonium propane
(DOTMA) have already been used for nucleic acid delivery. The net posi-
tive charge of these lipids facilitates interactionwith cell surface [71]. Also,
lipid formulations present high target affinity and are able to incorporate
nucleic acids ten times larger than viral vectors [72]. When lipids in
nanosystems interact with nucleic acids due to charge differences, a com-
plex known as lipoplex is formed. Once the lipoplex reaches the cell sur-
face, it is internalized by endocytosis and enzymatically digested in the
phagosome allowing cytosolic distribution of the delivered nucleic acid
[73]. Lipid complexes have already been used to reduce the severity of
herpes simplex encephalitis infected animal models. HSV-1-infected mice
were treated with siRNA to silence matrix metalloproteinase-9 (MMP-9)
and control cerebrovascular complications derived from HSE [74]. The
lipid-DOPE complex presents interaction withmurine brain cells without in
vivo toxicity. Therefore, the intracerebral injection of siRNA-lipid complex
targeting murine MMP-9 was able to reduce levels of this protein and also
of pro-inflammatory cytokines.

Addition of neutral lipids as “helper lipids” into the nanosystem in-
creases transfection efficiency, facilitates the lipid self-assembly and the
level of hydration from the lipid film [75]. The presence of helper lipids
as dipalmitoylphosphatidylcholine (DPPC), cholesterol, dio-
leoylphosphatidylethanolamine (DOPE) and 1,2-Dioleoyl-sn-glycero-3--
phosphocholine (DOPC) in the lipoplex increases nanocarrier stability
in the endosome due to the conformation change at acidic pH, allowing
the intracellular bilayer destabilization [76,77]. These lipids can pro-
mote a phase change of lipoplex from lamellar to non-lamellar structure,
which can improve the cationic lipid mediated transfection efficiency by
5

allowing efficient dissociation of the gene from the lipoplex followed by
the release into the cytosol [78]. In a recent study, Dhaliwal and col-
leagues [79] developed mRNA-containing lipoplexes obtained with
DPPC, DOTAP and cholesterol for intranasal administration, in order to
increase transfection rates in the brain. In this work, the composition of
phospholipids formed a monodisperse population of liposomes capable
of efficiently delivering mRNA to the murine cortex and midbrain.

Nanosystems containing PEG are also more stable formulations, since
PEG shields the lipoplex surface charge and prevents the binding of
opsonin to the surface of the lipoplexes [80]. After escaping opsonization,
lipoplexes must be endocytosed by the target cells in order to deliver the
carried nucleic acid. For this, the surface from these complexes can be
functionalized with cell penetrating peptides (CPPs) that facilitate the
cellular uptake. Rodrigues et al. [81] produced liposomes containing PEG
and CPP, obtaining vesicles with optimized surface and high BBB pene-
trability, allowing a more efficient delivery of GT agents to the brain.
DOTAP, DOPE, cholesterol and 1,2-Distearoyl-sn-glycero-3-phosphoryle-
thanolamine DSPE-PEG were the lipids used to compose liposomes. The
use of CPP increased lipoplex penetration in primary astrocytes and
neurons, leading to an improvement in transfection. Du et al. [82]
observed that dipalmitoyl phosphatidylserine (DPPS) was a key compo-
nent in the formulation of the liposomes to enhance their phagocytosis by
microglia. Once microglia were transfected, these cells were used as a
transport vector to deliver paclitaxel for the treatment of glioma. The use
of ligands could also increase phagocytosis by microglia as shown by
Bhattacherjee et al. [83]. In this work, authors found that intra-
cerebroventricular injection of liposomes containing CD33 ligands could
modulate microglial cell function in mice. Likewise, CPPs can be used to
functionalize the surface of liposomes.

Liposomes have already been employed in GT designed to treat gli-
oma [84,85] and neurological disorders such as Alzheimer, Parkinson,
stroke, traumatic brain injury and epilepsy [80,86–89]. Regarding
neurological infections, there are only a few studies that incorporate
nucleic acids into liposomes specifically for viral neurological disorders.
Despite this, there are studies that already applied cationic-lipid
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transfection reagents as Lipofectamine™ to deliver iRNA to treat neu-
roinflammation following Japanese encephalitis virus and HIV-infection
[43,45].

