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Simple Summary: Some thyroid tumors elected for surveillance remain indolent, while others
progress. The mechanism responsible for this difference is poorly understood, making it challenging
to devise patient surveillance plans. Early prediction is important for tailoring treatment and follow-
up in high-risk patients. The aim of our study was to identify predictive markers for progression. We
leveraged a highly sensitive test that accurately predicts which thyroid nodules are more likely to
develop lymph node metastasis, thereby improving care and outcomes for cancer patients.

Abstract: Papillary thyroid carcinomas (PTCs) account for most endocrine tumors; however, screening
and diagnosing the recurrence of PTC remains a clinical challenge. Using microRNA sequencing
(miR-seq) to explore miRNA expression profiles in PTC tissues and adjacent normal tissues, we aimed
to determine which miRNAs may be associated with PTC recurrence and metastasis. Public databases
such as TCGA and GEO were utilized for data sourcing and external validation, respectively, and
miR-seq results were validated using quantitative real-time PCR (qRT-PCR). We found miR-145 to
be significantly downregulated in tumor tissues and blood. Deregulation was significantly related
to clinicopathological features of PTC patients including tumor size, lymph node metastasis, TNM
stage, and recurrence. In silico data analysis showed that miR-145 can negatively regulate multiple
genes in the TC signaling pathway and was associated with cell apoptosis, proliferation, stem cell
differentiation, angiogenesis, and metastasis. Taken together, the current study suggests that miR-145
may be a biomarker for PTC recurrence. Further mechanistic studies are required to uncover its
cellular roles in this regard.
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1. Introduction

Among cancers, thyroid carcinoma (TC) is the most prevalent endocrine tumor with
the largest increasing annual incidence rate in the United States (U.S.). TC is projected
to surpass colorectal carcinoma as the fourth most common cancer overall by 2030 [1].
Owing to its low mortality rate and prolonged follow-up management, TC imposes a
high healthcare burden and financial cost on the expanded survivor pool [2–4]. Papillary
thyroid carcinomas (PTC) are the most common histological subtype, comprising 85% of all
differentiated thyroid cancers. Although PTCs are the least aggressive thyroid cancers and
have an 80–95% five-year overall survival rate, these tumors can metastasize into lymph
nodes and various organs, leading to poorer prognosis. Up to 30% of patients experience
recurrence after initial treatment, leading to an over 60% increase in mortality rate [5–9];
thus, a key issue in managing patients with PTC is minimizing the morbidity and mortality
associated with disease recurrence.

Clinicopathological risk stratification by the American Thyroid Association (ATA)
has been used to classify well-differentiated thyroid cancer (DTC) cohorts to guide the
management of patients [10,11]. However, it is a one-time assessment at the time of initial
diagnosis and relies on genomic mutation and the final pathological results of tissue biop-
sies. Like other cancers, repeated tissue biopsy is not feasible following operative excision.
The current follow-up modalities, including basal and recombinant human thyrotropin
(rhTSH)-stimulated serum thyroglobulin measurements, as well as neck ultrasonography,
offer only a snapshot of the disease at a single point in time, have limited sensitivity and
specificity, and are poor predictors of progression [12]. Radioiodine whole-body scintigra-
phy (WBS), which takes advantage of the high avidity of radioiodine in the functioning
thyroid tissues, has been used for the detection of DTC; however, radioiodine uptake is not
specific for thyroid tissue, with the potential of false-positive results [13]. Additionally, post-
ablative non-stimulated Tg have been proposed as a valuable prognostic marker during
follow-up [14], with postoperative decline showed good prognostic efficacy for a tumor-free
status [15]. Nevertheless, undetectable serum thyroglobulin levels are found in more than
40% of DTC patients with residual or structural recurrence [16–18]. Thyroglobulin has
been reported as a predictor for treatment efficacy during ablative radioiodine treatment;
however, some patients still exhibit elevated levels even after receiving adjuvant radioactive
iodine therapy. Moreover, thyroglobulin autoantibodies, found in ~25% of patients and
known to interfere with the measurement of thyroglobulin, render tests unreliable [19,20].
Conversely, unnecessary treatment by radioactive iodine or high doses of thyroid hormone
replacement can elicit secondary malignancies [21–29], adverse cardiovascular or skeletal
outcomes [30–32], and mortality [31]. Risk stratification to decide which patients should be
treated with adjuvant radioiodine therapy or extensive postoperative surveillance follow-
ing surgery remains highly challenging, as it is difficult to accurately predict which tumors
will remain indolent. Hence, there is an urgent need to establish a well-validated ancillary
molecular predictive marker that accurately identifies patients at risk of progression. In the
absence of such an assay, prognostication will continue to be a challenging practice that
puts clinicians at risk of overtreating low-risk patients or undertreating high-risk patients.

Despite decades of research, a simple and universal test to identify cancer recurrence
at its earliest stages remains elusive. The accurate and timely prognostication of cancer is a
prerequisite for efficient postoperative surveillance and is critical for improving disease-free
and overall survival [33]. The ideal test would eliminate the need for biopsies and other
invasive and risky procedures to expose cancers in the most inaccessible parts of the body.
Recent advances have suggested that liquid biopsies have the potential to detect most
cancers at early stages when treatment is more likely to be effective [34]. Liquid biopsies
have transformed clinical practice by detecting minimal residual disease after surgery
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and complementing imaging to monitor progression and treatment response [35,36]. The
procedure is non-invasive, easily repeatable, detects tumor evolution and heterogeneity,
and can predict clinical outcomes [35].

Epigenetics is inextricably linked to the malignant phenotype [37]. Several molecular
studies have investigated the roles of various non-coding RNAs along with genetic and
epigenetic modifications in cancer recurrence and progression [37]. Cancer reprogramming
confers drastic changes in chromatin structure and transcriptomic profiles, which instruct
both cell fate and state transition. Cancer-related epigenomic abnormalities arise in ad-
vance of morphological alterations [35]; therefore, TC cells with invasive potential exhibit
modifications in their general gene expression pattern before morphological alterations of
the lesion are even visible. Testing molecular biomarkers before changes are clinically or
radiologically evident would facilitate the early detection of minimal disease or recurrence.

Small non-coding microRNAs (miRNAs) are essential for post-transcriptional regu-
lation of gene expression and are attracting increasing attention because of their associa-
tion with tumor progression. Enrichment and depletion of miRNAs lead to deregulated
co-expression of miRNA target genes and disrupted cellular biological processes in can-
cer [38,39]. They can be secreted into circulation and exist in remarkably stable forms under
extreme conditions such as RNase exposure, multiple freeze–thaw cycles, and extreme
pH [34,40]. Like intercellular miRNAs, circulating miRNAs participate in the regulation
of numerous biological processes and are expressed aberrantly under pathological status.
Deregulation of circulating miRNAs is associated with the initiation and progression of
cancer; therefore, high-efficacy, low-cost detection of miRNAs may aid in non-invasive
diagnostics and prognostics.

The aim of this paper is to create a miRNA-based model to track long-term prognosis
and recurrence of PTC. We used microRNA sequencing analysis in TCGA and GEO datasets
to explore miRNA expression profiles of PTC patients. The results were validated using
quantitative real-time PCR (qRT-PCR). We found miR-145 to be significantly downregulated
in tumor tissues and blood. Deregulation was significantly related to clinicopathological
features of PTC patients including tumor size, lymph node metastasis, TNM stage, and
recurrence. Both in vivo and in vitro studies were reviewed to determine the putative role
of miR-145 in tumor recurrence, and our results suggest that miR-145 may be a biomarker
for PTC recurrence.

2. Methods
2.1. Identification of Recurrence-Specific Regulatory Network from TCGA Database
2.1.1. Data Source and Pre-Processing

Transcriptomic sequence data from 495 thyroid cancer patients were retrieved from the
Genomic Data Commons (GDC) data portal for The Cancer Genome Atlas thyroid cancer
dataset (TCGA-THCA) (https://www.cancer.gov/about-nci/organization/ccg/research/
structural-genomics/tcga, accessed on 1 November 2020). A total of 1035 microRNAs from
miRNA-seq and 20,531 lncRNAs and mRNAs from RNA-seq were included. Clinical and
pathological data, molecular landscape, and survival information were obtained from cBio-
Portal for Cancer Genomics (https://www.cbioportal.org, accessed on 10 February 2020)
and FireBrowse (http://www.firebrowse.org/, accessed on 10 February 2020). Outcomes
of interest included disease recurrence and/or progression. Patients with incomplete recur-
rence data or unmatched microRNA and RNA sequencing data were excluded, leaving
467 matched cases for analysis. TCGA-THCA cohorts were classified according to 2015
ATA risk stratification for structural disease recurrence into low, intermediate, or high-risk
groups. Demographic, oncologic, and clinicopathologic data were compared between
recurrent and non-recurrent groups.

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cbioportal.org
http://www.firebrowse.org/
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2.1.2. Identification of Differentially Expressed Genes (DEG) and miRNAs (DEmiR)
in Recurrence

The gene read counts were first filtered for low abundance and low variance transcripts.
Mapped reads were summarized into a gene level count using the median estimates. EdgeR
was applied to identify the differentially expressed microRNAs (DEmiRs) and RNA genes
(DERs) in recurrent compared with non-recurrent groups. Raw data were normalized using
log2-counts per million. The significance threshold was set at a false discovery rate (FDR,
the q-value) < 0.05 and a |log2 fold change (FC)| > 1.0. Box plots for global transcriptomic
signature and volcano plots for genes were generated. Spearman’s correlation analysis
was performed to examine co-expression between significant DEGs and DEmiRs, and a
correlation matrix was generated.

