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Abstract

Interpretation of genetic association results is difficult because signals often lack biological context. To generate hypotheses
of the functional genetic etiology of complex cardiometabolic traits, we estimated the genetically determined component of
gene expression from common variants using PrediXcan (1) and determined genes with differential predicted expression by
trait. PrediXcan imputes tissue-specific expression levels from genetic variation using variant-level effect on gene
expression in transcriptome data. To explore the value of imputed genetically regulated gene expression (GReX) models
across different ancestral populations, we evaluated imputed expression levels for predictive accuracy genome-wide in RNA
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sequence data in samples drawn from European-ancestry and African-ancestry populations and identified substantial
predictive power using European-derived models in a non-European target population. We then tested the association of
GReX on 15 cardiometabolic traits including blood lipid levels, body mass index, height, blood pressure, fasting glucose and
insulin, RR interval, fibrinogen level, factor VII level and white blood cell and platelet counts in 15 755 individuals across
three ancestry groups, resulting in 20 novel gene-phenotype associations reaching experiment-wide significance across
ancestries. In addition, we identified 18 significant novel gene-phenotype associations in our ancestry-specific analyses.
Top associations were assessed for additional support via query of S-PrediXcan (2) results derived from publicly available
genome-wide association studies summary data. Collectively, these findings illustrate the utility of transcriptome-based
imputation models for discovery of cardiometabolic effect genes in a diverse dataset.

Introduction

Cardiometabolic traits are highly heritable, with heritability
estimates ranging from ∼0.3 to 0.8 (3–5). Through genome-
wide association studies (GWAS) and exome-chip based
association studies, genetic researchers have identified more
than a thousand common and low-frequency variants con-
tributing to the risk of cardiometabolic traits to date, yet
only a small fraction of the heritability of these traits [e.g.
27% for height on the high end (6)], has been explained.
Furthermore, the molecular mechanisms through which
identified cardiometabolic variants confer risk are largely
unknown. Some relevant molecular pathways have been
identified via gene set enrichment and gene ontology analyses,
often using the nearest (in linear distance) genes (6–11);
however, signals often occur far from a protein coding region or
functional element in the genome leading to weak assumptions
about the relevant biology. More recently, interrogations of low-
frequency coding variation via exome chip analysis identified
a handful of novel loci, but minimal additional insight into the
potential functionality of previously known common loci was
gained from these findings (6,10).

Regulation of gene expression is influenced by many factors
including tissue or cell type, developmental or life stage,
environmental exposures, and genetic factors (12–16) such as
promoter and enhancer sequence variation (17). Expression
levels of certain genes may be a predictor of future disease or
a biomarker of current disease (18,19), and many noncoding
variants are associated with RNA abundance [i.e. expression
quantitative trait loci (eQTLs)] and multiple eQTLs may jointly
genetically regulate expression of a particular gene. Recent
studies suggest that top hits in many GWAS for complex
traits are enriched for eQTLs, allowing for interpretation of
GWAS signals in the context of their role in gene expression
regulation (20–23). By aggregating variant effects at the gene
level, by design, results of genetically regulated gene expression
(GReX)-based analyses are directly interpretable within a
functional biological framework and also benefit from reduced
multiple testing correction. As in traditional genome-wide
association studies, GReX-based analyses are hypothesis
generating rather than prescriptive, and are also susceptible to
synthetic associations due to co-regulation of genes. However,
in some instances distinct expression regulation at neighboring
genes can be leveraged to target putatively functional genes in
disease etiology, generating testable hypotheses of causality.
Further, GReX-based genome-wide association tests may
avoid some of the pitfalls of measured gene expression at a
single time point, because genetically controlled traits often
represent life-long influences, without the environmental,
batch and temporal effects captured by measured gene
expression (24).