A recent work from S�anchez-arribas et al. [90] showed that lipid-type
nanovectors containing gemini cationic lipids (GCLs) showed higher
transfection rates of plasmids DNA (pDNA) encoding IL-12 in vitro, when
compared to formulations containing Lipofectamine™ 2000. GCLs are
surfactants constituted by two hydrophobic chains and two hydrophilic
cationic heads linked by a spacer, and comprise interesting alternatives
for non-viral vector systems for gene delivery [91,92]. Based on this last
work, GCLs could be applied in gene therapy in other disease models such
as viral infections. Therefore, there is still a field to develop more lipid
nanoparticles to obtain high levels of transfection with more interesting
cost-benefit ratios when compared to commercial reagents.

Regarding disadvantages of cationic liposomes, some toxicity has
been associated with the presence of cationic lipids in nanoparticles,
including cytoplasmic vacuolization, cell shrinkage and protein dena-
turation. In addition, cationic lipids can aggregate following intravenous
administration. This results in vector disintegration and release of ge-
netic material. Although lipoplexes are less efficient than viral vectors
when administered intravenously, lipid vectors still have greater safety
for in vivo application [93,94].

4.2. Polymeric nanoparticles

Polymeric nanoparticles (PNPs) typically represent homogeneous
spherical structures produced by a polymerization reaction of many
monomer units that, under certain conditions, can be organized and self-
assemble with a nanometric size (10–100 nm) [95]. Depending on the
preparation method, the therapeutically active compound can be dis-
solved, attached, encapsulated or entrapped to the matrix of the nano-
particle, defining nanocapsules and nanospheres [96]. Nanocapsules are
systems with a vesicular structure, in which the retained active sub-
stances are reserved in an aqueous or nonaqueous liquid core cavity and
enclosed by the solidified polymeric shell. Nanospheres can be described
as colloidal particles in which therapeutic compounds may be trapped
within the sphere matrix by physical dispersion or adsorbed at the mass
surface [97].

Both natural and synthetic polymers can be used in the synthesis of
polymeric nanoparticles [69]. Natural polymers include chitosan, algi-
nate, collagen and gelatin. They are biocompatible and biodegradable.
However, batch-to-batch variability, broad molecular weight and
microbiological contamination may limit its use [96,98]. Among natural
polymers, chitosan (poy-Dglucosamine) has a great potential in
biomedical field due to its biocompatibility, low toxicity and easy prep-
aration [99].

Poly (lactide-co-glycolide) (PLGA), poly (butylcyano-acrylate)
(PBCA), poly (glycolic acid) (PGA) and poly (lactic acid) (PLA) are the
most common synthetic polymers used in polymeric nanoparticles car-
riers. They are also biodegradable and biocompatible. Unlike natural
polymers, however, synthetic polymers present controlled and repro-
ducible chemical composition and lower immunogenicity [98,100].

In recent years, PNPs are extensively proposed as biomaterials in
therapeutic applications. Polymeric nanoparticles are comparatively
more stable than liposomes, contributing to their longer blood circulation
time and better stability both in plasma and during storage [101]. PNPs
are also less complex to prepare, with easy size distribution control and
high loading capacity [96]. Although less permeable through BBB, the
pharmacokinetics and targeting efficiency of polymeric nanoparticles can
be enhanced by surface functionalization with suitable substances or
molecules [61]. The great synthetic versatility and broad structures va-
riety of polymers allows the adjustment of physicochemical properties
(size, hydrophobicity, surface charge) and drug release parameters of
polymeric nanoparticles obtained [98].

Besides cationic lipids, cationic polymers have also emerged as
promising candidates for non-viral gene delivery systems because they
6

are easier to synthesize and because they possess flexible properties
[102]. Concerning these properties, nanocarriers containing cationic
polymers are easy to produce, present robustness, can be responsive to
certain stimuli and can be designed to balance higher transfection effi-
ciency with low cytotoxicity [103–105]. The polymer can interact with
nucleic acid negative charges, which allows large genes to be packed into
small structured complexes called polyplexes [106]. Naturally occurring
polymers such as chitosan, pullulan, dextran and hyaluronic acid show
low grades of toxicity and have been already applied for gene delivery
[107]. As for cationic synthetic polymers, polyethylenimines (PEI), pol-
y(2-N-(dimethylaminoethyl) methacrylate) (PDMAEMA), and poly(-
L-lysine) (PLL) are some examples [108].

