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Abstract: Entropy is a key concept in the characterization of uncertainty for any given signal,
and its extensions such as Spectral Entropy and Permutation Entropy. They have been used to
measure the complexity of time series. However, these measures are subject to the discretization
employed to study the states of the system, and identifying the relationship between complexity
measures and the expected performance of the four selected forecasting methods that participate
in the M4 Competition. This relationship allows the decision, in advance, of which algorithm is
adequate. Therefore, in this paper, we found the relationships between entropy-based complexity
framework and the forecasting error of four selected methods (Smyl, Theta, ARIMA, and ETS).
Moreover, we present a framework extension based on the Emergence, Self-Organization,
and Complexity paradigm. The experimentation with both synthetic and M4 Competition time series
show that the feature space induced by complexities, visually constrains the forecasting method
performance to specific regions; where the logarithm of its metric error is poorer, the Complexity
based on the emergence and self-organization is maximal.

Keywords: classical forecasting methods; complexity; entropy; error measures; symbolic analysis;
M4 competition

1. Introduction

Presently, time series forecasting is applied to many areas such as weather, finance, ecology, health,
electrochemical reactions, computer networks, and so on [1]. Among the most popular and effective
methods stand the classical time series models such as the Simple Exponential Smoothing (SES) and the
Autoregressive Integrated Moving Average (ARIMA). Also, forecasting methods of machine learning
such as Neural Networks have gained popularity after the results of the Smyl winning method of
the M4 Competition, and the benchmark forecasting methods of Theta, ARIMA, and ETS [2]. In the
forecasting area, researchers agree that it is too difficult to identify a suitable forecasting method for
a particular time series beforehand, even knowing its specific statistical characteristics [3]. For instance,
time series (TS) complexity [3] is a widely debated measure, which it is supposed to quantify the
intricacy of the time series, allowing choice of the forecasting methods to be applied. Shannon’s entropy
has been used to measure the complexity of discrete systems [4]. Although the entropy formula was
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conceived in the thermodynamic area, the entropy concept has spread to different disciplines adapting
its meaning in regard to the applied area and making tools for many applications [5–7]. For example,
in [8] a package with functions to measure emergence, self-organization, and complexity applied
to discrete and continuous data is presented as a framework; the present study is based on them.
However, to the best of the authors’ knowledge, these formulae have not been applied to assess the
forecastability of time series. Furthermore, this framework is extended with other measures. We present
four complexity measures based on entropy and a methodology for determining the relationships
between these complexity measures and the forecasting error of the Smyl [9], Theta [10], ARIMA [11,12],
and ETS [13] methods; all of them were participants of the M4 Competition [14]. This study was made
for a dataset with some synthetic time series [15] and more than 20,000 time series taken from M4
Competition [16], which is a reference point used by many researchers. We obtain the prediction error
with the forecasting values of each one of the four selected methods, and we determine four complexity
measures based on the relationship between Entropy and Mean Absolute Scaled Error (MASE) error [17],
but for functionality we use the logarithm values of MASE error log(MASE). We present a complexity
log(MASE) analysis, and we apply a visualization method [18] for the time series of the dataset. Finally,
the experimentation shows that the permutation and 2-regimen complexities are the measures that identify
patterns of the distribution of TS on the two-dimensional space; also we found a relationship between the
permutation complexity and the log(MASE) values and finally we make a comparison between the four
forecasting methods reinforcing the known No-free lunch theorem.

This paper is organized as follows. Section 2 presents the materials used in this research; Section 3
describes the methods, parameters settings, methodology and the dataset used in the experimentation.
In Section 4, we provide the results of the experimentation. Finally, Section 5 presents the conclusion
for this work.

2. Materials

The complete dataset of the time series used in this paper is divided into two subsets: Synthetic
and M4 Competition. Each of these is described in the following subsections.

2.1. Synthetic Time Series

Three generating mechanisms were considered for the construction the of synthetic TS: (a) sine
waves; (b) logistic map; and (c) a time series tool, namely GRATIS [15]. It is worth noting that in
order to generate time series belonging to the same mechanism type, either the parameters of the
generating function are modified or noise is introduced at a certain specific Signal-to-Noise Ratio
(SNR). The synthetic TS considered are Sine Wave corrupted by uniform noise, Sine Wave corrupted by
Gaussian noise, 1-D logistic Map, and the GRATIS tool.

2.1.1. Sine Waves TS

A stationary and seasonal TS is generated using a sine wave of the form:

xt = α · sin(ωt), (1)

where xt is the observation at time t, α corresponds to the wave amplitude parameter, and ω to the
wave frequency. A family of time series is spawned from Equation (1) by corrupting the wave at
specific SNRs. In the case of the latter, the contaminated series is defined as

X = f (x) + k · ε,

where f (x) is the sine wave, k is an increasing constant, and ε ∈ P(X) is a shock which follows
a uniform or Gaussian distribution. In these cases, the SNR is determined by
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SNR =
Var( f (x))

Var(ε)
,

where larger values of SNR imply that it is easier to detect the signal, and smaller values otherwise.