Methodologically, two approaches to GReX estimation
have been proposed: elastic net regression implemented
in PrediXcan (1), and Bayesian Sparse Linear Mixed Mod-
els (BSLMM) implemented in TWAS, a transcriptome-wide
association study approach (25). In PrediXcan, GReX panels
are built with elastic net regression using cross-validation
to prevent model overfitting (1); elastic net regression is
an excellent variable selection method for ‘wide’ datasets
with many predictors/features (26) and a sparse architecture,
where a limited number of features have relatively large
effect sizes. The TWAS-implemented BSLMM approach for
GReX estimation assumes a mixture of both sparse and broad
polygenic effects (25)—allowing for many small effect sizes
distributed across many predictors. Comparisons of these two
approaches indicate that on the tissue level, gene expression
traits appear to be driven by a set of sparse, large effect variants
(27). Additional analyses also illustrate that interactions among
eQTL variants from lymphoblastoid cell lines likely do not
influence gene expression traits to any strong degree (28),
though this hypothesis remains to be tested in primary tissues.
The expression imputation models we employ in PrediXcan were
created by jointly estimating the effects of genomic variants
on transcriptome data in large datasets such as the Genotype-
Tissue Expression project (GTEx v6p) (29,30) and Depression
Genes and Networks (DGN) (31) study. Using PrediXcan-
estimated GReX on the large collection of cardiometabolic GWAS
studies will achieve two simultaneous goals: (1) the aggregation
of multiple SNP effects into a single functional unit increases
statistical power for discovery and (2) the detection of a signif-
icant result generates a hypothesis that a specific gene (and
potentially higher biological mechanisms) may be important for
cardiometabolic risk.

Results
Model assessment
Existing work has confirmed the applicability of genotype-based
gene expression prediction in diverse training or target popula-
tions (32); however, because we applied GReX models built from
RNA-sequencing data generated from tissues collected from
individuals of primarily European descent in datasets drawn
from non-European populations, we performed a number of
experiments to evaluate the quality of cross-ancestry expression
prediction in available data. We directly assessed the accuracy
of PrediXcan-estimated GReX in our study data by compar-
ing imputed whole blood expression and measured WB RNA
sequencing levels in a subset of 175 European-ancestry ARIC
samples. Using whole blood DGN (DGN-WB) imputed GReX, the
squared correlation coefficient of the directly measured RNA
expression with PrediXcan-derived GReX deviated significantly
from the expected R2 distribution at the tail end of the observed
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distribution, indicating the predictive utility of these externally-
built models in our samples (Supplementary Material, Fig. S1).
An additional comparison to the gene’s heritability, as assessed
in the data on which the PrediXcan models were trained, is made
in the same figure (1). Because our imputations are estimating
GReX, not RNA abundance, the heritability of the expression for
that gene sets an upper bound for how well we can impute
its expression using genetic variation. Imputed expression in
the ARIC samples captured up to 75% of the variance in the
observed expression. Notably, we found a significant correlation
between the cross-validation R2 from the model building step
(trained in the European-ancestry DGN-WB samples) and the
explained variance (in measured expression captured by GReX)
in the ARIC samples (Spearman correlation = 0.70, P < 2.2e-16).
Top results are annotated with the ARIC R2/h2 values (Table 1 and
Supplementary Material, Table S1).

Using the same tissue (whole blood), we found significant
correlations (P < 2.2e-16; Supplementary Material, Fig. S2) of
z-score for DGN- and GTEx-trained models for each study
phenotype, indicating that association results obtained from
the application of models derived from the ancestrally hetero-
geneous GTEx-WB and the homogenous (European ancestry)
DGN-WB showed a high degree of concordance. To verify
the robustness of our trans-ethnic analysis, we conducted
additional analyses to assess the utility of PrediXcan models
developed in DGN and GTEx in non-European populations, using
African ancestry YRI LCL samples. We find that imputation
quality (cross-validation R2) in European ancestry DGN-WB was
significantly associated (P = 0.007) with imputation performance
in the African ancestry YRI samples, though that correlation
between imputed and measured expression is lower, on average,
in the African population (Supplementary Material, Fig. S3). We
also observe that among models with high R2 (presumed to
be well modeled based on the training data), we see highly
significant correlation of imputed and measured expression,
with a substantial number of genes with correlation P < 1e-3
(Supplementary Material, Fig. S4). In summary, although we
detect that predictive power is slightly reduced, PrediXcan
retains substantial predictive power when European-derived
models are applied to non-European samples. Until more
equal representation of non-European populations in publicly
available gene expression datasets is attained and ancestry-
specific expression prediction models generated for the subset
of genes with ancestry-specific genetic regulation, application
of GTEx derived models is likely to retain power to detect effects
at most genes in most tissues in datasets drawn from non-
European populations.