As an example of nanocarrier with natural polymers, Gu and col-
leagues [109] developed chitosan nanoparticles to deliver siRNA across
the BBB and inhibit HIV replication in astrocytes. In this work, siRNAs
targeting spliceosome associated factor 3 (SART3) and human cyclin T1
(hCycT1) genes reduced the viral transcription in vitro. Chitosan enables
the interaction between the polymer amino groups and siRNA, associated
with minimal immunogenicity and the ability to open the cellular tight
junctions. Also, the chitosan nanoparticles were conjugated with mono-
clonal antibodies to induce rapid receptor mediated endocytosis and
reduce the nonspecific cellular uptake.

Illustrating the use of synthetic polymers in nanosystem, stands PEI
and its application in GT. Rodriguez et al. [110] developed PEI nano-
particles containing siRNA to control inflammatory responses in
HIV-infected human microglial cells. Authors showed that siRNA against
Beclin1, a protein that regulates autophagic activity which is essential for
HIV-1 replication and brain inflammation, led to a significant decrease in
the production of chemokines such as IL-6, regulated upon activation
normal T cell expressed and secreted (RANTES) and monocyte chemo-
attractant protein 1 (MCP-1). In this work, intranasally administered
nanoparticles were found in different glial cells in mice, after 24 h.

Concerning the cell internalization of polyplexes, it depends on the
polymer class and architecture [111]. For example, PEI polyplexes show
caveolin and clathrin-mediated endocytosis [112,113]. After endocy-
tosis, cationic polymers as PEI also facilitate “proton sponge” effect
which allows the influx of protons and water into the endosome, causing
the polyplexes to swell and release their contents into the cytoplasm
[114]. Because of this effect, the most frequently used cationic polymers
for GT targeting the brain are PEI and PLL [62].

Ryu et al. [115] demonstrated that branched PEI is a promising
non-viral vector to deliver CRISPR/Cas9 systems to Neuro2a cells.
Moreover, PEI-containing polyplexes allow a more efficient gene trans-
fection than DOTAP lipoplexes since polyplexes are internalized by cells
through a caveolae-dependent pathway. Since caveolae-dependent
internalization is independent from the lysosome, the GT agent is pro-
tected from enzymatic degradation. Rodriguez et al. [46] also complexed
genes with PEI to control HIV brain replication and microglial neuro-
inflammation in mice. Incorporation of PEI to nanosystems improved the
biodistribution in the brain via intranasal delivery. Although PEI presents
high effectiveness in transfection, it interacts with serum proteins in vivo
which could cause red blood cells (RBCs) aggregation, cell lysis and
thrombosis [116]. To improve polymer biocompatibility, PEI can be
conjugated to water soluble molecules such as sugars, amino acids, hy-
droxyl, and PEG, which prevent opsonization. Following this, a previous
work from Morris and Labhasetwar [117] conjugated PEI with PEG and
arginine and analyzed whether RBCs compatibility was improved. It was
found that combined use of PEI:arginine:PEG in the proportion of 1:5:50
provided the right balance in cytocompatibility and BBB permeability
with effective gene delivery into the hippocampus of mice. Similarly,
Joshi et al. [118] conjugated PEI, arginine and PEG, observing favorable
results in gene delivery for murine and human astrocytes. Polyplexes
with higher amounts of arginine showed hemocompatibility with human
RBCs. Cytotoxicity assays demonstrated that polyplexes were also
biocompatible to human astrocytes even after 48 h of exposure and gene
expression was sustained for more than a week. Moreover, the treatment
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of mice via intravenous tail-vein showed that polyplexes could also cross
the BBB with higher transfection after 24 h. Finally, the use of arginine in
polymers allowed a more hydrolysable polyplex structure with more
permeability to neuronal cells [119].

4.3. Dendrimers

Dendrimers are highly branched, monodisperse, three-dimensional
polymeric macromolecules, formed by the cross linking of repetitive
monomers subunits around a central core [120]. They are nanometric
structures radially symmetric, ranging from 1 to 15 nm [121, 122]. The
basic components of dendrimers are the initiator central core or nucleus,
the repetitive concentric layers starting from the core (branching units)
called dendrons and the terminal groups on the surface. Dendrimers are
classified based on their molecular weight: the number of ramifications
points in one dendron corresponds to the number of generations [123].
As the functional groups attached to the core increase, the
three-dimensional (3D) configuration of the dendrimers is altered to a
globular-shaped symmetrical structure, leading to solubility and reac-
tivity changes of the terminal groups [101].