2.1.3. Functional Enrichment Analysis

The Database for Annotation, Visualization, and Integrated Discovery (DAVID) online
tool v6.8 (https://david.ncifcrf.gov/, accessed on 1 July 2021) and DIANA-mirPath v3.0
(https://dianalab.e-ce.uth.gr/html/mirpathv3/index.php?r=mirpath, accessed on 1 July
2021) were utilized for Gene Ontology (GO) analysis to annotate genes and to define the
functions of DEG into three domains: cellular component, biological process, and molecular
function. Subsequently, KEGG enrichment analysis was conducted to discover the potential
signaling pathways in which DEGs were involved. The cut-off value of significant GO
terms and KEGG pathway was p < 0.05.

2.1.4. Predictive Performance of DEG and DEmiR

Association analysis was performed for the 8 miRNAs and 16 genes using Mann–
Whitney U test in the TCGA cohort. Receiver operating characteristics (ROC) curve was
employed to estimate their prognostic performance with various clinical, genomic mutation,
and pathological data. The optimum threshold level was selected using the Youden index.
Area under the curve (AUC), test accuracy, sensitivity, specificity, and diagnostic odds ratio
measures were calculated. DEmiRs/DEGs with AUC > 0.75 and p < 0.05 were selected
for further downstream analysis. Univariate and multivariate Cox proportionate hazards
regression analyses were employed to predict disease recurrence. Hazard ratios and 95%
confidence intervals were reported. p-values were corrected for multiple-hypothesis testing
using the Benjamini–Hochberg correction, with a significance threshold of FDR < 0.05.

2.2. External Validation in GEO
2.2.1. Expression Pattern of miR-145 in Tissues of Cancer Patients

Analysis of 145 microarray and miRNA-sequencing datasets from public repositories
including Gene Expression Omnibus (GEO), Sequence Read Archive (SRA), ArrayExpress,
and The Cancer Genome Atlas (TCGA) stored in the database of Differentially Expressed
MiRNAs in human Cancers (dbDEMC) v3.0 webtool (https://www.biosino.org/dbDEMC/
index, accessed on 1 August 2021) depicted the expression level of miR-145-5p in (1) various
types of tumor tissues compared with controls and (2) aggressive versus non-aggressive
samples such as metastasis versus none, high versus low grade, or poor versus good outcome.

2.2.2. Expression Pattern of miR-145 in Liquid Biopsies of Cancer Patients

Circulatory and exosomal miRNA-sequencing analysis of 14 GEO datasets (E_MTAB_1454,
GSE106817, GSE112264, GSE112840, GSE113486, GSE113740, GSE122497, GSE139031,
GSE31568, GSE39845, GSE59856, GSE65071, SRP078325, and SRP262521) in the circulation
of cancer patients.

2.3. External Validation in Independent Cohorts
2.3.1. Ethical Statement

Ethical approval was provided by the Institutional Review Board, Tulane University
School of Medicine, United States (#2021–1214) and the Medical Research Ethics Committee,

https://david.ncifcrf.gov/
https://dianalab.e-ce.uth.gr/html/mirpathv3/index.php?r=mirpath
https://www.biosino.org/dbDEMC/index
https://www.biosino.org/dbDEMC/index
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Suez Canal University School of Medicine, Egypt (#4344). The study followed “Declaration
of Helsinki” guidelines.

2.3.2. Human Specimens

A total of 484 thyroid specimens (242 cancer tissues and their paired non-cancer
adjacent tissues) were analyzed. These included 64 paired fresh frozen samples from the
Louisiana Cancer Research Center (LCRC), New Orleans, Louisiana, United States, and
178 paired formalin-fixed paraffin-embedded (FFPE) archival samples from three Pathology
Labs of (i) El-Bayan, Portsaid City; (ii) Mansoura University, Mansoura City; and (iii) Suez
Canal University, Ismailia City, Egypt. In addition, 111 blood samples (64 thyroid cancer,
36 benign non-toxic multinodular disease, and 11 control subjects) were recruited from
Tulane Medical Center, New Orleans, LA, United States. Tissue samples were obtained
during surgical resection, and fasting blood samples were collected before thyroidectomy.
Deidentified samples were processed and linked to their demographic, pathological, and
clinical information.

The current study investigated patients diagnosed with well-differentiated thyroid
cancer (papillary TC or follicular TC) according to the International Classification of Onco-
logical Diseases, 4th edition, who underwent thyroidectomy and/or lobectomy and did not
receive any treatment before operative resection. There was no restriction for age, sex, race,
ethnicity, national origin, language, religion, pregnancy, socioeconomic status, or disability.
The exclusion criteria included (a) poorly differentiated thyroid carcinoma, anaplastic
(undifferentiated) carcinoma, medullary thyroid cancer, Hürthle cell thyroid carcinoma,
thyroid lymphoma, thyroid cancer arising from a thyroglossal duct cyst, thyroid cancer in
malignant struma ovarii, or secondary carcinomas; (b) patients with a history of primary
cancer in other organs; (c) patients with incomplete follow-up or missing clinical data;
(d) cohorts with unmatched paired tissue samples; or (e) no available archived paraffin
blocks and/or blocks with insufficient tissue to perform immunohistochemical studies.

2.3.3. Clinical Assessment and Outcomes

Baseline demographic and clinicopathological characteristics were obtained from
electronic medical records. Demographic data included age at diagnosis, sex, race, ethnicity,
and year of diagnosis. For risk assessment, body mass index (BMI), smoking and alcohol
intake, history of radiation exposure, occupational hazards, and family history of cancer or
previous thyroid diseases were evaluated. Pathological characteristics included tumor side
and laterality, histopathological subtype (PTC or FTC) and variant, TNM (tumor, node, and
metastasis) stage, and extrathyroidal extension (ETE). Sonographic features and genomic
mutation reports were collected if available. Patients with concomitant Hashimoto’s
thyroiditis were identified. Laboratory results for differential white blood cell count,
hepatitis C virus, thyroglobulin, and autoantibodies were collected. The type of surgical
resection (unilateral, subtotal, or total thyroidectomy), extent of neck dissection (central,
unilateral, or bilateral block neck dissection), thyroxine intake, and use of radioactive
iodine or other adjuvant treatment modalities (e.g., external beam radiotherapy) were
reported. Additional lines of treatment received during the postoperative surveillance
period were obtained.

Post-thyroidectomy, patients were monitored every six months. They underwent
clinical examination, imaging studies, and serum thyroglobulin level estimation. Relapse,
recurrence, progression, and death were reported at follow-up (Figure 1). Patients fulfilled
the 2015 ATA intermediate-risk criteria: exhibiting aggressive histology (tall cell, solid,
hobnail), microscopic extrathyroidal extension (peri-thyroid fat, strap muscles), vascular
invasion, or >5 involved lymph nodes (0.2–3 cm). Our primary outcomes were the presence
of persistent or recurrent disease. Persistent disease was identified as residual tumor in
the area of the primary tumor or regional nodes. Clinical recurrence was defined as the
reappearance of malignancy in the thyroid bed (local recurrence), lymph node (regional
recurrence), or distant metastasis (distant recurrence) following initial surgery. No clinical
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evidence of disease (NCED) was defined as the absence of disease at the end of the follow-
up period, based on physical examination and imaging studies. Progression-free survival
(PFS) was defined as the time from initial diagnosis to the progression of tumor (distant
metastasis, local recurrence, and regional or distant recurrence) or death by any cause.
Disease-free survival measured the period from initial surgery to the time of recurrence
(local, regional, or distant) or death by any cause, while overall survival referred to the time
from initial surgery to death by any cause, regardless of the presence or absence of evidence
of recurrence/progression. Outcomes were assessed as binary and time-to-event variables.
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2.3.4. Histopathological Assessment

FFPE blocks of tissue specimens were reviewed by a pathologist to distinguish between
cancer and non-cancer regions and assess the percentage of tumor cells and normal cells.
The following microscopic parameters were assessed via hematoxylin and eosin (H & E)
staining: histopathological variant, TNM tumor stage according to the American Joint
Committee on Cancer (AJCC, 8th edition), focality, ETE, lymphatic invasions, extranodal
extension, perineural invasion, and safety margin. FFPE sections were cut of 4-micron
in thickness in separate Eppendorf tubes (cancer and non-cancer) for molecular analysis.
Fresh frozen tissues were cryosectioned and stained with the Histogene™ laser capture
microdissection (LCM) frozen section staining kit and micro-dissected using the Arcturus
LCM instrument. Only tissues containing <20% necrosis were subjected to nucleic acid
extraction.
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2.3.5. RNA Extraction and Quantification of miR-145-5p in Tissues and Liquid Biopsies

Following xylene deparaffinization, total RNA (including small RNAs) was isolated
from 178 paired cancer and non-cancer FFPE tissues using Qiagen miRNeasy FFPE Isolation
kit (catalog number 73504, Qiagen, Germantown, MD, USA). Total RNA including miRNA
was isolated from the 64 paired frozen samples using Arcturus® PicoPure® Frozen RNA
Isolation Kit (catalog number KIT0204, ThermoFisher, Waltham, MA, USA), according to
the manufacturer’s protocol. Circulatory miRNA was isolated from 183 archived peripheral
plasma samples using total exosome RNA and protein isolation kit (catalog number 4478545,
Thermo Fisher Scientific, Waltham, MA, USA) and Qiagen miRNeasy Serum/Plasma Kit
(catalog no. 217184, Qiagen). The total RNA quality and quantity were assessed via
absorbance spectrophotometry on a Nanodrop-1000 spectrophotometer at the wavelength-
dependent extinction coefficient of 33 (Thermo Scientific, Wilmington, DE, USA) and
Qubit™ fluorometer (Invitrogen, Waltham, MA, USA).