Gene-trait associations

In 15 755 samples comprised of African Americans, European
Americans and Hispanics/Latinos from the USA and Mexico
(Supplementary Material, Table S2), we assessed the association
of imputed tissue-specific GReX level in biologically relevant
tissues with 15 cardiometabolic traits (Table 1, Supplementary
Material, Table S1). We detected many genes associated with
white blood cell (WBC) count in the well-known DARC locus,
however, due to extensive linkage disequilibrium, all further
results exclude genes in this region (spanning 1q21.1 to 1q23.3).
Across the 15 traits, GReX of 167 unique gene-phenotype
associations (270 gene-phenotype-tissue associations) were
significant (experiment-wide BH-adjusted P < 0.05) in at least
one biologically relevant tissue in ancestry-specific analyses
or trans-ancestry meta-analysis (Supplementary Material,

Fig. S5). Thirty-eight of these are novel, significant gene-
trait associations including 20 experiment-wide significant
trans-ancestry results and 18 such ancestry-specific findings
(Table 1). Of our 270 total significant tissue-specific gene-trait
associations, Gene2Pheno results were available for 126 known
and 13 novel gene-trait-tissue combinations; 122 known (96%)
and 2 (13%) novel genes were associated with the same trait in
the same tissue(s) (P < 3.60e-4, based on Bonferroni correction
for the number of Gene2Pheno genes queried).

In height, we observed four novel gene-trait associations:
LGR6 in DGN-WB and GYPE in visceral omentum adipose
tissue in the trans-ancestry meta-analysis, SH3BGTL2 in visceral
omentum adipose in European ancestry, and RCBTB1 in adrenal
gland in African Americans. GYPE was also significant in
Gene2Pheno (P = 2.6e-05). We observe novel associations
between fasting insulin levels and PHOSPHO1 in skeletal muscle
and DGN-WB (European ancestry), and FAM175A in DGN-WB.
Five genes not previously associated in GWAS of serum lipid
levels were identified by trans-ancestry meta-analysis: ZNF441
(LDL, pancreas); TAF6L (triglycerides, WB); APOL5 (triglycerides,
visceral omentum adipose); C2orf70 (triglycerides, pancreas);
and PCBP4 (triglycerides, liver). Additional European-specific
associations were observed, including BTBD3 for LDL and
cholesterol in WB and DGN-WB; and RBKS for triglycerides in
skeletal muscle. TAF6L reached significance in Gene2Pheno;
results for C2orf70 and PCBP4 were not available in Gene2Pheno.
Despite being a compelling candidate, APOL5 was not significant
in Gene2Pheno results for association with triglycerides in our
discovery tissue (visceral omentum adipose, P = 0.094).

Novel findings among blood and vascular traits were discov-
ered in trans-ancestry analyses of factor VII, DBP, fibrinogen,
platelet count and WBC count; African–American-specific
analyses for SBP, platelet count and WBC count (Table 1). Results
for WBC count were strongly enriched in the DARC locus, with
57 unique gene-phenotype associations meeting our sig-
nificance threshold, primarily driven by African Americans
(Supplementary Material, Table S1) (33). Three regions had
significant GReX associations with factor VII level in the trans-
ancestry meta-analysis and were not observed in prior GWAS, all
associated in multiple tissues. TSKU was significantly associated
in aortic artery, tibial artery and left ventricle tissue, genes
in 12.q12 (including GXYLT1) in aortic artery, tibial artery and
DGN-WB, and EXOC4 in DGN-WB and WB. TSKU was previously
implicated in a sub-analysis of a recent GWAS, when analyses
were restricted to only factor VII activity (excluding factor VII
antigen) (34).

Pathway analysis

In total, 50 annotation terms were significantly over-represented,
most of which were identified for factor VII and WBC count
(Supplementary Material, Table S3). Total cholesterol, HDL
cholesterol, LDL cholesterol and triglycerides also each had at
least one term over-represented in the corresponding candidate
gene sets. The most significant terms for these traits are early
endosome (cholesterol), alcohol dehydrogenase activity (FVII),
very-low-density lipoprotein particle remodeling (HDL), lipid
metabolism (LDL), lipoprotein metabolic process (triglycerides)
and immunoglobulin domain (WBC).