Compared to liposomes, dendrimers are more stable, highly perme-
able, easy to modify with functional ligands and can covalently bind
drugs [123]. Compared to linear polymeric nanoparticles, dendrimers
have specific advantages such as uniform size distribution and chemical
homogeneity, ability to associate with a large number of active com-
pounds and high stability [123–125]. Its surface can be functionalized
with additional polymers or ligands for targeting release [126].

Bioactive compounds can be encapsulated or entrapped in the inter-
nal cavities or flexible spaces within dendrimers and surface functional
groups can interact with guest molecules through electrostatic and/or
hydrophobic interactions or through covalent attachment [69]. So, sub-
stances entrapment and release can be controlled by modifying both
dendrimer surfaces and generations [127].

Dendrimers features such as spatial arrangement, terminal groups on
the surface, generation number and size are controlled by the synthesis
and are crucial for optimum gene delivery [123]. The controlled syn-
thetic mechanisms led to the development of different classes of den-
drimers which find potential applications in diagnostics and carrier
systems for drugs, proteins and genes [121]. Polyamidoamine (PAMAM),
Poly (propylene imine) (PPI), and Poly-L-lysine (PLL) are dendrimers
commonly applied as delivery systems. For CNS regenerative medicine,
polyester-based dendrimers have been proposed [125].

In addition to polymer end terminal conjugation, the polymer struc-
ture is a crucial parameter since the 3D structure with multiple terminal
groups allows more reactions for conjugation with nucleic acids [27,
128]. Branched polymers such as PLL and PDMAEMA present superior
transfection efficiency than linear polymers [128]. The use of controlled
polymerization reaction techniques allows to obtain more tailored
polymers with defined chain length, composition, and architecture
[129]. As an example, the hydrolysis of poly(2-oxazoline)s (POx) pro-
duced PEI with linear architecture, while branched PEI can be synthe-
sized via the polymerization of aziridine [130]. The side reactions of
polymers allow them to grow from linear structure to perfectly branched,
and fractal-like dendrimers which are represented by a core with internal
layers and terminal ends [131]. Since the functionalization of the ter-
minal ends from dendrimers can overcome rapid clearance, cytotoxicity,
and low transfection efficiency, these highly branched structures are
considered promising for gene delivery.

Concerning their application for GT delivery, dendrimers display high
density of charges, interacting with DNA, siRNA or miRNA and forming
dendriplexes which have already been applied to reach the brain. For
instance, PAMAM is another polymer that can produce BBB-permeable
dendrimers, which can selectively target astrocytes and microglia in
animal models of neuroinflammation [132]. To this extent, a previous
work from Zarebkohan et al. [133] showed that PAMAM-dendrimers
functionalized with serine-arginine-leucine were able to reach the
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brain of rats after intravenous injection. The modified dendriplexes
provided a good transfection efficacy with low toxicity in vitro. Besides,
the functionalization with peptides allowed the cellular internalization of
nanoparticles via caveolin endocytosis due to the interaction between
peptides and lipoprotein receptor-related protein (LRP) expressed in
BBB. In a more recent work, Sharma et al. [132] observed that
PAMAM-dendrimers could be found in cortex, hippocampus and peri-
ventricular regions of the brains of rabbits after intravenous adminis-
tration of the nanosystem. Also, authors observed that microglia and
macrophages with pro-inflammatory phenotype were targeted by den-
drimers. Since there is evidence that these nanoparticles are safe and
present transfection capacity, PAMAM dendrimers have been commer-
cialized as PolyFect Transfection Reagent [123].

Another example of synthetic polymer applied in branched model is
PBAE which has properties inherent to tertiary amines and esters, such as
pH responsiveness and biodegradability [134]. In low pH buffer,
branched PBAE presents more protonation of the tertiary amines which
results in a better condensation from DNA [135]. As an example, Liu et al.
[136] developed compact/spherical nanoparticles by condensing PBAE
with DNA to improve transfection to astrocytes. Results showed that
moderately branched PBAE showed higher transfection efficiency than
molecules with linear structure due to the amounts of disulfide bonds
introduced into the polymers backbone, facilitating PBAE degradation
and DNA release.

Cao et al. [137] developed a new linear-branched PBAE for GT, of-
fering another approach for neurological diseases and disorders by con-
trolling the differentiation from neural stem cells into neurons. To obtain
PBAE, four different monomers were used and the copolymerization of
amines and diacrylates through Michael reaction allowed proper DNA
condensation. Also, esters present in nanoplexes can be hydrolyzed and
easily release DNA with lower cytotoxicity. As expected, the efficient
transfection resulted in silencing of SOX9 gene in neural stem cells,
increasing their differentiation into neurons.