2.1.2. Logistic Map TS

The logistic Map is a 1-dimensional chaotic dynamic system which is commonly employed as
benchmark to study tools and methods used to characterize chaotic dynamics [19–21]. The logistic
map function is defined as

xt+1 = r · xt(1− xt), (2)

where x0 is a random number within 0 < xt < 1, and r is a constant. In fact, this last parameter
is the one that defines the behavior of Equation (2). More precisely, when r < 1 the system always
collapses to zero, for 1 ≤ r ≤ 3 the system tends to a single value, for 3 < r < 3.6 the system is fixed to
period-doubling points, and from r ∼ 3.6 the system exhibits a chaotic behavior.

2.1.3. GRATIS TS

The last subset of time series was generated using the GRATIS tool [15] that is based on
Gaussian Mixture Autoregressive (MAR) models. These models contain multiple stationary or
non-stationary autoregressive components, non-linearity, non-Gaussianity, and heteroscedasticity. To
tune the parameters for MAR models, the GRATIS’ authors use a Genetic Algorithm when the distance
between the target feature vector and the feature vector is close to zero. This tool generates time series
with diverse parameters such as length, frequency, and behavior features.

2.2. M4 Competition TS

The complete set is composed of 100,000 real-life series divided into sets named “periods” (Yearly,
Quarterly, Monthly, Weekly, Daily, and Hourly) and subdivided into subsets or types (Demographics,
Finance, Industry, Macro, Micro, and Other). Our criterion for selecting time series was: (1) To choose
time series with a minimum of two hundred and 50 observations; (2) The frequency group should
have more than one set type. Consequently, TS from the Hourly group were not selected since it only
contains time series from the type Other. The complete dataset is shown in Table 1, which has two
final columns named size and percentage (%); the former refers to the number of time series selected
from each frequency group, and the latter is the correspondent percentage of selected time series
concerning that group. According to the last criterion, in our dataset, we consider only the subsets
Yearly, Quarterly, Monthly, Weekly, and Daily; the total number of the TS in our dataset is 22,610.

Table 1. M4 Competition time series.

Selected Series
Frequency Demographic Finance Industry Macro Micro Other Total

Size %

Yearly 1088 6519 3716 3903 6538 1236 23,000 56 0.24%
Quarterly 1858 5305 4637 5315 6020 865 24,000 256 1.07%
Monthly 5728 10,987 10,017 10,016 10,975 277 48,000 18,406 38.35%
Weekly 24 164 6 41 112 12 359 293 81.62%
Daily 10 1559 422 127 1476 633 4227 3599 85.14%
Hourly 0 0 0 0 0 414 414 0 0.00%
Total 8708 24,534 18,798 19,402 25,121 3437 100,000 22,610 22.61%

3. Methods

To analyze the relationship between the prediction errors of classical forecasting methods such
as ARIMA, we build a feature space [18] based on Shannon entropy (H) features that presumably can
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be used to identify those TS instances where ARIMA forecasting errors are expected to be higher or
lower, accordingly. These features are based on four entropy-based complexity measures, namely the
frequentist binning approach (Hdist) [22]; 2-Regimes (H2reg) [19] and Permutation (Hperm) entropy [23].
These three built upon the notions of symbolic dynamics, and the Spectral entropy (Hspct) [24] based
on the analysis of the spectrum of a time series. The main difference between these measures is the
discretization or symbolization followed to describe the states of dynamical systems, which has a deep
impact on the quantification of entropy [25]. For instance, consider a TS with hundreds of points coming
from a sine wave; with the frequentist binning approach, we will be studying a system whose probability
distribution follows an arc-sine distribution, whereas if we represent it by symbols that correspond to
1-period waves, we will be studying a system which follows a Dirac delta probability distribution.

On the other hand, Hdist has been used to study a dynamical system in terms of the rate of
Emergence (E) of new states or information, the rate of Self-organization (S) displayed as discernible
patterns, and the interplay between these two called Complexity (C), hereafter ESC for short [8].
In particular, systems with higher C concentrates its dynamics into a few highly probable states with
many less frequent states [8]. In this work, the ESC framework is extended to study the interplay
between E and S for Hspct, H2reg, and Hperm.

Therefore, first, the Shannon-based complexity measures and TS symbolization for each is
presented; second, the ESC framework is introduced along with the Complexity Feature Space; third,
the forecasting methods are briefly defined; finally, the proposed analysis methodology is detailed.

3.1. A Background on Entropies

Entropy is a term with many meanings, but in the information theory area it usually refers to
the average ratio of uncertainty a process produces, which is measured by the well-known discrete
Shannon Entropy equation [4,26].

H =
n

∑
i=1

piloga pi, (3)

where H stands for Shannon Entropy, n is the total number of TS observations, a is the logarithm base,
and pi is the probability for each symbol of the TS alphabet. It is worth noting that information may
refer to the capacity of a channel for transmitting messages, the consequence of a message, the semantic
meaning conveyed by it, and so on, all regardless of its specific meaning [27]. Entropy-based measures
are the first option when the task at hand is the quantification of the complexity of a time series [28].
However, what does complexity stand for?