RNA (10 ng) was converted to complementary DNA (cDNA) using TaqMan MiRNA
Reverse Transcription (RT) kit (P/N 4366596, Applied Biosystems, Foster City, CA, USA);
Thermo Fisher, CA, USA), and 5× specific stem-loop primers or endogenous control
primers (RNU6B, catalog number 001039) for normalization were used separately. Reverse
transcription (RT) was carried out in a T-Professional Basic, Biometra PCR system (Biometra,
Goettingen, Germany) at the following amplification conditions: 16 ◦C for 30 min, 42 ◦C
for 30 min, and 85 ◦C for 5 min, and then held at 4 ◦C. For quality control assessment,
miR-23a, miR-30c, miR-103, miR-191, and miR-451 were tested for hemolysis, and the
RNA spike-ins UniSp101, UniSp100, and UniSp6 were assayed to screen the inhibition of
enzymatic reactions.

Real-time quantitative polymerase chain reaction (PCR) was followed using Universal
Master Mix (catalog number 4440042) and TaqMan assay for miR-145-5p (Assay ID: 002278,
Applied Biosystems, Thermo Fisher Scientific Inc.) in StepOne™ Real-Time PCR System
(Applied Biosystems) and QuantStudio 6 Flex (Applied, Foster City, CA, USA). Reactions
were run in triplicate under the following conditions: 95 ◦C for 10 min, followed by 45 cycles
of 92 ◦C for 15 s and 60 ◦C for 1 min. Appropriate negative controls were included in each
run (no template and no enzyme samples), and duplicate PCR runs were performed. The
Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE)
guidelines were followed during the experiments. Fold changes were estimated via the
Livak method based on the quantification (threshold) cycle (Cq or CT) value: relative gene
expression = 2−∆∆Cq. Standard deviation >2.0 was set as an outlier.

2.4. Systematic Review

A systemic review on miR-145 in thyroid cancer was performed on 26 June 2022 using
PubMed, Embase, Google Scholar, and genomic public repositories following PRISMA
guidelines. The keywords “(miR-145 OR microRNA-145 OR MIR145) AND (thyroid)”
were used in the search process. All human, in vitro, and in vivo studies were included,
without time or language restriction. Manual searches of relevant bibliographic articles
were performed. Data abstraction was performed in Microsoft Excel (Muhib MH and ET)
and stratified by the functional role of a biomarker.

2.5. Functional Role of miR-145

Cancer Hallmarks Analytic tools (https://chat.lionproject.net) were used to define
miR-145-related hallmarks based on online publications. Gene targets of miR-145-5p were
identified using miRTargetLink 2.0 (https://ccb-compute.cs.uni-saarland.de/mirtargetlink2).
Starbase software (http://starbase.sysu.edu.cn/mirLncRNA.php) was used to identify
competing endogenous RNA regulatory network sponging miR-145. Diana miRPath v3.0
(https://dianalab.e-ce.uth.gr/html/mirpathv3/) and ingenuity pathway analysis software
(https://reports.ingenuity.com/) were used to investigate enriched KEGG pathways and
Gene Ontology terms. Harmonizome database (https://maayanlab.cloud/Harmonizome/)
was used to identify CHEA transcription factor binding sites and targets of the promoter of

https://chat.lionproject.net
https://ccb-compute.cs.uni-saarland.de/mirtargetlink2
http://starbase.sysu.edu.cn/mirLncRNA.php
https://dianalab.e-ce.uth.gr/html/mirpathv3/
https://reports.ingenuity.com/
https://maayanlab.cloud/Harmonizome/
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MIR145 gene in low- and high-throughput functional studies. All previous online tools
were last accessed on 17 April 2022)

2.6. Statistical Analysis

Statistical analysis was conducted using the R programing language (v4.1.2), Scikit-
learn v0.22 package in Python (Python Software Foundation, Wilmington, DE, USA),
GraphPad Prism v7.0 (San Diego, CA, USA), SPSS (IBM, V27. New York, NY, USA: IBM
Corp), and STATA v16 (StataCorp. College Station, TX, USA), in addition to OmicSoft
and IPA (Qiagen, Hilden, Germany). The estimated power is 90% for a minimum of
228 TC patients to predict disease progression, medium effect size = 0.5, and alpha error
probability = 0.05, using G*Power version 3.1.9.2 (http://www.gpower.hhu.de/) (accessed
on 10 February 2022). For continuous variables, means and standard deviations or medians
with interquartile ranges were calculated. For categorical variables, absolute numbers with
percentages were recorded. Categorical variables were compared using chi-square (χ2) or
Fisher’s exact tests where appropriate, while the Student’s t-test, Wilcoxon matched-pairs
signed rank test, or Mann–Whitney U test were used to compare continuous variables.
Changes in miRNA expression were calculated via the LIVAC method based on the Cq
value; 2−∆∆Cq formula. Wilcoxon matched-pairs signed-rank test was used for comparison
between cases and controls. Correlations between blood and tissue results were compared
using Spearman’s correlation test. Diagnostic statistics such as specificity, sensitivity,
positive and negative predictive values, ROC analysis with AUC estimation, DeLong
test, and F-test were performed using pROC R package to determine the performance of
the miRNA in blood and tissues. Multivariate regression analysis was used to build a
predictive model for recurrence/progression in TC patients at the time of surgery using
selected clinical, pathological, and molecular data. Biological variability by age, gender,
and race was adjusted. The prognostic risk scores for each patient were calculated based
on a linear combination of the miRNA expression level and demographics weighted by
the regression coefficient derived from the regression. Prediction accuracy was assessed
using Harrell’s concordance index (C-index), Brier score (BS), and Hosmer–Lemeshow
test using DescTools R package and Bootstrap 1000. Discrimination and calibration were
evaluated. Decision curve analyses (DCAs) were performed to test the clinical utility of
the Cox nomogram model. Principal component analysis and hierarchical clustering were
employed for risk stratification. Disease-free and overall survival analysis was performed,
and Kaplan–Meier curves were plotted. Log rank (Mantel–Cox) test was used. The
Survminer package (https://cran.r-project.org/web/packages/survminer/index.html,
accessed on 17 April 2022) for R was applied to determine the optimal cut-off value to
divide patients into two groups, high or low gene expression, based on receiver operating
characteristic. A two-tailed p-value of < 0.05 was considered significant.

3. Results
3.1. Network Discovery from TCGA Cohorts
3.1.1. Characteristics of TCGA Cohorts

A total of 467 cancer patients (104 FTC and 363 PTC) were included in the analysis.
Mean age was 46.0 years (34.0–57.0) and 73.2% were female. Of all patients, 27.2% were
classified as low risk, 49.9% were classified as intermediate risk, and 22.9% were classified
as high risk. Characteristics of recurrent (n = 44) and non-recurrent (n = 423) groups are
shown in Table 1. Patients in the recurrent group were more likely to be older (p = 0.040)
and white (p = 0.018). A higher prevalence of recurrence was found in patients with tumor
stage T3/T4 (p = 0.009), distant metastasis (p < 0.001), and TERT mutation (p = 0.011). The
median overall survival was 31.0 months (IQR = 17.4–51.9), with longer follow-up of the
recurrent group (p = 0.006).

http://www.gpower.hhu.de/
https://cran.r-project.org/web/packages/survminer/index.html
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Table 1. Characteristics of the study population (n = 467).

Characteristics Levels Total Disease-Free Recurred/Progressed p-Value

Demographic data

Age, years
Median (IQR) 46.0

(34.0–57.0) 46.0 (34.0–56.0) 51.5 (32.7–63.0) 0.21

<55 y 321 (68.7) 297 (70.2) 24 (54.5)
0.040

≥55 y 146 (31.3) 126 (29.8) 20 (45.5)

Sex
Female 342 (73.2) 313 (74) 29 (65.9)

0.28
Male 125 (26.8) 110 (26) 15 (34.1)

Ethnicity
Not Hispanic or Latino 328 (70.2) 292 (69) 36 (81.8)

0.17Hispanic or Latino 36 (7.7) 33 (7.8) 3 (6.8)

Missing 103 (22.1) 98 (23.2) 5 (11.4)

Race

White 312 (66.8) 279 (66) 33 (75)

0.018

Asian 48 (10.3) 44 (10.4) 4 (9.1)

Black 16 (3.4) 15 (3.5) 1 (2.3)

American Indian or Alaska
Native 1 (0.2) 0 (0) 1 (2.3)

Missing 90 (19.3) 85 (20.1) 5 (11.4)

Pathological assessment

Primary tumor laterality

Right lobe 201 (43) 183 (43.3) 18 (40.9)

0.87
Left lobe 161 (34.5) 145 (34.3) 16 (36.4)

Bilateral 81 (17.3) 72 (17) 9 (20.5)