Among the novel genes identified for any trait, there were
four that showed evidence of protein–protein interaction with
known genes for that trait in STRING (Supplementary Material,
Table S4). STRING considers evidence from seven sources in
establishing a functional association score. For platelet count,
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TP53 is predicted to interact with known-gene BAK1 with a
combined score of 0.993, with strong evidence of interaction
from the expertly curated database score and being frequently
co-mentioned in PubMed abstracts. For body mass index (BMI),
NUP107 shows evidence of interaction with known-gene NUP160
with a score of 0.999, based on experimental biochemical
evidence and correlation of gene expression, as well as the
databased and co-mentioned scores. For factor VII, GXYLT1 has a
combined interaction score of 0.762 with F7, with most evidence
due to being co-mentioned. Finally, for height, LGR6 shows
modest evidence of interaction with GNA12, with a score of
0.557 based on experimental evidence and being co-mentioned
in PubMed.

Discussion
Approaches that leverage genetically regulated expression pre-
diction, although still fairly new, have been the subject of appre-
ciable criticism. In brief, the primary concerns are that these
approaches do not imply causality, are vulnerable to identifying
synthetic associations due to co-regulation of genes, can be
sensitive to the tissue or expression panel that is used, and ulti-
mately only amount to a weighted burden test. These concerns
are valid, but also apply to the most commonly used approach in
the past era of complex disease genetics: the genome-wide asso-
ciation study. Just as SNPs identified by GWAS may not in fact be
causal, GReX-based approaches are intended to be hypothesis
generating, identifying gene candidates whose expression may
impact a trait under study; similarly, SNPs in GWAS may be
identified due to synthetic associations. GReX-based association
analyses are indeed analogous to a weighted burden test—one
that uses functional impact on expression as a weight—and so
it is logical that they would be sensitive to the same confound-
ing factors as the single variant association statistics that are
being essentially combined. As SNPs identified in GWAS must
be functionally validated to establish causality, so must genes
implicated by PrediXcan.

Despite these methodological challenges, for cardiometabolic
traits we have identified 38 novel genes in our trans-ancestry
and ancestry specific analyses, and replicated known signals
at 289 genes. These results represent novel hypotheses of the
causal genes underlying new and known GWAS signals. In
addition, we explored the utility of GReX prediction models
derived from Caucasian datasets in non-Caucasian ancestral
populations, and determined that substantial power for GReX
estimation is maintained at many genes; further scientific
investment in increasing tissue and ancestral diversity of
transcriptome datasets will be necessary to capture ancestry-
specific eQTL effects.

Among our most biologically interesting novel associations
were four genes on chromosome associated with FVII levels.
Imputed expression levels of PPHLN1, ZCRB1, YAF2 and GXYLT1
were strongly correlated with each other in whole blood (min-
imum r2 = 0.46 and maximum r2 = 0.83, respectively). GXYLT1
adds the first xylose to O-glucose-modified residues in the epi-
dermal growth factor repeats of proteins. One of these proteins
may be factor VII: factor VII does have epidermal growth factor
repeats, and is known to be O-linked glycosylated (35). Prior
functional work has demonstrated that inducing a mutation
affecting the amino acid that is glycosylated reduces the activity
of FVII (36).

Other novel associations with compelling functional evi-
dence include VAMP1 predicted expression with fibrinogen
levels and PHOSPHO1 predicted expression with fasting insulin.

Members of the VAMP family of proteins are involved in
vesicle secretion, including alpha granules, which contain
fibrinogen (37,38). The precise function of VAMP1 has not been
previously described, but our finding, that GReX is positively
associated fibrinogen levels, suggests that like other members
of this protein family it may be involved in platelet secretion.
Increased PHOSPHO1-imputed expression was associated with
higher insulin levels; previous literature reports that decreased
methylation status in the body of these gene increases risk of
developing type 2 diabetes (39). Additional work shows that
methylation is decreased in skeletal muscle samples from T2D
cases in comparison to controls (40).