Complexity science is a multidisciplinary field in charge of studying dynamical systems composed
of several parts, whose behavior is nonlinear, and that cannot be studied neither by the laws of
linear thermodynamics nor by modelling parts in isolation [29,30]. A key aspect of these systems is
that individual parts’ interactions will heavily determine the future states of the overall system,
and shall induce spatial, functional, or temporal structures all alone (i.e., self-organizing) [27].
Similarly, these systems are considered open since they exchange matter, energy, and information
with their environments [27,30]. These are observed in a multitude of disciplines such as biology,
ecology, economy, linguistics, and so on; it is common to study their dynamical behavior through the
observation of one or more of its variables in the form of TS [31].

There are several measures of complexity, but at its core remains the notion of information
altogether to some form of Shannon entropy formulation [8]. These two notions spawn a myriad of
complexity measures; among them stand out Hperm, the Kolmogorov–Sinai (KS) complexity, Hspct,
H2reg, Transfer entropy, LMC complexity, ε-complexity, ESC, and so on [8,27,31–33]. The diversity of
such measurements is given by the inexorable subjectivity of what shall be considered complex, which
is translated into a specific quantization of a TS regarding an observer point of view [25,27].

In this work, quantization stands for the procedure to estimate the discrete probability
distribution from a TS; in other words, how we describe the states of the system. In the classical
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H, continuous measurements are typically transformed into discrete states by binning measurements
into non-overlapping ranges. To emphasize this form of entropy estimation per se, it will be referred as
Hdist and will reserve H for the concept. However, there are other ways in which we can discretize
a time series into a probability distribution, which needs to be hand in hand with the properties of
the time series that are analyzed. In Figure 1, a cartoon of the four symbolizations used in this work
is shown.

Figure 1. Four possible characterizations of the states of a dynamical system. On (A) the frequentist
binning approach; on (B) the spectral probability density of the TS is estimated by the classical Fourier
transform of the Auto Correlation Function (ACF); on (C,D) symbolic transformations define the
alphabet by ordinal rank patterns and sequences of the first derivative sign, respectively.

3.1.1. Spectral Entropy

Power Spectral Density (PSD) estimation is commonly used in signal-processing literature.
By transforming a given time series xt from the time domain to the frequency domain using the discrete
Fourier transform, the latter provides information about the power of each frequency component. These
frequencies describe a spectral probability distribution which can be used to assess the uncertainty
about a future prediction, namely spectral entropy Hspct (a cartoon of this process is shown in Figure 1B).
To calculate this from a TS (assumed to be stationary), we first require its Autocovariance Function
(ACVF). This is defined as

γx(k) = E[(xt − µx)(xt−k − µx)], k ∈ Z, (4)

where µx is the TS mean value and k corresponds to the lag. With the ACVF, the spectrum of the TS is
obtained through the Fourier transform such as

Sx(λ) =
1

2π

∞

∑
j=−∞

γx(j)eijλ, λ ∈ [−π, π], (5)
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where i =
√
−1 and Sx : [−π, π] → R+. To understand the implications of Equation (5) consider

a white noise TS ω. In such case, γω(k) = 0 for k 6= 0, thus, the spectrum is constant for all
λ ∈ [−π, π] [24]. Then, if we define σ2

x =
∫ π
−π Sx(λ) for k = 0, the spectral density of xt is

fx(λ) =
Sx(λ)

σ2
x

=
1

2π

∞

∑
j=−∞

ρx(j)eijλ, (6)

where ρ(k) = γ(k)
γ(0) corresponds to the Autocorrelation Function (ACF). The fx(λ) can be used as

a probability density function of a random variable such that it is ascribed to the unit circle. For instance,
in the case of ω, fx(ω) = 1

2π , which corresponds to the spectral density of the uniform distribution [24].
Using Equation (6), the spectral entropy Hspct is defined as

Hspct =
∫ π

−π
fx(λ)loga fx(λ)dλ. (7)

If the value obtained by Equation (7) is relatively small, xt is more forecastable since it contains
more signal than noise, whereas a larger value stands otherwise [18]. The previous analysis can be
simplified by normalizing Hspct within 0 ≤ Hspct ≤ 1 by dividing it by the uniform distribution entropy
i.e., loga(2π) (which has the maximum entropy for a finite support). In this sense, the uncertainty
about a required prediction xt+h is given by the characteristics of the process itself [24].

3.1.2. Permutation Entropy

Permutation Entropy (Hperm) was conceived by Bandt and Pompe as an entropy-based measure
for measuring the complexity of a TS [23]. Hperm is based on the concepts of H and Symbolic Dynamics
(SD). In contrast to Hdist and Hspct, Hperm does not ignore temporal information.

The SD carried to obtain Hperm consists of transforming TS data into a sequence of discrete
symbols, i.e., length-L Ordinal Patterns (OP). These are produced by encoding consecutive observations
contained in a sliding window of size L, L ≥ 2, into permutations determined by observations rank
order in each window [20,34]. However, to determine the L-window, a Phase Space Reconstruction
(PSR) needs to be carried out [28,35]. Such reconstruction employs two parameters—the embedding
dimension de and the time delay τ. Formally, given a TS of the form X = x1, x2, . . . , xt|xi ∈ R, a point
mapped to the reconstructed de-dimensional space is of the form ~xj = {xt, xt−τ , . . . , x(de−1)τ}|~xj ∈ XR,
thus, L = (de − 1)τ.