Isthmus 20 (4.3) 19 (4.5) 1 (2.3)

Missing 4 (0.9) 4 (0.9) 0 (0)

Focality

Unifocal 247 (52.9) 223 (52.7) 24 (54.5)

0.72Multifocal 214 (45.8) 194 (45.9) 20 (45.5)

Missing 6 (1.3) 6 (1.4) 0 (0)

Histopathology type
Papillary 363 (77.7) 325 (76.8) 38 (86.4)

0.18
Follicular 104 (22.3) 98 (23.2) 6 (13.6)

Pathology Stage

Stage I 271 (58) 252 (59.6) 19 (43.2)

0.051

Stage II 48 (10.3) 45 (10.6) 3 (6.8)

Stage III 99 (21.2) 86 (20.3) 13 (29.5)

Stage IV 47 (10.1) 38 (9) 9 (20.5)

Missing 2 (0.4) 2 (0.5) 0 (0)

T stage

T1a 18 (3.9) 17 (4) 1 (2.3)

0.009

T1b 120 (25.7) 117 (27.7) 3 (6.8)

T2 155 (33.2) 141 (33.3) 14 (31.8)

T3 155 (33.2) 133 (31.4) 22 (50)

T4a 17 (3.6) 13 (3.1) 4 (9.1)

Missing 2 (0.4) 2 (0.5) 0 (0)

N stage

N0 215 (46) 201 (47.5) 14 (31.8)

0.053
N1a 86 (18.4) 78 (18.4) 8 (18.2)

N1b 123 (26.3) 104 (24.6) 19 (43.2)

Nx 43 (9.2) 40 (9.5) 3 (6.8)
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Table 1. Cont.

Characteristics Levels Total Disease-Free Recurred/Progressed p-Value

M stage

M0 257 (55) 237 (56) 20 (45.5)

<0.001M1 8 (1.7) 4 (0.9) 4 (9.1)

Mx 202 (43.3) 182 (43) 20 (45.5)

Extrathyroidal extension

Negative 318 (68.1) 295 (69.7) 23 (52.3)

0.06
Minimal 122 (26.1) 103 (24.3) 19 (43.2)

Advanced 13 (2.8) 12 (2.8) 1 (2.3)

Missing 14 (3) 13 (3.1) 1 (2.3)

Oncologic assessment

BRAF mutation

Wild type 87 (18.6) 80 (18.9) 7 (15.9)

0.17Mutant 225 (48.2) 198 (46.8) 27 (61.4)

Missing 155 (33.2) 145 (34.3) 10 (22.7)

TERT mutation

Wild type 329 (70.4) 305 (72.1) 24 (54.5)

0.011Mutant 31 (6.6) 24 (5.7) 7 (15.9)

Missing 107 (22.9) 94 (22.2) 13 (29.5)

Mutation density Median (IQR) 0.51
(0.31–51.9) 0.51 (0.31–0.70) 0.64 (0.35–0.88) 0.07

ATA risk group

Low 127 (27.2) 121 (28.6) 6 (13.6)

0.002Intermediate 233 (49.9) 214 (50.6) 19 (43.2)

High 107 (22.9) 88 (20.8) 19 (43.2)

Intervention

Radioactive iodine
Negative 191 (40.9) 171 (40.4) 20 (45.5)

0.36
Positive 17 (3.6) 17 (4) 0 (0)

Radiation treatment
Negative 68 (14.6) 65 (15.4) 3 (6.8)

0.20
Positive 140 (30) 123 (29.1) 17 (38.6)

Follow-up

Mortality
Survived 465 (99.6) 423 (100) 42 (95.5)

0.009
Died 2 (0.4) 0 (0) 2 (4.5)

Overall survival, months Median (IQR) 31.0
(17.4–51.9) 30.9 (16.8–50.2) 42.1 (22.9–71.9) 0.006

Data are represented as frequency (percentage), mean ± standard deviation (SD), or median and interquartile
range (IQR). BMI: body mass index, LN: lymph node, EBRT: external beam radiation therapy. Two-sided
Chi-square test, Student’s t-test, and Mann–Whitney U test were used. Bold values indicate significance at
p-value < 0.05.

3.1.2. Expression Signature for Recurrence

Based on microRNA-seq analysis, we identified five downregulated and three upregu-
lated differential miRNAs in the recurrent group (Figure 2A). Specifically, hsa-miR-145-5p
was the most downregulated microRNA in recurrent patients (FC =−3.55, q = 1.86 × 10−5),
followed by hsa-miR-139-5p (FC = −3.55, q = 8.93 × 10−5), hsa-miR-206 (FC = −3.21,
q = 1.26 × 10−4), hsa-miR-184 (FC = −2.25, q = 1.03× 10−4), and hsa-miR-196b-5p (FC =−1.46,
q = 4.18 × 10−5). In contrast, hsa-miR-130b-3p (FC = 1.57, q = 2.76 × 10−21), hsa-miR-301b-
3p (FC = 1.50, q = 2.31 × 10−9), and hsa-miR-130b-5p (FC = 1.45, q = 6.16 × 10−13) were
upregulated.
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Figure 2. Identification of recurrence-specific differentially expressed genes. RNA-seq and microRNA-
seq analysis of 467 tissue specimens of PTC patients in The Cancer Genome Atlas (TCGA) database
integrated with clinical data, pathological data, molecular landscape, and survival information. By
comparing the transcriptome signature of 46 recurrent and 441 disease-free patients, we identified a
panel of eight deregulated microRNAs and 16 deregulated mRNAs associated with disease recurrence
and/or progression. (A) Volcano plot and table showing differentially expressed microRNAs in
recurrent cohorts compared with the non-recurrence group. The significance threshold was set at a
false discovery rate (FDR) < 0.05 and a |log2 fold change (logFC)| > 1.0. Three upregulated genes in
red and five downregulated genes in blue are shown. (B) Volcano plot and table showing differen-
tially expressed mRNAs/lncRNAs in recurrent cohorts compared with the non-recurrence group.
Four upregulated genes in red and 12 downregulated genes in blue are shown. (C) Co-expression
analysis of genes and miRNAs. Spearman’s correlation analysis was performed. In the correlation
matrix, red color shows a positive correlation and blue shows a negative correlation. (D) Functional
enrichment analysis of DEGs. (E) Pathway enrichment analysis of DEmiRs using Diana lab tools.
Abbreviations: solute carrier family 5 member 5 (SLC5A5), angiotensin II receptor type 1 (AGTR1),
transmembrane protein 139 (TMEM139), betaine–homocysteine S-methyltransferase 2 (BHMT2),
frizzled class receptor 9 (FZD9), mab-21 like 2 (MAB21L2), glutamate ionotropic receptor kainate
type subunit 4 (GRIK4), interaction protein for cytohesin exchange factors 1 (IPCEF1), natriuretic
peptide receptor 3 (NPR3), neurotrophin 3 (NTF3), heart and neural crest derivatives expressed 2
(HAND2), gap junction protein beta 6 (GJB6), pregnancy-specific beta-1-glycoprotein 3 (PSG3), matrix
metallopeptidase 9 (MMP9), cadherin 4 (CDH4), and collagen type XIX alpha 1 chain (COL19A1).

Analysis of RNA-seq data revealed 12 downregulated and four upregulated protein-
coding genes in the recurrence group (Figure 2B). Among the negatively regulated genes are
sodium/iodide cotransporter (SLC5A5), which mediates iodide uptake in the thyroid gland
(FC = −1.77, q = 0.036); angiotensin II receptor type-1 (AGTR1), which regulates blood
pressure and aldosterone secretion (FC =−1.51, q = 0.008); transmembrane protein 139 gene,
involved in cellular trafficking of proteins (TMEM139) (FC = −1.28, q = 0.028); and betaine–
homocysteine S-methyltransferase 2 (BHMT2) (FC = −1.25, q = 0.005), involved in the
regulation of homocysteine metabolism via converting homocysteine to methionine using
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S-methyl methionine (SMM) as a methyl donor. In contrast, collagen alpha-1 (XIX) chain
(COL19A1), one of the fibril-associated collagens that serve to maintain the integrity of the
extracellular matrix (EMC), was the most upregulated gene (FC = 1.33, q = 0.031). Another
protein necessary for cell adhesion, cadherin-4 (CDH4), was significantly overexpressed in
recurrence cases (FC = 1.22, q = 0.044). Of the upregulated genes, matrix metalloproteinase-9
(MMP9) is a zinc-dependent endopeptidase and the major protease in EMC degradation
and leukocyte migration (FC = 1.17, q = 0.036). Pregnancy-specific beta-1-glycoprotein 3
(PSG3), one of the immunoglobulin superfamily of genes shown to function as an adhesion
recognition signal for several integrins, was slightly upregulated (FC = 1.01, q = 0.030). The
co-expression matrix in Figure 2C shows weak correlations between genes and miRNAs.