We also provide new support for some genes within known
regions, but with weak or population-specific prior evidence. For
example, the association between DGN-WB GReX of platelet-
activating factor PAFAH1B2 with triglyceride level had strong
additional support in Gene2Pheno (replication P = 1.1 × 10-17,
Table 1). Previous GWAS evidence comes from a Japanese study,
in which the identified variant has a MAF of 11% (41). Further,
a single rare coding variant in this gene was recently found
to have a large effect on triglyceride and HDL levels in Euro-
pean Americans (42). Our findings complement this discovery,
expanding the evidence that this gene impacts triglyceride level
via common eQTL effects as well as rare functional variation.
Because triglyceride level is a causal factor for cardiovascular
disease, we explored Gene2Pheno results for PAFAH1B2 in the
additive analysis of coronary artery disease in CARDIoGRAM
C4D. In DGN-WB, we observe P = 0.014 in Gene2Pheno, with the
same magnitude and direction of effect on triglycerides as we
observed from PAFAH1B2 in the same tissue, for the first time
suggesting that this gene may impact cardiovascular disease risk
via effects on triglyceride levels.

For significant known genes, an additional analysis condi-
tional on the known, sentinel variant in the gene or locus was
undertaken, when available, to determine independence of the
identified GReX signal with the previously identified signal.
For 41 tissue- and trait-specific gene associations, including
25 unique genes, the genetically determined expression shows
evidence of independent association with the trait of interest,
beyond the known single variant signal (conditional P < 0.05).
Additionally, three genes, F10 for Factor VII, and SORT1 and SYPL2
for LDL retained P < 2.5e-6 after accounting for the sentinel SNP,
demonstrating an independent signal. These results highlight
the utility of eQTL evidence to clarify the biology underlying
genome-wide association signals, both through identification of
novel, independent signals in the same locus and through the
refinement of mapping effects. Rather than attributing results
simply to the nearest neighbor gene, instead we identify genes
where predicted expression is significantly influenced by eQTLs
in LD with the association signal.

There are several reasons a particular known locus would
not be detected in our analyses: (1) our total sample size is sub-
stantially smaller than the large-scale meta-analyses available;
therefore, we have less power, despite our reduction in tests.
(2) The biological mechanism underlying previous associations
may not be well represented through PrediXcan. For example,
changes in amino acid sequence may result in changes in protein
function but not expression. (3) Changes in expression may occur
in one tissue or cell type that is not captured in the GTEx data.
(4) Ancestry-specific associations may act through gene
expression changes that are not captured in the predominantly
European expression datasets. Despite these limitations, we
replicated hundreds of known loci for the 15 cardiometabolic
traits under study.
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Figure 1. Z-scores for novel gene GReX-trait association across relevant tissues for fibrinogen. Comparison of Z-scores across all cardiovascular trait-assessed tissues

for a single trait, fibrinogen, demonstrating concordance of effects for each gene. Size of the point represents magnitude, color indicates direction of effect (blue points

are positively associated with the trait, red points are negatively associated with the trait), and shade indicates the R2 from the prediction model. Missing points indicate

that there is no model available for the given gene in that tissue.

Most (289 of 339) of our associations fall within 250 kilobases
(kb; or larger in regions of extended LD) of variants previously
associated with the same trait; however, only a small fraction of
all known loci is detected (e.g. 22 of 157 identified for lipids traits)
(11). On the whole, we observe an excess of association signals at
genes within 250 kb of previously reported SNPs (Supplementary
Material, Fig. S6). Just as traditional SNP-based GWAS narrows,
often considerably, a disease association to (and thus proposes) a
disease-relevant locus (which must subsequently undergo fine-
mapping to identify the causal variants(s)), our approach pro-
poses a disease-relevant gene expression mechanism (whose
tissue or indeed cell-type specificity must be further resolved).
Therefore, genes identified at known loci in these analyses
represent a proposed refinement of the causal biological factor
underlying the previously described single variant association
signal.

We note that many of our results are observed across several
tissues, consistent with some level of shared regulation across
tissues (43). To visualize the concordance of significance across
tissues for each novel gene, we plotted Z-scores for GReX-trait
association across all relevant tissues for each trait (Fig. 1 and
Supplementary Material, Fig. S7). This suggests that genetically
regulated expression associated with disease risk may implicate
multiple tissues, some or all of which may be relevant to disease
pathogenesis. Future in vitro experimentation will be required to
understand which tissues’ altered expression is responsible for
the increased risk.