Once TS is mapped into this space, portrait permutations are obtained. A permutation πj ∈ Π
is given by the permutation of indices (from 0 to de − 1), which puts the de values of a given ~xj into
ascending sorted order. Notice that there are de! different permutations. Afterwards, the Permutation
Distribution (PD), also known as codebook, is calculated by counting the relative frequency of each
symbol. Analyzing the behavior of a TS by its PD has several advantages: it is invariant to monotonic
transformations of the underlying TS, requires low computational effort, is robust to noise, and does
not require knowledge of the data range beforehand [20,35].

Once the PD is estimated, Hperm is obtained such that

Hperm = − ∑
πj∈Π

πjlogaπj, (8)

where Π is the set of all different de permutations. A cartoon of this process is shown in Figure 1C.
For convenience, Hperm can be normalized by dividing it by loga(de!) to constrain it to

0 ≤ Hperm ≤ 1. In this sense, a lower value of the normalized Hperm corresponds to more regular
and deterministic process, whereas a value closer to 1 is observed in more random and noisier TS.
Notice that Hperm is closely related to the Kolmogorov–Sinani (KS) entropy and equal to it when the
TS is stationary. However, in contrast to KS entropy, Hperm it is computationally feasible to calculate
Hperm for long L-windows [21,28,34].



Entropy 2020, 22, 89 7 of 18

3.1.3. 2-Regimes Entropy

Under SD, a regime stands for a qualitative behavior defined as a growth model or dynamical rule
with its own state space that allows the existence of multiple attractors in equilibrium or not, at the
same time [19]. This symbolization (transforming TS values into symbols) allows study, for instance,
of structural changes in a TS such as sudden changes in trend, such as changes in the governing
rules of a dynamical system (e.g., switching between trends). An adequate symbolization allows
the highlighting of temporal patterns, to improve the signal-to-noise ratio, improve computation
efficacy and efficiency, to mention a few [36]. To understand this, consider a time series of the form
X = x1, x2, . . . , xt|xi ∈ R. Typically, the symbolization of a TS is carried out by dividing R into
q ≥ 1 | q ∈ {1, 2, . . .} non-overlapping bins. Such bins represent the states of the system; hence,
each xi is mapped to its corresponding partition, mapping from a sequence of points X into a sequence
of symbols Z = z1, z2, . . . , zt. In the simplest case when q = 2, the original TS is mapped into
a sequence of two symbols (i.e., 0 or 1) using a threshold that partitions R into two intervals, namely
2-regimes symbolization. This representation is useful to study trends of growth (expansion) or fall
(contraction) in a TS, for instance the bear and bull regimes in an economic market. In this work,
2-regime symbolization is carried out by employing the sign of the first difference such that

zt =

{
1 1 · sgn(xt − xt−1) > 0,

0 otherwise,
(9)

where sgn stands for the sign function. An example of this codification is presented in Table 2,
where the first row displays the original observations, and the second the corresponding 2-regimes
codification. Notice that due to Equation (9), the length of the codified TS is n-1.

Table 2. Example of a converted time series for codifying TS values.

49 52 53 61 71 67 72 52 48 . . . 54

– 1 1 1 1 0 1 0 0 . . . 1

Once the TS is symbolized into Z, Equation (3) can be employed to calculate a two-regime entropy
(H2reg). It is worth mentioning that H2reg can be considered to be a special case of Hperm, i.e., during
the symbolization step of a TS, a permutation with de! = 2 will produce equivalent symbols to those
obtained by Equation (9). However, by considering sequences of contiguous symbolized observations
zt, zt+1, . . . , zt+d, an alphabet of size 2d can be explored, allowing study of richer 2-regimes alphabets.
In this work, the alphabet size is set to 2d = 256, d = 8. Finally, notice that H2reg can be normalized
by loga(2d) to constrain it within 0 ≤ H2reg ≤ 1. In this sense, a lower value is obtained when there is
a predominant regime (e.g., trend or drift); a value closer to one stands for a more random and noisier TS.

3.2. ESC and the Complexity Feature Space

Regarding the forecastability (i.e., determining a system future states) of a TS Ω(xt),
some complexity measures such as Hspct, defines it as the complement of the average uncertainty
of the process (given by its spectral density) such that Ω(xt) = 1 − H∗, where H∗ corresponds
to the normalized version of Hspct [24]. On the other hand, others indicate that the forecastability
shall be in terms of existing and new patterns. Thus, complexity may be defined as the relationship
between stability and instability [30], Information and Disequilibrium [32], redundancy and new
information [21], or Emergence and Self-organization [29]. In particular, it has been established
that among the basic properties of complex systems stand the emergence, self-organization,
and complexity [27]. Therefore, here we decided to extend the ESC paradigm using different entropy
functions, namely Hspct, Hperm, and H2reg. In this sense, it is possible to measure (1) the average
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uncertainty given by a probability distribution considering multiple quantizations, (2) estimate their
compliments associated with the forecastability, and (3) analyze the interplay between these two.

