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Abstract

In this work we studied memory and irreversible transport phenomena in a non-equilibrium thermodynamical model for
genomic transcriptional regulation. Transcriptional regulation possess an extremely complex phenomenology, and it is, of
course, of foremost importance in organismal cell development and in the pathogenesis of complex diseases. A better
understanding of the way in which these processes occur is mandatory to optimize the construction of gene regulatory
networks, but also to connect these networks with multi-scale phenomena (e.g. metabolism, signalling pathways, etc.)
under an integrative Systems Biology-like vision. In this paper we analyzed three simple mechanisms of genetic stimulation:
an instant pulse, a periodic biochemical signal and a saturation process with sigmoidal kinetics and from these we derived
the system’s thermodynamical response, in the form of, for example, anomalous transcriptional bursts.
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Introduction

Transcriptional kinetics, memory functions and
hyperbolic differential equations

Messenger RNA transcription from a DNA template is a che-

mical process regulated by different genes and their products.

Being this the case, a variety of physicochemical interactions

abound between genetic transcripts abundance and it is a recog-

nized fact that such complex processes are behind the ultimate

mechanisms of cell function. Genome-wide transcriptional Ex-

pression Analysis (GEA) has allowed us to go well beyond studying

gene expression at the level of individual components of a given

process by providing global information about functional connec-

tions between genes, mRNAs and the related regulatory proteins.

GEAs have greatly increased our understanding of the interplay

between different events in gene regulation and have pointed out

to previously unappreciated biological functional relations, such as

the coupling between nuclear and cytoplasmic transcription and

metabolic processes [1]. GEA also revealed extensive communi-

cation within regulatory units, for example in the organization of

transcription factors into regulatory motifs. However, these

coupling phenomena are usually studied by means of probabilistic

modeling. Even if such stochastic models have been extremely

useful, there is a lack for a phenomenological explanation and the

corresponding theoretical framework. A first step towards this goal

would be achieved by understanding the thermodynamical basis of

such sets of coupled biochemical reactions [2].

In the case of transcriptional regulation inside the cell, the

thermodynamic analysis faces various challenges, mainly related

with the cell being a small system (hence the role of fluctuations

and irreversible couplings gain a great deal of importance), and

with the non-linear, non-local nature of chemical reactions. An

appealing scenario to consider is the cellular behavior of the RNA-

polymerase molecule (RNApol). RNApol is an enzyme that moves

along the DNA to produce a newly synthesized mRNA molecule.

It has been mentioned that RNApol extracts energy from its

surrounding thermal bath (i.e. the cellular environment) to move,

and at the same time uses bond hydrolysis to insure that only

thermal fluctuations that lead to forward movement are captured.

RNApol then serves as an out-of-equilibrium thermal rectifier.

The complex dynamics behind even this (relatively) simple model

of transcription demonstrate the necessity for a non-equilibrium

thermodynamical characterization that includes the possibility to

deal with fluctuations in small systems. Systems outside the realms

of the thermodynamic limit are characterized by large fluctuations

and hence stochastic effects are to be considered. An extremely

important question in contemporary thermal physics lies in the

connections between probability and thermodynamics. In fact, a

developed theory exists, called mesoscopic nonequilibrium thermodynam-

ics (MNET) [3] which specifically addresses the issue by con-

sidering the stochastic nature of the time evolution of small

non-equilibrium systems, in a context which is extremely close to

our work. MNET for small systems could be understood as an

extension of the equilibrium thermodynamics of small systems

developed by Hill and co-workers [4–6].

The way in which stochasticity is taken into account is by means

of recognizing that scaling down the description of a physical

system brings up energy contributions that are usually neglected in

thermodynamical descriptions. Recall that any reduction of the

spatio-temporal scale description of a system would entail an

increase in the number of non-coarse grained degrees of freedom.

These degrees of freedom could be related with the extended
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variables in Extended Irreversible Thermodynamics [7], but they

could also be more microscopic in nature, such as colloidal-

particle velocities, orientational states on a quasi-crystal, and so on.