The Database for Annotation, Visualization and Integrated
Discovery (DAVID) analyses provide additional support for
novel genes identified by our study, some in regions previously
implicated in GWAS, where historically the signals have been
attributed to other genes (often through physical proximity
rather than through any functional support) (44). Two novel
genes identified herein comprise 13 overrepresented pathway

results, contributing to the observed overrepresentation of
annotation terms (Supplementary Material, Table S3; Benjamini
FDR < 0.20). For WBC count, Signal Regulatory Protein Gamma
(SIRPG, a transmembrane glycoprotein) was annotated with
nine overrepresented annotation terms, including several
related to immunoglobulin, disulfide bond, signal peptide and
extracellular domain. FCRL1, a known gene for WBC count, was
highly significant (pBH = 4.83E-10) in our African ancestry sample
and annotated with similar annotation terms (Supplementary
Material, Table S3), illustrating novel trait-associated genes (each
in a distinct locus) with highly convergent function. One novel
gene not previously implicated in GWAS of lipids traits (despite
the much larger sample size (11)), APOL5 (from the meta-analysis
of triglycerides), is a biologically compelling member of the high-
density apolipoprotein L family which is known to play a major
role in cholesterol transport, though is known to have a distinct
origin from the APOL1-APOL4 cluster and has not been previously
observed in genetic studies (45,46). APOL5 contributed to the
overrepresentation of genes involved in lipid and lipoprotein
metabolic processes (Supplementary Material, Table S3), which
are implicated in known genes for lipids traits. These examples
suggest that our findings, collectively, may challenge existing
understanding of the relevant genes in known GWAS loci.

Conclusions
Functionally orientating analyses of common variants around
gene expression improves biological interpretation and power
through reduced multiple testing correction. This approach
focuses on cis-acting variants that alter gene expression without
the burden of obtaining tissue samples and directly measuring
RNA abundance genome-wide. Our imputed-GReX analysis of
15 cardiometabolic traits in 15 755 individuals across three
ancestry groups has revealed 38 novel gene-trait associations

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddy435#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddy435#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddy435#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddy435#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddy435#supplementary-data
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in new regions, 18 of which were identified in ancestry-specific
analyses. Our findings provide potential function-based refine-
ment or support of an additional 289 genes previously implicated
in GWAS. Most significant associations reached the Bonferroni-
corrected significance threshold in Gene2Pheno results, where
available, indicating strong replication rate. We found that
directly measured WB RNA abundance strongly correlates with
imputed expression level at genes with low FDR and that models
developed in mostly European ancestry retain predictive power
in African samples, providing justification for our trans-ancestry
approach. These findings support the validity of the known
and novel associations we describe, while highlighting the need
for further investment in RNA sequencing data from diverse
samples. Furthermore, many of these findings are supported
by gene ontology pathway and protein–protein interaction
analyses, including novel findings and genes that have not
previously been mapped to known GWAS signals. Natural
extensions of these methods to include trans-acting eQTLs and
other functionally annotated regions of the genome such as
those described by ENCODE may provide further power to detect
new genes impacting complex disease traits and refine GWAS
signals to identify candidates for functional validation.

Materials and Methods
Subjects by parent study

ARIC: The Atherosclerosis Risk in Communities (ARIC) study is
a prospective epidemiological study designed to investigate the
etiology and predictors of cardiovascular disease. The ARIC study
enrolled 15 792 individuals in total, primarily of European and
African ancestry, aged 45–64 years from four US communities
(Forsyth County, NC; Jackson, MS; suburbs of Minneapolis, MN;
and Washington County, MD) in 1987–89 (baseline) and followed
for four completed visits in 1990–92, 1993–95, 1996–98 and 2011–
13 with a sixth visit ongoing. 9131 European Americans and
2652 African Americans were included in the present analysis. A
detailed description of the ARIC study design and methods was
previously published (47).

Starr County: Phenotypic measures for 1006 Mexican Amer-
icans from Starr County, Texas included in this work were gen-
erated in a survey of a representative population of the county.
Details of the collection are previously described (48).

Mexico City: Two datasets were available from Mexico City.
Both datasets were collected for studies aimed at identifying
type 2 diabetes risk factors using genome-wide approaches. The
first study includes 967 individuals with type 2 diabetes and
343 controls. The second study comprises 898 individuals with
type 2 diabetes and 889 controls. All individuals were included
in the present study. Detailed information about the Mexico City
datasets has been previously published (21,49).