Formally, the Emergence (E), Self-organization (S), and Complexity (C) for a TS, irrespectively of
the entropy of choice, is given by the following

E = −K · Hp(xt) (10)

S = 1− E, (11)

C = 4 · E · S, (12)

where Hp(xt) is the normalized version of Hdist, Hspct, Hperm, or H2reg, such that 0 ≤ E, S, C ≤ 1.
This normalization is carried by the constant K = 1

loga(Ub)
, which corresponds to the entropy of uniform

distribution with an alphabet of size b. It is worth mentioning that when required, E, S, and C for
a particular entropy mentioned above will be referred to with the entropy ID underscored. For instance,
if we refer to (E, S, C) tuple for Hspct, these may be referred as (Espct, Sspct, Cspct), respectively.

The feature space conformed by these 12 measures is called the Complexity Feature Space
(CFS). Hence, any TS is now mapped to a 12-D space and given the aforementioned definitions of
complexity, and is expected that in the CFS it will be grouped into a specific region in accordance with its
forecastability. Notice that such a region will depend, in part, of the model used to forecast [21] as well
as the forecasting horizon. However, to obtain any information from the CFS regarding the relationship
between forecastability and complexity, it is a necessary tool for its analysis. For that matter, visual
tools based on a dimensional reduction technique such as Principal Components Analysis (PCA) can be
employed [18]. In this sense, any TS from the CFS are now displayed as 2-D points whose dimensions
correspond to two principal component axes. Although PCA leads to a loss of information due to its
linear nature, the topological distribution of points is mostly preserved [18]. Finally, this feature space can
be improved by considering other entropy-based complexity measures such as Transfer Entropy [37] or
Tsallis Entropy [38] or different characteristics such as the trend, frequency, or seasonality [2,18,39,40].

3.3. Forecasting Methods: Smyl, Theta, ARIMA and ETS

On M4 Competition, 61 forecasting methods participated, the sharing dataset contains in addition
the forecast values for the better 25 methods. We select four of them, considering the Smyl winning
method and three classical benchmark methods; each of them is described in the next paragraph,
and ordered according to the final position in the competition.

• Smyl: This is a hybrid method that combines exponential smoothing (ES) with recurrent neural
network (RNN); this method is called ES-RNN [9] and is the winning method for M4 Competition.

• Theta: was one of winning methods on M3, the previous competition, and in the past was
indicated to be a variant of the classical exponential smoothing method [10].

• ARIMA (Autoregressive Integrated Moving Average): It is one of the most widely used by the
Box & Jenkings methodology [41], mainly applied for nonlinear patterns in TS.

• ETS (exponential smoothing state space [13]): This method is especially used in forecasting for TS
that presents trends and seasonality.

The ARIMA method is used to forecast all complete datasets, including synthetic and M4
Competition TS, and the other three methods are used only for M4 Competition TS.

3.4. Analyzing the Forecasting Performance in the CFS

A global view of the executed steps to build the CFS for analyzing the relationship between TS
forecastability and complexities is presented in Figure 2.

The first step consists of gathering TS. In our case, we tested the CFS using two types of data
sets: synthetic, and M4 Competition TS. Afterward, parameters of TS complexity measures, such the
alphabet size, is determined. The third step consists of the calculation of the ESC for every type of
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Entropy function. Recall that these produce a total of 12 measures per TS. The latter is repeated for
each TS that belongs to the set (either Synthetic or selected M4 Competition TS). The fourth step is to
make the forecast for each TS in accordance with its corresponding forecasting horizon, and measure
its error using a performance measure. In the fifth step the ESC measures of the dataset along with
PCA are used to build the CFS to visually display TS in 2-D. Finally, in the last step the performance
metric is displayed in the 2-D CFS to assess its relationship with the complexity measures. To enhance
this step, the relationship between forecastability and complexity is assessed by plotting quartiles of
the performance metric.

Figure 2. Proposed method.

3.4.1. Parameters Settings

So far, we have neglected some details regarding the parameters to build the CFS to analyze
forecasting performance. First, we detail the parameters used to generate synthetic TS data.
Then, entropy-based parameters and the performance metric are presented.

All synthetic TS have 104 observations, all sine waves have an amplitude of α = 1,
and frequency of ω = 2. SNRs for both TS corrupted by uniform and Gaussian noise are SNR =

10−3, 10−2, 10−1, 10−0.9, 10−0.5, 10−0.1, 1, 10. In particular, for the Gaussian noise, we used a standard
deviation of σ2 = 1. Thus, for each sine wave, we generated 8 TS, giving a total of 16 sine waves.
Regarding the logistic map, we employed an r ∈ [3.1, 4] such that ∆r = 0.005 with a starting point of
x0 = 0.1 which produces 181 TS. The last subset of synthetic TS is 16 TS generated with the tool GRATIS
described in a previous section. We choose parameters like length equal to 600, spectral entropy between
0.25 and 1.00 rank, and Monthly frequency. In total, the Synthetic dataset is composed of 215 TS. On the
other hand, we selected a subset of the M4 Competition data composed of 22,610 TS. Regarding the
forecasting horizon, for the M4 Competition TS, the dataset contains for each TS a training and test
observation part, and a defined horizon as well, thus, the Yearly period has an horizon of 6, Quarterly
8, Monthly 18, Weekly 13, and Daily 14, considering that the synthetic TS generated corresponds to
Monthly period, following the same scheme of M4 Competition, the horizon selected was of 18.