3.1.3. Functional Enrichment Analysis

As depicted in Figure 2D, the top biological processes included (1) regulation of cell
population proliferation (GO:0042127; q = 1.04 × 10−6) through NGFR, TIMP1, NPR3,
NTRK2, MAB21L2, FZD9, GJB6, HAND2, NTRK3, AGT, MMP9, NTF3, and AGTR1 genes;
(2) negative regulation of cell death (GO:0060548; q = 8.2 × 10−4) via eight genes (NGFR,
TIMP1, NTRK2, FZD9, HAND2, NTRK3, MMP9, and NTF3); (3) regulation of cell differen-
tiation (GO:0045595; q = 0.0036) by enrichment of NGFR, NTRK2, HAND2, NTRK3, AGT,
NTF3, AGTR1, and CDH4; and (4) regulation of blood vessel endothelial cell proliferation
involved in sprouting angiogenesis (GO:1903587; q = 0.0025) via NGFR and AGTR1. KEGG
and Reactome pathway analysis showed high enrichment of Ras and MAPK signaling
pathway (KEGG: hsa04014 and hsa04010), as well as other cancer-related pathways such
as degradation of the extracellular matrix (HSA-1474228; FDR = 0.005; TIMP1, MMP9,
COL19A1), signaling by receptor tyrosine kinases (HSA-9006934; FDR = 0.012; NTRK2,
NTRK3, MMP9, NTF3), and collagen degradation (HSA-1442490; FDR = 0.022; MMP9,
COL19A1). Functional enrichment analysis of miRNAs (Figure 2E) revealed the involve-
ment of the extracellular matrix receptor interaction, TGF-beta signaling pathway, and
adherens junction, and miR-145-5p was enriched in almost all significant pathways.

3.1.4. Association of DEG and DEmiR with Clinicopathological Characteristics and
Survival Analysis

Marker selection for the 8 miRNAs and 16 genes was performed using four statistical
tests: Mann–Whitney U test for association analysis, area under the curve (AUC) estima-
tion for receiver operating characteristic analysis to assess prognostic performance, and
univariate and multivariate Cox regression analyses to identify the role of each deregulated
gene on recurrence. Association analysis with recurrence was significant in 18 markers.
ROC analysis showed significance (AUC > 0.75) in 2 miRNAs and 13 genes. The highest
AUC was for miR-145-5p, with an AUC of 0.78 (95%CI = 0.71–0.85; 64% sensitivity and
80% specificity), and the best discriminative genes for recurrence were FZD9 (AUC = 0.87,
95%CI = 0.71–0.99), AGTR1 (AUC = 0.85, 95%CI = 0.74–0.95), and NPR3 (AUC = 0.82,
95%CI = 0.71–0.93) (Figure 3A). Univariate regression analyses showed significant results
in seven markers (Figure 3B). After adjustment for age, sex, race, and BRAF mutation, mul-
tivariate regression analysis revealed an association between miR-145-5p and disease-free
survival (Figure 3C).
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Figure 3. Prognostic and predictive performance of DEG and DEmiR. (A) ROC analysis to discrim-
inate patients with recurrence from those with non-recurrence. red indicated higher AUC > 0.75.
(B) Univariate Cox regression analysis for disease-free survival. Red indicated higher risk, green indi-
cated lower risk of recurrence, while black indicated no significance. (C) Multivariate Cox regression
analysis for disease-free survival adjusted by age, sex, race, and BRAF mutation. Red indicated higher
risk, green indicated lower risk of recurrence, while black indicated no significance. Abbreviations:
AUC: area under the curve, CI: confidence interval, HR: hazard ratio.

3.1.5. Low miR-145 Level Is a Poor Prognostic Marker

In TCGA data, low tissue expression of miR-145-5p was associated with more ad-
vanced tumor stage T3/4 (p = 0.006), distant metastasis (p = 0.046), extrathyroidal extension
(p = 0.026), and BRAFV600E mutation (p = 0.001). Kaplan–Meier survival curves showed
poor survival in patients with low expression (less than median value) (p = 0.035).

3.2. External Validation in GEO
3.2.1. Expression Pattern of miR-145 in Tumor Tissues of Cancer Patients

Downregulated miR-145-5p was validated in other public datasets for thyroid can-
cer compared with benign (GSE116196) and adjacent non-cancerous tissues (GSE64912,
GSE83520, GSE97070), as well as in aggressive versus non-aggressive tumors (GSE48953)
(Figure 4A). In a pan-cancer perspective, 145 datasets were found with available miR-145-5p
expression data and 24 with an absolute log fold change below 1.0 were excluded. Fifteen
studies were from TCGA, and miR-145 was under-expressed in all of them. The other
106 GEO experiments showed downregulation in 88.6% of the datasets, ranging from
−11.21- in lung cancer to −1.03-fold change in colorectal cancer (Figure 4B). Other datasets
showed lower expression patterns in aggressive compared with non-aggressive samples
(Figure 4C).
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Figure 4. Expression pattern of miR-145-5p in public repositories of cancer. (A) Expression in thyroid
cancer tissues. (B) Expression in other cancer tissues. (C) Expression in aggressive versus indolent
tissues samples. Data source: dbDEMC database (https://www.biosino.org/dbDEMC/search) (last
accessed: 8 August 2022).

3.2.2. Expression Pattern of miR-145 in Liquid Biopsies of Cancer Patients

Through miRNA-sequencing analysis of 14 GEO datasets (E_MTAB_1454, GSE106817,
GSE112264, GSE112840, GSE113486, GSE113740, GSE122497, GSE139031, GSE31568, GSE39845,
GSE59856, GSE65071, SRP078325, and SRP262521) in the circulation of cancer patients, we
observed variability in the direction of miR-145-5p expression pattern even within the same
type of cancers (Table 2). Boufraqech et al. identified miR-145 in serum exosome of thyroid
cancer patients [41]. Similarly, secreted exosomal-derived miR-145 was upregulated in four
head and neck cancer cell lines compared with oral epithelial control cells [42].

Table 2. Expression levels of miR-145-5p in liquid biopsy samples.

Cancer Type Source ID Log Fold Change Expression Status Design

Biliary tract cancer GSE59856 −0.21 DOWN blood

Brain cancer

SRP262521 −2.09 DOWN blood

GSE113740 1.74 UP blood

GSE113486 2.06 UP blood

GSE112264 2.52 UP blood

GSE139031 2.82 UP blood

Breast cancer
GSE113486 1.43 UP blood

GSE106817 1.51 UP blood

Colon cancer GSE39845 1.5 UP blood

Colorectal cancer GSE106817 1.96 UP blood

https://www.biosino.org/dbDEMC/search
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Table 2. Cont.

Cancer Type Source ID Log Fold Change Expression Status Design

Esophageal cancer

GSE59856 −0.36 DOWN blood

GSE112840 −0.04 DOWN blood

GSE113486 1.23 UP blood

GSE122497 1.82 UP blood

GSE106817 2.3 UP blood

Gastric cancer

GSE113740 1.5 UP blood

GSE106817 1.55 UP blood

GSE113486 1.72 UP blood

Head and neck cancer SRP078325 1.6 UP exosomes

Hepatocellular
carcinoma

GSE113740 0.97 UP blood

GSE106817 1.34 UP blood

Leukemia E_MTAB_1454 −0.64 DOWN blood

Liver cancer GSE59856 −0.48 DOWN blood

Lung cancer

GSE113486 1.47 UP blood

GSE112264 1.59 UP blood

GSE106817 2.42 UP blood

Lymphoma GSE139031 1.85 UP blood

Melanoma
SRP262521 −0.84 DOWN blood

GSE31568 1.6 UP blood

Ovarian cancer

GSE113740 1.6 UP blood

GSE113486 1.96 UP blood

GSE106817 1.73 UP blood

Pancreatic cancer

GSE113486 1.56 UP blood

GSE113740 1.66 UP blood

GSE112264 1.71 UP blood

GSE106817 1.89 UP blood

Prostate cancer GSE31568 1.26 UP blood

Sarcoma
GSE65071 −1.22 DOWN blood

GSE106817 1.1 UP blood

3.3. Validation in Independent Cohorts
3.3.1. Expression Pattern of miR-145 in Tissues and Blood

As depicted in Figure 5, analyzing thyroid cancer tissue specimens showed downregu-
lation of miR-145-5p in cancer tissues compared with their corresponding paired non-cancer
tissues, with median and interquartile values of −1.52 (−3.31–−0.10) in FFPE samples
(n = 178) and −1.16 (−3.31–0.40) in fresh frozen samples (n = 64), p < 0.001. Similarly,
significantly lower levels were found in plasma of the cancer cohort (n = 64) compared
with controls (n = 47), with a median value of −0.94 (−3.14–0.36), p < 0.001. Expression
levels in tissues and blood were moderately correlated (r = 0.427, p < 0.001).
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Table 3. Baseline characteristics of the study population. 