4.4. Lipopolyplexes

Acknowledging polymeric and lipid based nanocomplexes advan-
tages, lipopolyplexes (LPPs) were developed to deliver nucleic acids.
Polyplexes are systems formed by the compression of nucleic acids with
the aid of polycationic polymer, while lipoplexes are composed of poly-
anionic nucleic acids with cationic lipids. LPPs are ternary nanoparticles
prepared by the combination of both structures [138]. These nano-
particles comprise phospholipids and present strongly reduced surface
charges, enhancing transfection, decreasing cytotoxicity and high
colloidal stability [139]. PLL, PEI, spermidine, spermine and protamine
sulfate are commonly used polycation in LPPs, while DOPE, DOTMA,
DOTAP, N-(2-hydroxyethyl)-N,N-dimethyl-2, 3-bis(tetradecyloxy-1-pro-
panaminiumbromide) (DMRIE) are some examples of cationic lipids
that can be applied [80]. Thus, LPPs are versatile nanosystems formed by
polycationic molecules which can form complexes with the carried
nucleic acid, improving permeability and brain retention as already seen
in gene therapy for glioblastoma [140].

Nanotechnology-enabled carriers are sophisticated tools to overcome
several challenges in delivering genes to the central nervous system and
the limitations of conventional pharmaceutical formulations, such as
premature gene release, active pharmaceutical ingredient (API) efflux
and low brain bioavailability and stability. Such nanocarriers are nano-
sized vehicles with the capacity of encapsulating or complexing with
nucleic acids, APIs and other therapeutic molecules, providing protec-
tion, increasing circulation time and both temporal and site-controlled
release of their cargo. The surface characteristics of nanosystems, such
as charge, shape, ligand properties and density, can be crucial to the
success of nano-based gene therapy targeting the central nervous system.

Therapeutic approaches as patisiran and givosiran comprise lipid-
based nanosystems for GT and demonstrate that non-viral vectors are
the future of effective transfection. As the stability from lipid
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nanosystems can be achieved by their composition, lipoplexes are viable
to reach astrocytes and microglia. Concerning polymeric nanoparticles,
their 3D structure with functional end groups improve interaction not
only with nucleic acid, but also their in vivo responses, overcoming both
cytotoxicity and low transfection rates. These complexes can be designed
according to their target by modifying their surface structure with
polymers or ligands. The stimuli-responsive characteristics of nano-
particles prolong their blood circulation time, improve the interaction
with the target cell and cellular lysosomes, enabling the release of nucleic
acid in the cytosol. These materials are promising alternatives for treat-
ment of neuroinflammation, especially since most neurological disorders
still lack effective treatment.

4.5. Polymeric micelles

Polymeric micelles comprise nano-sized core/shell carriers sur-
rounded by block copolymers with interfacial and amphiphilic proper-
ties. They are often considered aggregation colloids as amphiphilic block
copolymers can self-assemble into a vesicle micellar structure when in
solution [141]. They are known for their nanometric size, possibility of
enhancing both APIs solubility, permeability across biological barriers
and relatively simple production/scale up [142,143].

The versatility of polymer chemistry enables a great range of micelle
arrangement and structures with novel properties and applications. In
general, the self-assemble of hydrophobic and hydrophilic copolymers in
solution forms micelles as a way to decrease free energy, since the hy-
drophobic segments form vesicles to minimize the contact with the
aqueous phase [144]. The choice of the core-forming segment is signif-
icantly important to obtain crucial characteristics of polymeric micelles
such as stability, API encapsulation ability, and drug release profiles. For
instance, poly(propylene oxide), hydrophobic poly(L-amino acid)s,
poly(ester)s, copolymers of lactic acid and glycolic acids, and poly(-
caprolactone) (PCL) constitute the most studied hydrophobic core blocks
[145]. Besides, the chemical structure and molecular weight of hydro-
philic segments, which comprise the outer shell of polymeric micelles,
dictates their in vivo behavior and their capacity to interact with proteins,
receptors and other biological structures [146]. PEG is the most used
hydrophilic block in polymeric micelles. It is an FDA-approved nontoxic
polymer with important physicochemical properties, such as high water
solubility, high flexibility, and large exclusion volume, providing steric
stabilization for polymeric micelles [147].