Additional demographic details for each contributing study
are given in the Supplementary Material, Table S2.

Expression imputation

Array-based genotype data was generated for each contributing
study following standard laboratory protocols and imputed to
1000 Genomes Project phase 1 or 3 reference data separately
using IMPUTE2. The study-specific GWAS array data details, pre-
imputation quality control filters and imputation details are
given in the Supplementary Material, Table S5.

SNP imputation data for each study group was filtered prior
to imputing expression to retain only SNPs with imputation info

scores >0.8 and MAF > 5%. Tissue-specific imputed expression
levels were obtained for each individual by applying PrediX-
can imputation models (8/18/16 version) built using elastic net
(α = 0.5) on the 1000 Genomes phase 1 SNP set in GTEx v6p and
DGN consortium whole blood RNA sequencing data. Imputed
GReX levels for PrediXcan models with q-value < 0.05 were
carried forward for further analysis. For all reported gene-tissue
pairs, we verified that they were not flagged as prone to false
positives based on updates to the modeling process used in
computing GTEx v7 models (list provided by Im et al. and publicly
available on predictdb.org); one gene-tissue pair was removed.

Phenotype definitions

Subjects taking lipid-lowering medications were excluded from
lipid phenotype association analyses. For subjects from Starr
County and ARIC, LDL was calculated from the Friedewald equa-
tion (50), with missing values assigned for samples with triglyc-
eride levels >400 mg/dL. For both Mexico City studies, LDL was
directly measured (21). Subjects taking medication for hyper-
tension were excluded from blood pressure analyses. Subjects
diagnosed with T2D were excluded from fasting glucose and
fasting insulin levels; in Starr County individuals with incident
T2D based on an oral glucose tolerance the same day were
included. All other analyses included all samples with phe-
notype data available. Raw phenotype values for each study
were regressed against age, sex and ancestry using the first and
second principal components as covariates and residuals were
ranked and inverse-normal transformed. Summary statistics for
each phenotype are presented in the Supplementary Material,
Table S2.

Tissue/trait selections

Phenotypes were grouped into two sets of related traits—
metabolic, including BMI, fasting glucose, fasting insulin, height
and lipids traits (HDL, LDL, total cholesterol and triglycerides),
and blood and vascular traits, including blood counts (platelets
and WBC), blood pressure (DBP and SBP), clotting factor levels
(factor VII and fibrinogen) and RR interval. These traits have
shared underlying biology and pleiotropic loci have been
reported (51,52). To limit multiple testing burden, tissues that
have previously shown relevance to multiple traits in each class
were selected. Predicted expressions derived from whole blood
(GTEx and DGN) and the adrenal gland were used for all traits. For
metabolic traits, subcutaneous and visceral omentum adipose
tissues, liver, pancreas and skeletal muscle were considered
(8,9,21,53). For blood and vascular traits, aortic, coronary, and
tibial arteries, and atrial appendage and left ventricle of the
heart were used (54–57). For height, pituitary gland expression
was considered; liver expression was considered for fibrinogen
and factor VII; and hypothalamus expression was considered for
BMI (8,9,56).

Association tests

Association testing of transformed phenotypes with imputed
expression levels (GReX) in each study group was performed
using generalized linear models in R. Ancestry-specific associ-
ation results were classified by whether the gene or nearby SNP
had previously been implicated in a published GWAS of the trait
for each significant and suggestive gene–trait pair. Previously-
observed status was initially determined by a gene start site

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddy435#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddy435#supplementary-data
http://predictdb.org
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddy435#supplementary-data
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within 250 kb of any SNP associated genome-wide with the same
trait in the NHGRI-EBI catalog (58). Any potentially novel asso-
ciation was followed-up with searches in PubMed and Google
Scholar for any prior evidence of association. To control for false
discovery rate given the numerous hypothesis tests used, we
employed a Benjamini–Hochberg multiple testing correction for
all traits and all tissues, resulting in an experiment-wide signif-
icance threshold (59). We note that while less conservative than
a Bonferroni approach to multiple test correction, this approach
is likely overly conservative due to the invalid assumption of
independence of tests; for example, many genes tested do not
exhibit tissue-specific expression patterns, and within tissues,
many genes are co-expressed.