Characteristics Levels 
FFPE Samples (n = 178) 

p-Value 
Frozen and Blood Samples (n = 64) 

p-Value Non-Recurrence 
(n = 138) 

Recurrence 
(n = 40) 

Non-Recurrence 
(n = 56) 

Recurrence 
(n = 8) 

Demographic data       

Age, years 
Median (IQR) 45 (33.7–56.2) 51.5 (33.5–62.7) 0.19 41 (34–52) 49.5 (32.0–60.7) 0.59 

<55 y 96 (69.6) 21 (52.5) 0.06 43 (76.8) 4 (50) 0.19 
≥55 y 42 (30.4) 19 (47.5)  13 (23.2) 4 (50)  

Sex 
Female 95 (68.8) 25 (62.5) 0.45 48 (85.7) 6 (75) 0.60 
Male 43 (31.2) 15 (37.5)  8 (14.3) 2 (25)  

Ethnicity 
Not Hispanic or Latino 138 (100) 40 (100) NA 41 (73.2) 7 (87.5) 0.66 

Hispanic or Latino -- --  15 (26.8) 1 (12.5)  

Race 
White 138 (100) 40 (100) NA 12 (21.4) 2 (25) 0.66 
Black -- --  14 (25) 3 (37.5)  
Asian -- --  30 (53.6) 3 (37.5)  

Hashimoto disease Positive 42 (30.4) 13 (32.5) 0.84 15 (26.8) 1 (12.5) 0.67 
Pathological assessment       

Focality 
Unifocal 82 (59.4) 22 (55) 0.71 35 (62.5) 4 (50) 0.70 

Multifocal 56 (40.6) 18 (45)  21 (37.5) 4 (50)  

Histopathology type 
Follicular 24 (17.4) 5 (12.5) 0.62 8 (14.3) 2 (25) 0.60 
Papillary 114 (82.6) 35 (87.5)  48 (85.7) 6 (75)  

Pathology stage  

Stage I 80 (58) 14 (35) 0.001 40 (71.4) 4 (50) 0.08 
Stage II 19 (13.8) 2 (5)  3 (5.4) 0 (0)  
Stage III 32 (23.2) 16 (40)  9 (16.1) 1 (12.5)  
Stage IV 7 (5.1) 8 (20)  4 (7.1) 3 (37.5)  

T stage 

T1 39 (28.3) 2 (5) <0.001 14 (25) 1 (12.5) 0.40 
T2 55 (39.9) 12 (30)  18 (32.1) 1 (12.5)  
T3 42 (30.4) 23 (57.5)  20 (35.7) 5 (62.5)  
T4 2 (1.4) 3 (7.5)  4 (7.1) 1 (12.5)  

N stage 
N0 82 (59.4) 14 (35) 0.007 25 (44.6) 4 (50) 0.77 
N1 56 (40.6) 26 (65)  31 (55.4) 4 (50)  

M stage 
M0 132 (95.7) 35 (87.5) 0.07 55 (98.2) 6 (75) 0.039 
M1 6 (4.3) 5 (12.5)  1 (1.8) 2 (25)  

Extrathyroidal extension 
Negative 100 (72.5) 19 (47.5) 0.004 32 (57.1) 5 (62.5) 0.77 
Positive 38 (27.5) 21 (52.5)  24 (42.9) 3 (37.5)  

Figure 5. Expression pattern of miR-145 in human tissue and blood samples. (A) Boxplots show the
log of relative expression levels in cancer samples compared with controls. Wilcoxon matched-pairs
signed rank and Mann–Whitney U tests were used. (B) Correlation analysis between tissue and blood
samples. Spearman’s correlation test was utilized. FFPE: formalin fixed paraffin embedded tissue
sections; Frozen: fresh frozen tissues.

3.3.2. Association with Clinicopathological Characteristics

Baseline characteristics of the study population are summarized in Table 3. Downreg-
ulation of miR-145 was significantly associated with recurrence. Expression levels were
lower in tissues of the recurrent cohort (median: −5.2, IQR: −6.39–−1.77) compared with
the non-recurrent group (median: −0.90, IQR: −3.16–1.29), p < 0.001. Similar findings were
found in blood, with lower levels encountered in the recurrence group compared with
non-recurrent group (−3.14 (−4.35–−2.17) versus 0.78 (−2.54–0.43), p = 0.047). Subgroup
analysis showed significant differences between the two groups in both male (p = 0.008)
and female (p = 0.001) patients. Stratification by race showed the association of miR-145
levels with recurrence in the white population (p = 0.005 in tissue and <0.001 in blood),
sparing Black (p = 0.88 and 0.25) and Asian (p = 0.25 and 0.95) patients (Figure 6).

Table 3. Baseline characteristics of the study population.

Characteristics Levels
FFPE Samples (n = 178)

p-Value
Frozen and Blood Samples (n = 64)

p-ValueNon-Recurrence
(n = 138)

Recurrence
(n = 40)

Non-Recurrence
(n = 56)

Recurrence
(n = 8)

Demographic data

Age, years

Median (IQR) 45 (33.7–56.2) 51.5 (33.5–62.7) 0.19 41 (34–52) 49.5
(32.0–60.7) 0.59

<55 y 96 (69.6) 21 (52.5) 0.06 43 (76.8) 4 (50) 0.19

≥55 y 42 (30.4) 19 (47.5) 13 (23.2) 4 (50)

Sex
Female 95 (68.8) 25 (62.5) 0.45 48 (85.7) 6 (75) 0.60

Male 43 (31.2) 15 (37.5) 8 (14.3) 2 (25)

Ethnicity

Not Hispanic or
Latino 138 (100) 40 (100) NA 41 (73.2) 7 (87.5) 0.66

Hispanic or
Latino – – 15 (26.8) 1 (12.5)
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Table 3. Cont.

Characteristics Levels
FFPE Samples (n = 178)

p-Value
Frozen and Blood Samples (n = 64)

p-ValueNon-Recurrence
(n = 138)

Recurrence
(n = 40)

Non-Recurrence
(n = 56)

Recurrence
(n = 8)

Race

White 138 (100) 40 (100) NA 12 (21.4) 2 (25) 0.66

Black – – 14 (25) 3 (37.5)

Asian – – 30 (53.6) 3 (37.5)

Hashimoto disease Positive 42 (30.4) 13 (32.5) 0.84 15 (26.8) 1 (12.5) 0.67

Pathological assessment

Focality
Unifocal 82 (59.4) 22 (55) 0.71 35 (62.5) 4 (50) 0.70

Multifocal 56 (40.6) 18 (45) 21 (37.5) 4 (50)

Histopathology
type

Follicular 24 (17.4) 5 (12.5) 0.62 8 (14.3) 2 (25) 0.60

Papillary 114 (82.6) 35 (87.5) 48 (85.7) 6 (75)

Pathology stage

Stage I 80 (58) 14 (35) 0.001 40 (71.4) 4 (50) 0.08

Stage II 19 (13.8) 2 (5) 3 (5.4) 0 (0)

Stage III 32 (23.2) 16 (40) 9 (16.1) 1 (12.5)

Stage IV 7 (5.1) 8 (20) 4 (7.1) 3 (37.5)

T stage

T1 39 (28.3) 2 (5) <0.001 14 (25) 1 (12.5) 0.40

T2 55 (39.9) 12 (30) 18 (32.1) 1 (12.5)

T3 42 (30.4) 23 (57.5) 20 (35.7) 5 (62.5)

T4 2 (1.4) 3 (7.5) 4 (7.1) 1 (12.5)

N stage
N0 82 (59.4) 14 (35) 0.007 25 (44.6) 4 (50) 0.77

N1 56 (40.6) 26 (65) 31 (55.4) 4 (50)

M stage
M0 132 (95.7) 35 (87.5) 0.07 55 (98.2) 6 (75) 0.039

M1 6 (4.3) 5 (12.5) 1 (1.8) 2 (25)

Extrathyroidal
extension

Negative 100 (72.5) 19 (47.5) 0.004 32 (57.1) 5 (62.5) 0.77

Positive 38 (27.5) 21 (52.5) 24 (42.9) 3 (37.5)

Oncologic assessment

BRAF mutation
Wild type 73 (52.9) 16 (40) 0.15 20 (35.7) 3 (37.5) 0.92

Mutant 65 (47.1) 24 (60) 36 (64.3) 5 (62.5)

TERT mutation
Wild type 66 (47.8) 0 (0) <0.001 48 (85.7) 7 (87.5) 0.89

Mutant 70 (50.7) 34 (85) 8 (14.3) 1 (12.5)

Intervention

Radioactive iodine Positive 1 (0.7) 0 (0) 0.59 3 (5.4) 1 (12.5) 0.42

Radiation
treatment Positive 31 (22.5) 13 (32.5) 0.21 18 (32.1) 1 (12.5) 0.25

Follow-up

Mortality
Survived 138 (100) 39 (97.5) 0.23 55 (98.2) 8 (100) 0.70

Died 0 (0) 1 (2.5) 1 (1.8) 0 (0)

Overall survival,
months Median (IQR) 37.9 (21.6–63.3) 35.6 (24.0–63.7) 0.88 31.8 (14.3–58.4) 43.1

(32.8–50.0) 0.22

Disease-free
survival, months Median (IQR) 37.9 (21.6–63.4) 13.4 (7.1–25.2) <0.001 31.8 (14.2–58.1) 21.4

(7.0–43.6) 0.33

Data are represented as frequency (percentage) or median and interquartile range (IQR). Two-sided chi-square
and Mann–Whitney U tests were used. Bold values indicate significance at p-value < 0.05.
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Figure 6. Association of miR145 expression with recurrence. (A) Expression in paired FFPE tissues
(overall and stratified by sex). (B) Expression in paired fresh frozen tissues (overall and stratified by
race). (C) Expression in blood of cancer and control groups (overall and stratified by race). Wilcoxon
matched-pairs signed rank and Mann–Whitney U tests were used. Red values are significant at
p < 0.05.
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Furthermore, tissue miR-145 was associated with clinical stage (p = 0.001), larger tumor
size (p = 0.006), and lymph node metastasis (p = 0.008). Circulatory miR-145 was associated
with Hashimoto disease (p = 0.030) and TERT mutation (p = 0.004). We did not find an
association with other clinical or pathological features.