When it comes to brain-targeted gene therapy, polymeric micelles are
unique carriers due to their specific properties such as nano-sized
structure, both charge-switching and stimuli-responsive therapeutic
release and flexible film morphology [148]. Polymeric micelles can
improve BBB permeability through the interaction of copolymers brush
with cell membranes, which causes membrane fluidification, inhibit
P-grycoprotein and other efflux transporters, as well as enhances insulin
receptor-mediated transport [149]. Additionally, cationic polymers can
be selected to compose the outer branch of polymeric micelles, so that
negatively charged therapeutic nucleic acids can form polyelectrolytes
complexes, comprising micelleplexes. Micelleplexes feature promising
properties, such as the possibility for a dual therapy with both drugs and
nucleic acids, overcoming multidrug resistance, biochemical and physi-
ological barriers which still limit the RNA-based therapeutics [150,151].

Zhang et al. [152] developed micelleplexes based on block co-
polymers poly(ethylene glycol-b-lactide-b-arginine) to deliver GT sys-
tems to the human cerebrospinal fluid (CSF). Interestingly, the
micelleplexes were found, for the first time, to have significantly better
stability and high anti-miRNA activity in CSF than in human plasma. The
micelleplexes showed the capacity to separate from the cationic peptides
in vivo associated with an enhanced miRNA silencing efficiency and no
toxicity in vitro. Such results suggest that micelleplexes may show ad-
vantages for targeting CNS disorders in vivo [152].

Gwak et al. [153] have developed polymeric micelles constituted by
[poly(lactide-co-glycolide)-graft-polyethylenimine] and demonstrated
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their ability to efficiently transfect siRNA in various neural cell lines and
primary chick forebrain neurons in vitro, as well as in the normal rat
spinal cord. Later, authors also reported the delivery of siRNA
[poly(lactide-co-glycolide)-graft-polyethylenimine] polymeric micelles
targeting RhoA to the injured spinal cord. This treatment induced RhoA
knockdown in chick forebrain neurons for up to 4 weeks post-injection,
reducing astrogliosis and cavitation, and increasing axonal regenera-
tion [154].

Huo et al. [155] produced pegylated micelleplexes decorated with
rabies glycoprotein (RVG). Their results showed that micelleplexes pre-
sented a spherical and monodispersed morphology with low cytotoxicity,
good serum stability and high gene silencing efficiency in vitro. Besides,
the surface modification with RVG produced higher cellular uptake ef-
ficiency. Additionally, in vivo biodistribution studies showed that
RVG-modified micelles can cross BBB and achieve the CNS.

Despite great advances in both polymer science and in the application
of polymeric micelles for poorly soluble small molecule drug delivery,
their application for nucleic acid delivery to the CNS is still limited. Thus,
more studies are required before these nano systems can reach clinical
trials, and therefore, they are often neglected for further consideration.
However, polymeric micelles and micelleplexes show interesting prop-
erties that surely can contribute to the successful application of RNA-
based therapeutics for CNS targeting into the clinic. The most high-
lighting features include self-assembly capacity, thermodynamic and
steric stability, effective condensation and protection of nucleic acids,
ability to overcome biological barriers, increasing cell interaction and
gene transfection and avoiding escape mechanisms [151].

4.6. Inorganic nanoparticles

Inorganic nanoparticles have gained interest in biomedical applica-
tion as a result of their optical, electrical and magnetic properties [156].
Inorganic materials may be formulated as nanoparticles delivery systems
with clinically approved properties [157]. Inorganic nanoparticles (IN)
such as iron oxide, gold nanoparticles (AuNPs), quantum dots (QDs) and
carbon nanoparticles have already been applied into brain gene delivery
[112,158]. Inorganic structures can provide robust nanocarriers mostly
made of noble metals. Those structures can be applied to both photo-
thermal therapy and photoacoustic imaging. Considering the brain as a
target, iron oxide nanoparticles can be used to diagnose purposes in
diseases such as Alzheimer's, Parkinson's, and amyotrophic lateral scle-
rosis. IN could be also used for treatment of viral-induced brain inflam-
matory conditions. Similar to the previous nanosystems, IN can be
modified to be internalized by glial cells to deliver nucleic acids.