Regarding the entropy-based complexities, there are some parameters to be established
beforehand. In the case of Hspct we employed the implementation of the package forecast [42], which is
an already normalized version of entropy i.e., 0 ≤ Hspct ≤ 1. In contrast, Hdist, H2reg, and Hperm require
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selection of an alphabet size. It is worth mentioning that the selection of the alphabet length was rather
arbitrary, and perhaps it is a parameter for tuning or taking advantage. In the case of Hdist and H2reg
we used an alphabet size of d = 8; thus, the alphabet size was 2d = 256. The case of Hperm is special,
since it will depend on the time series and the reconstructed phase space. For such purpose, the Mutual
Information method and the Approximate Nearest Neighbor method are employed to estimate τ

and de, respectively, in accordance with Cao’s practical method [43]. In particular, for the logistic
map τ = 2, de = 8 in accordance to [28], in this case the alphabet size is 8! = 40, 320 permutations
(however only those P(πj) > 0 are considered). To estimate the PD required by Hperm the package pdc
is employed [35]. The H2reg and ESC measures from the entropy-based complexities were calculated
using a self-implementation in R based on [8]. To estimate the error of forecasting methods, we use
forecast values of 4 methods provided in M4comp2018 package. The MASE is calculated using the
forecast package. Furthermore, during the experimentation we noticed a logarithm relationship between
the MASE and some ESC values, thus, MASE values are scaled log10 to highlight this relationship.

4. Results

To understand the relationship between the CFS and prediction performance for a given model,
experiments were carried out using two different datasets: synthetic and M4 TS. For the first case,
the purpose is to understand the relationship between ESC complexities against data whose underlying
mechanisms can be controlled. In the second case, the value of the CFS in a real-world setting is
explored to obtain a better idea of its potential in identifying regions (perhaps groups) of forecastability.

4.1. Complexities and Forecastability of the Synthetic TS

This section is divided into two subsections that are described below. The forecastability is
analyzed only with the ARIMA forecasting method, which was executed from the forecast package.
However, its parameters p, r, and q are tuned by following the procedure in [44]. This method is
executed with ARIMA function with different combinations of p ∈ [0, 10], d ∈ [1, 3], q ∈ [0, 10],
and selecting those that obtained the smallest Akaike Information Criterion (AIC) value, all of these
trying to obtain the better forecast for each TS that belongs to the subset of synthetic TS.

4.1.1. The Logistic Map

To start the discussion of synthetic TS results, the logistic map is analyzed. This is a common
benchmark used for the elucidation of the relationship between entropy-based complexities and
forecastability [20,21,28]. Hence, the well-known Feigenbaum diagram along with its corresponding
ESC measurements (from top to bottom) obtained for the logistic map are shown in Figure 3. Recall that
the Feigenbaum diagram is a visual summary of the values (xt) visited by a system as a function of
a bifurcation parameter. Thus, in this case, as the parameter r grows the logistic map transitions from
permanent oscillations between fixed-point pairs to the chaotic regime. Colors in the Feigenbaum
diagram correspond to the log(MASE) obtained by an ARIMA model: lower errors are shown in
dark blue whereas those with higher values are displayed in bright yellow. Hence, as the logistic map
dynamics becomes more chaotic, the TS become less forecastable by the ARIMA model.

For the ESC plots, colors correspond to different entropy-based complexities: red for Hdist, green
for Hspct, blue for Hperm, and purple for H2reg. Observe that all entropy-based complexities are constant
when oscillating between two values (r ≤ 3.44), except for Hperm. In this case, ESC values using
a binary alphabet shall be (E = 1, S = 0, C = 0) for Hdist, H2reg, and Hperm, however, by forcing
an arbitrary large alphabet size, the self-organization is revealed. In fact, for Hperm and r ≤ 3.44,
(E = 0, S = 1, C = 0) for most cases consequence of a Dirac delta PD, with the exception of some spikes
in which new ordinal patterns emerge. Observe that several of these spikes have worse log(MASE)
than those obtained by contiguous r values. Hdist grows immediately after r = 3.44 due to doubling of
the limit cycle, but remains steady until r = 3.54, this contrasts to H2reg which does not grow, and Hspct

and Hperm which increases slower. In fact, Hdist seems to be a more sensitive measure to the alphabet
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size and not necessarily TS intricacy, since its E becomes very high between [3.54, 3.63] in comparison
to the rest of the complexities. Eventually, Hspct and Hdist concur in that the emergence of new states
(E ∼ 1) (or complementary, the reduction in self-organization S ∼ 0) is similar to a random process.
Conversely, H2reg and Hperm increase slower as r grows, although the former does not change until
r ∼ 3.68 indicating that regimes displayed by the logistic map for r ≤ 3.68 are constant.

Figure 3. The Logistic Map and its ESC (Emergence, Self-Organization, and Complexity). The top plot
shows the bifurcation diagram, whereas below the corresponding ESC for different entropy measures
is showed.