Trans-ancestry meta-analysis

Within each trait-tissue pairing, we meta-analyzed GReX asso-
ciation results for the three Hispanic studies using an inverse-
variance approach, as implemented in METAL (60). We also
used this approach to meta-analyze all five studies in a trans-
ancestry meta-analysis. Significant and suggestive results were
first selected from the trans-ancestry meta-analysis findings;
any gene-trait-tissue groupings that did not reach these thresh-
olds within the trans-ancestry results were evaluated for sin-
gle ancestry association significance. QQ plots for the trans-
ancestry meta-analysis results for each trait are shown in the
Supplementary Material, Fig. S8, including lambda values cal-
culated by taking the median of the chi-squared test statistics
over the expected mean for each tissue (range: 0.90–1.12). Meta-
analysis results were filtered to determine novelty following the
same process used for ancestry-specific results.

Additional support from Gene2Pheno

Where available, we sought additional support via replication
of findings in the S-PrediXcan Gene2Pheno databases (2,61,62).
S-PrediXcan utilizes SNP-level association summary statistics,
in an analytical approach analogous to PrediXcan, to identify
gene-level trait associations. Results derived from large, pre-
viously published GWAS (2) for several included traits (BMI,
height, HDL, LDL, triglycerides, DBP and SBP) are publicly avail-
able through Gene2Pheno. Because the ARIC study contributed
data to several of the large-scale association studies (account-
ing for at most 8.1% of the total sample size of these studies)
included in Gene2Pheno, this does not represent true indepen-
dent replication for all traits (noted in Table 1 and Supplemen-
tary Material, Table S1). Gene2Pheno results were not available
for all tissue- and trait-specific gene associations. Many of the
large GWAS in Gene2Pheno were imputed to reference datasets
with smaller SNP sets, i.e. HapMap instead of 1000 Genomes; in
some cases, the prediction model for a gene/tissue combination
was not available in HapMap models (denoted as NR in Table 1
and Supplementary Material, Table S1). For some tissue- and
trait-specific gene associations, differences in models used for
Gene2Pheno resulted in model quality differences and models
with high S-PrediXcan q-values (q > 0.05) were not included in
Gene2Pheno. Thus, overall, we were able to attempt replication
for 139 gene–trait associations.

Gene ontology and protein–protein interaction analysis

We used DAVID Functional Annotation Tool v6.8 (63) to
identify annotations, including Gene Ontology (GO) terms over-
represented (Benjamini FDR < 0.20) in genes with association

Benjamini–Hochberg adjusted P < 0.05 in the present study,
stratified by trait. We used STRING (64) to search for protein–
protein interactions between known and novel genes for each
trait (Supplementary Material, Table S4). Scores can range
between 0 and 1, with a higher score indicating more confidence
that there is an interaction.

Prediction validation by RNA sequencing

RNA sequencing data for 175 European ancestry individuals
from the ARIC study were available as a test study to explore
correlation of imputed expression with measured expression in
whole blood (using both GTEx and DGN as reference panels). See
the Supplementary Note for RNA quantification methods. GReX
levels for 12 081 genes were imputed in whole blood using the
PrediXcan framework. PrediXcan models with q-values > 0.05
(i.e. genes that were not reliably imputed) were removed, leaving
a final set of 7915 genes for DGN-WB and 5632 genes for WB. The
observed distribution of Pearson squared correlation coefficients
was compared with that expected by chance (Supplementary
Material, Fig. S1).

We imputed gene expression in the 89 African ancestry 1000
Genomes YRI (Yoruba in Ibadan, Nigeria) samples with available
expression measurements (RNA-Seq) in LCLs using GTEx LCLs as
the reference panel. We compared this to measured expression
using previously described RNA sequencing data (65). For genes
with significant Spearman correlation (P < 0.05) of imputed
and measured gene expression, we compared the variance in
expression explained with the P-value of the correlation. Finally,
to assess the effect of differing ancestry in the training popu-
lation, we compared association results for models trained in
an ancestrally homogenous sample (DGN-WB) and those for
models trained in GTEx, a sample for which 15% of donors are
African Americans (43).

Web resources
S-PrediXcan Gene2Pheno http://gene2pheno.org/
PrediXcan http://predictdb.hakyimlab.org/
GTEx https://www.gtexportal.org/

Supplementary Material
Supplementary Material is available at HMG online.
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