3.3.3. Predictive Accuracy of miR-145

Receiver operator characteristic (ROC) curve analysis demonstrated a good discrimi-
nation ability of miR-145 expression level to differentiate between cancer and non-cancer
tissues (AUC = 0.734 at cut-off value of −2.37, specificity% = 73.7%, p < 0.001) and blood
(AUC = 0.718 at cut-off value of −2.06, sensitivity = 87.5%, specificity = 73%, p = 0.047)
(Figure 7A). Log fold changes in miR-145 in tissues were split into high and low expression
groups based on the optimum cutoff value (−2.37) of ROC analysis.
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lines represent a protective variable. ** indicates p < 0.01 and *** indicates p < 0.001. (D) Prognostic 
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tumor growth and metastasis in a xenograft mouse model [41]. Similarly, miR-145 was 
sponged by the oncogenic lncRNA n384546, which is highly expressed in PTC tissues and 
cell lines, leading to cancer progression and metastasis. Anti-miR-145 could partially re-
verse the effects of n384546 knockdown in vitro by regulating AKT3 expression [47]. In 
another study, miR-145 inhibited the migration and invasion of papillary thyroid carci-
noma cells through nuclear factor-κB (NF-κB) pathway regulation [49]. In human tissues, 
miR-145 was decreased in cancer compared with normal adjacent tissues. Overexpression 
of miR-145 led to downregulation of its gene target dual-specificity phosphatase 6 
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Figure 7. Prognostic value of miR-145 expression. (A) Receiver operator characteristic analysis for
the role of miR-145-5p in tissues and blood. Area under the curve (AUC) is reported. Sen: sensitivity;
spec: specificity. (B) Kaplan–Meier survival curve analysis for disease-free survival. Log fold changes
in miR-145 in tissues were split into high and low expression groups based on the optimum cutoff
value of ROC analysis. Log-rank test was used. (C) Predictor risk factors for disease-free survival.
Multivariate Cox proportionate hazard regression model was employed. The results are presented
as hazard ratio and confidence interval. Red lines have a higher risk of recurrence, while blue lines
represent a protective variable. ** indicates p < 0.01 and *** indicates p < 0.001. (D) Prognostic
nomogram for predicting recurrence at the time of diagnosis. miR145: microRNA-145-5p expression
level as log fold change; ETE: extrathyroidal extension; LNM: lymph node metastasis.
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3.3.4. Survival Analysis and Predictors of Progression

The average disease-free survival was 133.4 months (95%CI = 120.9–145.8). Kaplan–
Meier survival curves (Figure 7B) demonstrated lower survival probability in patients with
low expression levels of miR-145 in cancer tissues (below −2.37) at the time of presenta-
tion (mean survival times were 107.2 months ± 10.1 in the low expression group versus
146.0 months ± 5.6 in high expression group, p < 0.001). Univariate Cox regression analysis
showed that miR-145 (HR = 0.78, 95%CI = 0.72–0.85, p < 0.001, concordance = 0.713), age
>55 years (HR = 1.02, 95%CI = 1.0–1.03, p = 0.032, concordance = 0.60), tumor stage (T3 ver-
sus T1: HR = 5.87, 95%CI = 1.78–19.33, p = 0.003; T4 versus T1: HR = 9.17, 95%CI = 2.18–38.5,
p = 0.002, concordance = 0.66), and lymph node metastasis (LNM) (HR = 1.89, 95%CI =
1.05–3.38, p = 0.031, concordance = 0.59) were putative risk factors for recurrence. However,
after adjustment by multivariate Cox regression analysis (Figure 7C), low miR-145 levels
in tissues (HR = 0.79, 95%CI = 0.72–0.86, p < 0.001) and blood (HR = 0.74, 95%CI = 95,
p = 0.048), as well as advanced tumor stage (T4 versus T1: HR = 14.39, 95%CI = 2.9–71.2; T3
versus T1: 5.68, 95%CI = 1.54–21.0), were associated with a risk of mortality. A prognostic
nomogram for 1-year and 3-year recurrence-free survival was generated (Figure 7D).

3.4. Systemic Review on the Functional Role of miR-145 in Thyroid Cancer

Systematic search; duplicate removal; and screening of titles, abstracts, and full text
yielded eight eligible articles [41,43–49]. The expression of miR-145 was significantly
reduced in thyroid cancer compared with normal cells [41]. In contrast, its overexpression
in thyroid cancer cell lines resulted in inhibited cell differentiation, proliferation, migration,
and invasion. It suppressed VEGF secretion and E-cadherin expression and inhibited the
PI3K/Akt pathway by targeting AKT3 [41]. In vivo, miR-145 overexpression decreased
tumor growth and metastasis in a xenograft mouse model [41]. Similarly, miR-145 was
sponged by the oncogenic lncRNA n384546, which is highly expressed in PTC tissues
and cell lines, leading to cancer progression and metastasis. Anti-miR-145 could partially
reverse the effects of n384546 knockdown in vitro by regulating AKT3 expression [47]. In
another study, miR-145 inhibited the migration and invasion of papillary thyroid carcinoma
cells through nuclear factor-κB (NF-κB) pathway regulation [49]. In human tissues, miR-
145 was decreased in cancer compared with normal adjacent tissues. Overexpression of
miR-145 led to downregulation of its gene target dual-specificity phosphatase 6 (DUSP6) at
the protein level and inhibited cell proliferation in TPC1 cells [43]. Furthermore, miR-145
functions as a tumor suppressor in PTC by inhibiting RAB5C [44]. RAB5C is a member of
the RAS oncogene family that regulates cell invasion and motility. Zhang et al. found that
miR-145 was downregulated in PTCs and negatively correlated with PTC progression and
metastasis. MiR-145 inhibited PTC migration and proliferation and promoted apoptosis
by directly suppressing RAB5C, suggesting that MiR-145 and RAB5C could serve as
therapeutic targets against aggressive PTC cases [44].

Non-coding RNAs (ncRNAs) include long non-coding RNAs (lncRNAs), miRNAs,
and circular RNAs (circRNAs). Intracellular circRNAs suppress miRNA by sponging and
binding to the miRNA response element (MRE). Overexpressed circNUP214 has been nega-
tively correlated with downregulated miR-145 levels in PTC compared with paratumor
tissues [45]. In vitro studies showed that circNUP214 induced tumor cell migration and
invasion through miR-145 sponging, releasing the inhibitory effect on zinc finger E-box
binding homeobox (ZEB2) [45]. Moreover, miR-145 has been reported to target the lncRNA
taurine upregulated 1 (TUG1), a tumor oncogene associated with various human cancers.
The deregulated ceRNA network of the TUG1/miR-145/zinc finger E-box binding home-
obox 1 (ZEB1) signaling pathway increased cell proliferation, enhanced migration capacity,
and promoted EMT formation in three thyroid cancer cell lines (the ATC cell lines SW1736
and KAT18 and the FTC cell line FTC133) [46]. In contrast, metastasis and proliferation
were suppressed in cells transfected with miR-145 mimics. Overexpression of miR-145
may reverse the EMT phenotype of thyroid cancer cells; relative levels of miR-145 in thy-
roid cancer tissues were significantly lower than in the corresponding normal tissues [46].
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Moreover, Wang et al., testing genetic variants flanking the miR-145 gene, found significant
association between rs4705342*T single nucleotide polymorphism and a higher risk of
papillary thyroid carcinoma [48].

3.5. Functional Role of miR-145 in Cancer

Functional enrichment analysis of miR-145 showed connections with multiple cancer-
related mechanisms and pathways. Specifically, miR-145-5p can negatively regulate
multiple genes in the thyroid cancer signaling pathway (hsa05216, p = 0.031), includ-
ing tropomyosin 3 (TPM3), neuroblastoma RAS proto-oncogenes (NRAS), catenin beta
1 (CTNNB1), MYC proto-oncogene, BHLH transcription factor (MYC), and cyclin D1
(CCND1). A systematic review of the literature revealed miR-145′s role in various hall-
marks of cancer (Figure 8); for example, it suppresses cell invasion and metastasis in breast
cancer cell lines by directly targeting mucin 1 (MUC1) [50]. Moreover, miR-145-5p neg-
atively regulated SMAD5 in esophageal cancer, which in turn can activate the TGF beta
signaling pathway. High expression of miR-145 decreased angiogenesis [51]; induced dif-
ferentiation of macrophages by interleukin 6 (IL-6) [52]; silenced the stem cell self-renewal
and pluripotency program by suppressing multiple pluripotent genes such as OCT4, SOX2,
and KLF4 [53]; promoted the epithelial–mesenchymal transition by suppressing FGF10 [54];
and increased apoptosis in prostate cancer [55].
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Figure 8. Functional role of miR-145-5p in hallmarks of cancer. Upregulated genes/proteins targeted
by miR-145-5p in various types of cancers are shown, leading to resistance to cell death, sustained
proliferative signaling, activating invasion and metastasis, or inducing angiogenesis. Pie chart
represents the proportion of articles demonstrating these cancer hallmarks.