The interplay between new states and the self-organization of the system, displayed by C is
very interesting. For Hdist, when the logistic map has 2 fixed points (r ≤ 3.44) a C = 0.5 is obtained,
when the period doubles it increases to C ∼ 0.8, and it shows maximal complexity (C ∼ 1) at points between
double-periods and chaotic regimes (at the edge of chaos). Hence, for obtaining a lower log(MASE) it is
necessary that 0.5 ≤ Cdist ≤ 1, S ≥ 0.5, and E ≤ 0.5. For Hspct a similar relationship is observed in the
sense that high C values are associated with lower log(MASE) due to E ≤ 0.5 and S ≥ 0.5 proportions.
Notice that this C separates ARIMA performance into two performance regions, with the worst log(MASE)
corresponding to complexities below 0.6, dropping even to C ∼ 0 as the logistic map becomes more
chaotic. In contrast, C for Hperm and H2reg have larger complexity values for worse forecasting performance;
C2reg separates ARIMA performance into two performance regions similar to Cspct.

4.1.2. The CFS of All Synthetic Data

All the synthetic data were mapped as 2D point in the CFS which is displayed in Figure 4.
In Figure 4A ESC variables are projected into the CFS plane to display its loadings. Notice that

the first two Principal Components (PCs) explain a large amount of the variance in the data (PC1 ∼ 73%,
PC2 ∼ 10.6%), due to most of the series in the data set belonging to the logistic map. Cperm, Edist, Eperm,
and E2reg have positive loadings on the PC1, whereas Sdist, Sperm, and S2reg have negative loadings.
Espct and Sspct are parallel to its Hdist counterpart, but with lower loadings on the PC1. The rest of the
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complexities have lower loadings in these two PCs. Convex hulls are used to denote each TS source;
however, note that these are constrained to specific regions in the CFS. Hulls corresponding to the
corrupted sine waves mostly overlap each other, and share a large portion with GRATIS data.

Figure 4. The Logistic Map and its ESC. The top plot shows the bifurcation diagram, whereas below
the corresponding ESC for different entropy measures its showed. (A) ESC variables are projected into
the Complexity Feature Space (CFS) plane to display its loadings; (B) Two dimension Time Series are
colored in accordance to its log(MASE); (C) K-means clustering algorithm results using four centroids.

In Figure 4B 2D TS are colored in accordance to its log(MASE). Observe that a clockwise
relationship between forecasting performance is displayed: ARIMA best performance lies in the upper
left quadrant and its worst results on the lower right. It is interesting that the worst log(MASE)
correspond to noisy time series, instead of the chaotic source, and that they are conveniently confined
to specific regions in the CFS. By convenient we meant that a clustering algorithm may be used to
cluster TS characterized by the ESC variables to obtain performance clusters, employed to determine
if a forecasting method is useful or not for a given TS. Encouraged by the latter, the results, obtained
by the popular K-means clustering algorithm using four centroids, are shown in Figure 4C. Notice that
the resulting clusters correspond to the performance regions mentioned before.

4.2. Complexities and Forecastability of the M4 Competition TS

Before we delved into the analysis of M4 Competition results, we display the relationships
of different ESC measures of the M4 set in the CFS. In Figure 5 all TS (Yearly, Quarterly, Monthly,
Weekly and Daily) are displayed as 2-D points; we focus on the C measure for each entropy measure
(Figure 5a 2-regimen, Figure 5b distribution, Figure 5c permutation, and Figure 5d spectral); colors
range from brighter (corresponding to higher values C ∼ 1) to darker (corresponding to lower values
C ∼ 0). Observe that both C2reg and Cperm achieves the line gradient behavior with high complexity
values as the PC1 becomes more negative, and lower complexity values as it becomes more positive.
Interestingly, regarding PC2, they are on opposite sides. On the other side, Cdist visual gradient is
perceived more on the y-axis (lower values are positive and higher values are negative), in contrast to
the PC1 where no clear relationship between high and low C values is observed. Similarly, Cspct shows
high values over most of the two PCs plane. However, for both Cdist and Cspct this behavior can be
product of the reduction of dimensionality by the linear method.

These intuitions are corroborated by the loadings of these variables on the four most important
PCs, which are presented in Table 3. Notice that the PC1 and PC2 are mainly represented by Permutation
and 2-regimen complexities. On the other hand, for PC3 the most significant variable is Cdist which has
a negative loading, whereas for PC4, the most significant variable is Cspct. In particular, the C part of the
ESC measures will be used for the analysis in Section 4.3. Table 4 shows results for the explained variance
proportion corresponding to each principal component. Observe that the first two PCs account for most
of the variance (≈77%) in data, and with only 4 PCs we account for the 100% of the variance.
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In Figure 6a selected M4 TS are shown in the CFS color-coded by the period that corresponds to
its frequency. Observe that Daily and Monthly TS are readily identifiable in the 2d projection, while the
former is restrained to a specific region of the CFS, and the latter is spread across the CFS. Weekly TS
are constrained to the middle section of the CFS, while Yearly and Quarterly TS are barely noticeable.
On the other hand, in Figure 6b M4 TS are shown colored in accordance to the winning method, where
6838 points correspond to ARIMA, 6384 correspond to the SMYL, 5064 to the ETS, and 4324 to the
Theta. It is worth mentioning that even when ARIMA wins in more TS than the Smyl algorithm, error
magnitudes of the former are larger in comparison to the latter. Moreover, there are no specific regions
in which any of the tested methods obtain better performance than the rest, which is consistent with
the No-Free Lunch theorem.