In contrast to organic materials, IN can provide real-time tracking of
the nucleic acids in the brain to guide and track the treatment [62].
Furthermore, IN as AuNPs can easily penetrate BBB to enhance gene
delivery. For neurodegenerative diseases, the AuNPs can present many
advantages such as low cytotoxicity, optical properties suitable for
detection/imaging, high surface area for drug loading and the ability to
cross the BBB [159]. As an example, KIM et al. [160] used IN to treat
neuroinflammation induced by amyloid beta fibers. In addition, AuNPs
induced downregulation of pro-inflammatory cytokines [161]. AALIN-
KEEL et al. [162] demonstrated that AuNPs were neuroprotective for
microglial cells in HAND pathology. These neuroprotective properties
suggest that AuNPs comprise a suitable strategy for GT targeting brain
neuroinflammation, allowing a synergistic anti-inflammatory response
from both material and nucleic acids.

QDs, in turn, can also be developed to cover a broad optical range of
fluorescence ranging from ultraviolet to near infrared, allowing their
biomedical application [156]. QDs are usually mineral semiconductor
nanocrystals with a diameter of 1–10 nm that can emit light after
adequate excitation [163]. Similar to some AuNPs, the surface of QDs can
be easily functionalized with siRNAs, aptamers, antibodies or peptides
[164]. QDs present many physical-chemical advantages that can justify
their use into GT such as tunable size, shape, simultaneous excitation of
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different-sized QDs by a single light source, brightness and
broad-spectrum windows [165]. Conventional heavy metal-based QDs
can induce toxicity, and may not be approved for clinical applications
[166]. Still, they can be tailored according to a specific treatment.
Therefore, graphene quantum dots (GQDs) and carbon quantum dots
(CQDs) have a favorable adequacy for biocompatibility and low toxicity
for biomedical applications [166,167].

The GQDs are the product of chemical oxidation of carbonaceous
materials that can be considered extremely small derivatives of graphene
oxide which may contain oxygenated functional groups [168]. The GQDs
have been considered a key element in biomedical and neuroscience
fields due to their ability to cross BBB [169]. In addition, GQDs have been
applied in the management of NDDs, since they present anti-amyloid
activity [170]. As for GT application, graphene-bound bio-
macromolecules can improve GQDs bioactivity, but they need additional
functionalization to interact electrostatically or covalently with genes. A
recent work from AHN and SONG [171] synthesized GQDs for the
transfection of mRNAs and plasmid deoxyribonucleic acids (pDNAs). In
this work, GQDs were functionalized with PEI and citric acid as pre-
cursors to give positive charges and then to form complexes with mRNA
and pDNAs. As result, transfection from GQDs complexes presented
better performance than Lipofectamine which is considered as a “gold
standard”.

In addition to GQDs, CQDs are considered an excellent substitute to
replace QDs for biological applications [172]. CQDs are a category of
carbon nanostructures with high resistance to photobleaching and can be
fine-tuned by size control [173]. Regarding gene delivery, the CQDs
present low toxicity, strong fluorescence emission, broad excitation
spectra and show superior capacity to condense with genes [174]. CQDs
can be easily associated with cationic polymers and liposomes to sup-
press the positive charge from nucleic acids which facilitates transfection
[175]. As an example, PARK et al. [176] developed a QD platform that
can be applied into cellular labeling, targeting and gene delivery. In this
work, transfection efficiency between QDs encapsulated with Lipofect-
amine and QDs conjugated with PEI was compared. Results showed that
PEI-complex had higher transfection efficiency and brightness than Lip-
ofectamine complexes, since PEI formed a hydrophobic inside pocket
where many QDs can equilibrate which allowed reversible interactions
with oxygen indicating phosphorescence dyes for ratiometric
photoluminescence.

Although IN are considered more stable than organic materials, IN
have also disadvantages as they might not be degraded or eliminated
[177]. Considering the brain as the GT target, IN shows toxicity, poor
drug release profile and non-biodegradability [178]. In some cases, IN
presented more severe neurotoxic effects, leading to seizures episodes
and astrogliosis due to their limited excretion [158]. Afterwards, for
biomedical applications, IN physical-chemical aspects as solubility, sta-
bility and toxicity must be considered [156]. These aspects can be
reached by proper surface modifications through chemical reactions as
free thiols, aldehydes, ketones, amines, carboxylates, hydroxyls, and
azides [179]. In addition, biocompatible polymers such as PEG can also
be used to modify IN surface to reduce uptake from RES organs and
achieve faster clearance. The chemical core can be adjusted by the
addition of other metal ions to enhance chemical stability against
pH-dependent degradation [180]. Even with all modifications, inorganic
nanoparticles are not superior to other non-vectors systems for treatment
of brain neuroinflammation.