The transcription factors FLI1, GATA1, PPARG, RAD21, RCOR3, SIN3B, SPI1, SREBF2,
STAT3, STAT5A, and TP63 were found to target the promoter of the MIR145 gene. We
did not find any of these markers to be deregulated in the thyroid cancer TCGA dataset.
Using ingenuity pathway analysis, gene ontology analysis of the MIR145 gene showed
subcellular localization in extracellular vesicular exosomes and RNA-induced silencing
complex in cytoplasm. Some biological processes included actin cytoskeleton organization,
cell differentiation, negative regulation of angiogenesis, negative regulation of cell migra-
tion, negative regulation of inflammatory response, positive regulation of canonical Wnt
receptor signaling pathway, positive regulation of cardiac vascular smooth muscle cell dif-
ferentiation, positive regulation of fibroblast migration, positive regulation of macrophage
activation, positive regulation of macrophage differentiation, regulation of collagen biosyn-
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thetic process, regulation of ERK1 and ERK2 cascade, transforming growth factor beta
receptor signaling pathway, and vascular smooth muscle cell differentiation.

4. Discussion

The MIR145 gene is located at the 5p32 chromosomal region (5:149, 430, 646–149,
430, 733 forward strand). Its expression is regulated by p53 and other transcriptional
factors [56]. The tumor-suppressive role of miR-145 has been suggested in diverse types of
cancers [57–59], such as breast cancer [60], gastric cancer [61], bladder cancer [62], colorectal
cancer [63,64], and ovarian cancer [65]. It has been sponged by multiple circular RNAs
and lncRNAs, leading to deregulation of downstream gene targets (Figure 9). Previous
studies have indicated that miR-145 is associated with cell apoptosis, proliferation, stem
cell differentiation, angiogenesis, and metastasis [50–52,54,55].
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In thyroid cancer, research has indicated that miR-145 is a downregulated tumor
suppressor miRNA. Functional and preclinical studies identified AKT3, ZEB1, ZEB2,
DUSP6, and RAB5C as direct targets of miR-145 [41,43–46]. Akt is a crucial protein of
the PI3K/Akt signal transduction cascade that plays a central role in cell proliferation,
apoptosis, and motility in thyroid cancer [66]. ZEB1 functions to regulate important tran-
scriptional networks necessary for cell differentiation, maintenance, and function [67]. It
can modulate the PD-1/PD-L1 checkpoint [68,69], promote cell proliferation and migration,
and inhibit apoptosis [70]. It also plays a crucial role in the maintenance of cancer stem
cells [71]. ZEB2 functions as a DNA-binding transcriptional repressor that interacts with
activated SMADs [72]. ZEB2 can trigger the induction of genes associated with epithelial–
mesenchymal transition [73], activate the Wnt/beta-catenin pathway [74], and regulate
invasion and metastasis [72]. Endosomal RAB5C was reported to prevent VEGFR2 degra-
dation during angiogenesis [75], regulate focal adhesion-mediated cell migration [76], and
enhance resistance to ionizing radiation [77]. DUSP6, a member of the MAPK phosphatase
family, is highly expressed in PTC and plays a pro-oncogenic role in thyroid tumorigenesis
by regulating the ERK1/2 pathway, cell proliferation, and invasiveness [78]. Studies investi-
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gating the mechanism responsible for the aberrant expression of miR-145 in thyroid cancer
demonstrated the role of three ncRNAs (TUG1, n384546, and circNUP214) in suppressing
miR-145 expression [45–47]. Additionally, miR-145 was found to modulate NF-κB pathway
regulation in PTC cells [49].

Recent studies demonstrated that molecular profiling of miR-145 is emerging as a key
noninvasive tool for monitoring cancer invasion and migration [79]. Interestingly, miR-145
has been detected in peripheral blood and other body fluids [80]. Expression levels of
miR-145–5p have been correlated with clinical parameters in cancer patients, as shown in
Table 4. In the present study, the expression of miR-145 was analyzed in 284 paired tissues
and 111 blood samples. We found that miR-145-5p was downregulated in cancer tissues
and blood compared with counterparts. Additionally, a lower miR-145 level was associated
with advanced clinical stage, larger tumor size, and lymph node metastasis. Similarly, in
the TCGA data, low tissue expression of miR-145-5p was associated with a higher tumor
stage, distant metastasis, extrathyroidal extension, and BRAFV600E mutation.

Table 4. Association between miRNA and clinical parameters in cancer patients.

Cancer Type Sample Size
(Cancer/Control) Grade T Stage N Stage TNM Survival Reference

Bladder Tissues 22/22 • [81]

Breast Blood 35/33 • [82]

Cervical Tissue 40/40 • • [83]

Esophagus Tissue 30/30 • [84]

Gall bladder Tissue 40/8 • [85]

Gastric Tissue 289/0 • [86]

Gastric Tissue 60/60 • • [87]

Glioblastoma Blood 117/0 • [88]

Liver Tissues 60/60 • [89]

Liver Tissues 150/150 • • • • • [90]

Liver Tissues 10/10 • [91]

Larynx Tissue 188/0 • • • • • [92]

Melanoma Tissue 83/83 • • [93]

Ovarian Tissue 414/0 • • [93]

Prostate Tissue 64/64 • [94]

Prostate Blood 64/55 • [94]

Dot indicate positive association.

Several chemical compounds used as medications have been shown to influence the
expression pattern of miR-145-5p. Propofol modulates the proliferation, invasion, and
migration of bladder cancer cells through the miR-145-5p/TOP2A axis [95]. In glioma, ropi-
vacaine could promote cell apoptosis and inhibit tumor growth, proliferation, migration,
and invasion through the regulation of the circ-SCAF11/miR-145-5p axis [96]. Apoptosis-
related miR-145-5p enhanced the effects of pheophorbide a-based photodynamic therapy
(Pa-PDT) in oral cancer [97]. Bupivacaine via targeting circ_0000376 and miR-145-5p up-
regulation could cause cell apoptosis in gastric cancer cells [98]. Therefore, assessment
of expression of this miRNA is a potential way for prediction of the response to these
medications in different conditions.

As a tumor suppressor miRNA, miR-145 replacement therapy caused profound anti-
tumor effects in colon carcinoma and metastatic castration-resistant prostate cancer animal
models [99,100]. Similarly, miR-145-5p was reported to enhance the therapeutic response
to some chemotherapeutic agents such as sorafenib in HCC [101], methotrexate in os-
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teosarcoma [102], and docetaxel in prostate cancer [103]. Moreover, cumulative evidence
showed that miR-145 acts to reverse therapeutic resistance in various tumors [104]; Table 5.
For example, MiR-145 changes the sensitivity of non-small cell lung cancer to gefitinib
through targeting ADAM19 [105]. miR-145 sensitizes esophageal squamous cell carcinoma
to cisplatin through directly inhibiting the PI3K/AKT signaling pathway [106]. miR-145 an-
tagonizes SNAI1-mediated stemness and radiation resistance in colorectal cancer [107], and
reversed 5-fluorouracil (5-FU) drug resistance by directly targeting DNA damage-related
gene RAD18 in colorectal cancer [108]. MicroRNA 145 enhances the chemosensitivity
of glioblastoma stem cells to desmethoxycurcumin [109], thus suggesting that it might
serve as a candidate and promising biomarker for drug resistance and that therapeutic
up-regulation of this miRNA might be suggested as a modality for enhancing the response
to conventional as well as targeted therapies.

Table 5. The role of miR-145 enhances cancer therapy sensitivity and reverse resistance.

Therapy Cancer Type Downstream Targets Reference

5-FU
Colorectal cancer RAD18 [108]

Esophageal carcinoma REV3L [110]

Bortezomib Multiple myeloma HDAC4 [111]

Cisplatin

Gastric cancer APRIL [112]

Ovarian cancer c-Myc [113]

Gallbladder cancer MRP1 [114,115]

Nasopharyngeal carcinoma SOX2 [116]

Non-small cell lung cancer
MRP1 and P-gp [117]

CDK6 [118]

KLF4 [119]

Esophageal carcinoma MRP1 and P-gp [106]

Docetaxel
Lung adenocarcinoma FSCN1 [120]

Prostate cancer AKAP12 [103]

Doxorubicin
Hepatocellular carcinoma SMAD3 [121]

Breast cancer MRP1 [122]

Erlotinib Non-small cell lung cancer EGFR [123]

Gefitinib Non-small cell lung cancer ADAM19 [105]

Gemcitabine
Bladder cancer HMGA2 and KLF4 [124]

Pancreatic adenocarcinoma P70S6K1 [125]

Imatinib Hepatocellular carcinoma P-gp and BCRP [126]

Oxaliplatin Colorectal cancer
GPR98 [127]

MRP1 [128]

Paclitaxel Ovarian cancer Sp1 and CDK6 [65]

Radiation

Cervical cancer HLTF [129]

Colorectal cancer KLF4 and c-Myc [107]

Esophageal carcinoma P70S6K1 [130]

Prostate cancer RAD51, Mcl1, Par-4, and
PARP1 [127]

Hepatocellular carcinoma RAD18 [131]
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5. Conclusions

This work is the first to indicate putative regulatory networks and mechanisms regu-
lating its suppressive role in tumorigenesis and progression. Taken together, these findings
suggest that miR-145 is a key regulator of thyroid cancer growth, mediates its effect through
multiple gene targets and pathways, is secreted by the thyroid cancer cells, and may serve
as an adjunct biomarker for TC diagnosis and prognosis. Genome-wide screening of miR-
145 gene targets in in vitro and in vivo studies will be necessary for further exploration of
the potential role of miR-145 in TC progression. Further large-scale, multicenter studies are
needed to better elucidate the dynamic changes in miR-145 during surveillance follow-up;
however, our comprehensive analysis provides evidence that miR-145 expression is down-
regulated in TC tissues and blood, and its expression pattern is significantly negatively
associated with poor prognosis.
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