(a) 2-regimen (b) Distribution

(c) Permutation (d) Spectral

Figure 5. Four complexity measures and the Principal Components Analysis (PCA) of 12 features (ESC).

Table 3. Principal Components Analysis (PCA) results.

PC1 PC2 PC3 PC4

C.2reg −0.6768 −0.5947 0.4336 0.0142
C.dist −0.2003 −0.4150 −0.8776 −0.1323
C.perm −0.7057 0.6777 −0.1757 0.1086
C.spct −0.0607 0.1219 0.1047 −0.9851

Table 4. Proportion of variance for the principal components.

PC1 PC2 PC3 PC4

Standard deviation 0.2923 0.1978 0.1592 0.1052
Proportion of Variance 0.5308 0.2431 0.1574 0.0687
Cumulative Proportion 0.5308 0.7739 0.9313 1.0000
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(a) (b)

Figure 6. Analysis of TS regarding its Period frame and Winning method by TS. (a) Selected M4 Time
Series are shown in the Complexity Feature Space (CFS), and each one is colored according to the
period of its frequency; (b) M4 Time Series are colored according to the winning method.

Continuing with the experiments on M4 dataset, one of our main interests is to determine the
forecastability of the M4 Competition through the complexity measures of TS. Therefore, we consider
four methods of M4-Competitions in order to establish whether there exists or not a relationship
between the MASE error (log(MASE) to effects of functionality) by forecasting method (Smyl, Theta,
ARIMA, and ETS). The first activity was to divide the complete dataset into four quartiles, in Figure 7,
with each gray point representing one TS that belongs to the complete dataset of M4 Competition,
and the dark green point representing the TS whose (log(MASE) value is found of the first quartile;
specifically, in Figure 7a, the (log(MASE) values corresponding to the Smyl forecasting method,
the Figure 7b, the (log(MASE) values corresponding to the Theta forecasting method, and so on,
this figure shows that the TS with low log(MASE) value are concentrated in the negatives values of
the second principal component and has a high value for the first principal component, according to
Figure 6a; this kind belongs mainly to the Monthly period.

(a) Smyl Method (b) Theta Method

(c) ARIMA Method (d) ETS Method

Figure 7. Relationship between log(MASE) and Complexity measures of the first quartile.
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In the same way, Figure 8 represents the TS that integrates the four quartiles according to the
log(MASE) values, where the purple point corresponds to the TS that belongs to this quartile. Making
a comparison between Figure 8a–d it is noted that the log(MASE) values for each one of forecast
methods is closer between them, and in terms of distribution area for these TS, we determine that
when the complexity measures are higher, the log(MASE) value is higher too; moreover, compared
to the distribution of TS by periods (Yearly, Quarterly, Monthly, Weekly and Daily), the major part of
Daily TS belongs to this quartile.

(a) Smyl Method (b) Theta Method

(c) ARIMA Method (d) ETS Method

Figure 8. Relationship between log(MASE) and Complexity measures of the fourth quartile.

4.3. Regression Results

After analyzing the TS applying Principal Component Analysis, we used the Principal
Components Regression method (PCR) to adjust a model of linear regression by least squares using
the four components generated on a previous subsection. For this test, we select the TS by period
and divide them in a subset of training and another subset of test with 80% and 20%, respectively.
The estimated error of prediction was calculated with the Mean Square Error (MSE), and the results
are presented in Table 5, the best prediction values were obtained in the Quarterly and Weekly periods,
and the high prediction error was obtained in the Yearly period; it is important to remember that the
subset of Yearly period is composed only of 56 TS.

Table 5. Mean Square Error of prediction with a linear regression model.

Yearly Quarterly Monthly Weekly Daily

MSE 115.0187 6.8431 21.1561 4.3047 56.2699
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5. Conclusions

In this work, we proposed four possible characterizations of the state of a dynamic system based
on Shannon entropy: a frequentist binning approach (distribution), the spectral probability density of
the TS (spectral), and symbolic transformations (permutation and 2-regimes) defining the alphabet
by ordinal rank patterns, and sequences of the first derivative sign. These characterizations are the
measures of complexity, and they are bounded between zero (i.e., minimal Entropy/Complexity) and
one (i.e., maximal Entropy/Complexity). One important feature for these measures is that Entropy is
maximal when TS states are equiprobable. In contrast, Complexity is maximal when the system tends to
high Self-Organization or high Emergence (i.e., discernible patterns with some noise or high noise with
some discernible patterns). From those measures, we determined the principal components, and through
its loadings, we found that Cperm and C2reg are those measures that represent patterns that identify TS
groups with similar features. Also, by plotting the TS by its log(MASE) in different quartiles, we observed
that the TS with low log(MASE) are concentrating along with the first principal component. Moreover,
comparing the four forecasting methods, the behavior is very similar between them; it is important to
emphasize that for every TS, the log(MASE) values displayed in this space are very close among each
other. Thus, these plots only corroborate the supposition that the winning method is the best for the
quantity of TS where the winning is individually. Another important result is that we found that from the
four forecasting methods identified as the winner of each TS dispersed over the complete TS, we see that
the two principal components are consistent with the No-free lunch theorem. Finally, we determine that
the TS with complexity measures closer to zero correspond to a low log(MASE) error, whereas when
complexities measures are high, the log(MASE) tends to be high.
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