5. Limitations and future directions

The population worldwide is susceptible to infections by emerging
and reemerging viral agents. Several viruses can directly or indirectly
impact normal brain function, which can cause significant impact on life
quality of patients. These neurological manifestations are frequent, and
some may endure for several weeks or months. In most cases, the factors
that lead to increased susceptibility of individuals to develop
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neurological complications following viral infections remain unknown.
Gene therapy (GT) comprises promising strategies to treat these condi-
tions, since they can modify or adjust the expression or function of a gene
in a specific tissue or cell type. Nevertheless, few studies are translated in
clinical applications, especially in the neurological field [63,181]. The
widespread use of GT is limited due to instability, limited specificity and
unfavorable biodistribution with poor cellular uptake of genetic drugs
[62,181].

Non-viral vectors have the potential to overcome the drawbacks of
genetic drugs and viral vectors due to their biocompatibility, easy and
flexible synthesis, tunable surface properties and safety profile [62,182,
183]. However, they must face many systemic obstacles from delivery to
the target tissue and further into their specific cellular site of action.
Whereas viruses have evolved to efficiently access the genome of
mammalian cells, most synthetic vectors are unable to effectively trans-
port their cargoes across the multiple existing biological barriers [184].
These extracellular and intracellular barriers primarily include systemic
factors, the BBB for CNS diseases, nonspecific cellular uptake, endosomal
escape and nuclear uptake [62,185]. Factors such as nanoparticle toxicity
and costs of production must also be considered.

The delivery of nonviral gene vehicles almost invariably involves
endocytosis [186]. Following endocytosis, the vacuoles with non-viral
vectors become accessible to early endosomes. The early endosomes
are fusing with late endosomes and further with lysosomes, where there
are many hydrolytic enzymes, which can rapidly degrade a broad range
of non-viral vectors and their attached genetic drugs [62]. Therefore,
endosome trapping has been identified to be one of the rate-limiting steps
for non-viral vector-based gene therapy, since theymust be able to escape
from the endosome into the cell cytoplasm to avoid degradation [62,
186].

Considering specifically the CNS delivery of non-viral vectors, the
primary condition is to cross the BBB. Due to the selectivity of the BBB,
brain-targeted nanotechnologies struggle to achieve significant distri-
bution, since BBB prevents most non-viral vectors from entering CNS
[187]. It has been shown that usually less than 1% of a
nanoparticle-formulated drug dose is found in the brain after systemic
injection [188]. To achieve therapeutic concentrations in the brain via
intravenous injection, nanomedicines must be administered at very high
doses [182]. Repeated administration combined with the intricate brain
organization that makes targeted treatment difficult, can lead to an im-
mune or cytotoxic response, increasing the risk of toxicity and side ef-
fects. Off-target accumulation is still a relevant obstacle to the use of
nanomedicines, making it essential to increase their brain perfusion and
neuronal targeting capacity, while avoiding the fast renal and reticulo-
endothelial clearances [62,181]. To enhance the rate of entry of non-viral
vectors into specific cells and prevent accumulation in other tissues,
many delivery systems incorporate ligands, including proteins, peptides,
glycosaminoglycans, which can specifically bind to receptors on targeted
cells to trigger endocytosis and vesicular trafficking processes [63].
Transferrin receptor, low-density lipoprotein receptor (LRP) and insulin
receptor (IR) and their ligands are some of the surface receptors with
potential to be used for brain-targeted delivery [181].

In conclusion, increasing evidence suggests that the use of nano-
systems carrying gene modifying agents comprise new avenues for
treatment of brain diseases. This is especially important concerning viral-
induced brain inflammation, which may require glia-targeted therapies.
As shown throughout this review, nanocarries can be used as efficient
delivery systems with increased specificity for certain biological systems
and tissue penetration. They also provide a more controlled delivery of
biologically active substances and increase their stability. The use of
nanosystems for GT delivery comprises an overall interesting strategy to
overcome the limitations and adverse effects of anti-inflammatory and
antiviral drugs. Also, the use of these materials for treatment or neuro-
inflammatory conditions is promising and studies testing the in vivo
effectiveness of these agents should be pursued.
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