Hence, in order to characterize such variables, MNET considers

that there exist a set c~fuig of such non-equilibrated degrees of

freedom. P(c,t) is the probability that the system is at a state given

by c at time t. If one assumes [8,9], that the evolution of the

degrees of freedom could be described as a diffusion process in c-

space, then the corresponding Gibbs equation could be written as:

dS~{
1

T

ð
m(c)P(c,t)dc ð1Þ

m(c) is a generalized chemical potential related to the probability

density, whose time-dependent expression could be explicitly

written as:

m(c,t)~kBT ln
P(c,t)

P(c)equil

zmequil ð2Þ

or in terms of a nonequilibrium work term DW :

m(c,t)~kBT lnP(c,t)zDW ð3Þ

The time-evolution of the system could be described as a

generalized diffusion process over a potential landscape in the

space of mesoscopic variables c. This process is driven by a

generalized mesoscopic-thermodynamic force
L

dc
(

m

T
) whose

explicit stochastic origin could be tracked back by means of a

Fokker-Planck-like analysis [3,10]. One important setting where

MNET seems appropriate is the case of activated processes, like

a system crossing a potential barrier. Chemical reactions (and

biochemical reactions like the ones involved in gene regulation

too!) are clearly in this case. According to [8] the diffusion current

in this c-space could be written in terms of a local fugacity defined

as:

z(c)~ exp
m(c)

kBT
ð4Þ

and the expression for the associated flux will be:

J~{kB L
1

z

Lz

Lc
ð5Þ

L is an Onsager-like coefficient. After defining a diffusion

coefficient D and the associated affinity A~m2{m1, the integrated

rate is given as:

J~Jo 1{ exp
A

kBT

� �
ð6Þ

with Jo~D exp
m1

kBT
.

One is then able to see that MNET gives rise to nonlinear

kinetic laws like Eq. 6. MNET then provides a systematic and

straightforward way to obtain stochastic non-equilibrium dynam-

ics (Fokker-Planck equations) starting from the equilibrium

properties of the system. Its applications include nonlinear

transport phenomena and activation processes [3] that as we will

see later, are the cornerstones of the thermodynamic character-

ization of transcriptional regulation presented here. In this context

MNET has been applied successfully in the past in biomolecular

processes at (or under) the cellular level of description [3].

In that scenario, non-linear kinetics have been used to express, for

example RNA unfolding rates as diffusion currents, modeled via

transition state theory, giving rise to Arrhenius-type non-linear

equations [11]. In that case the current was proportional to the

chemical potential difference, so the entropy production was qua-

dratic in that chemical potential gradient. We will re-examine these

kind of dependency later when discussing gene expression kinetics. In

brief, the MNET approach is based in the generalization of the

definition of chemical potential to account for additional mesoscopic

variables and the assumption that the dynamic evolution of these

added degrees of freedom could be described by means of a diffusion

process, in order to formulate the corresponding Gibbs equation. By

doing so we notice that the time evolution of nonequilibrium systems

mimics a generalized diffusion process over a potential landscape in

the space of mesoscopic variables [3]. Later we will present a Black

Box Model of transcriptional regulation that is inspired in these same

lines of thought as MNET. This is so since we will be studying

transcriptional regulation as a generalized transport process in a

mesoscopic scale driven by activation kinetics. Transport at a mesos-

copic scale is affected by forces of different nature that characterized it

to be intrinsically non-linear and influenced by fluctuations. We will

show later that a means to analyze transport under such conditions

lies in the consideration of memory processes.

In the other hand, regulatory network analyses have indi-

cated that different levels of gene expression are strongly coupled.

An important setting in which cooperativity appears is the

phenomenon of anomalous transcriptional bursts (ATBs) that

could be observed by noticing that protein production often

occurs in bursts, each due to a single promoter or transcription

factor binding event. Although mRNA concentrations can be

modified by altering synthesis and/or degradation rates, the

dynamics of the transition to a new concentration are highly

dependent on the regulatory mechanisms related to mRNA

stability. There are a number of different scenarios or tran-

scriptional strategies following environmental change or differ-

entiation cycles, these in turn reflect different degrees of com-

promise between speed of response and cost of synthesis [12].

It comes as no surprise that non-local irreversible processes

naturally arise within such complex biochemical settings [13,14].

It has also been possible also to deal with complex chemical

kinetics by means of a probabilistic thermodynamics approach

[8] if one consider chemical reactions as generalized diffusion

processes along internal coordinates. Reactions are thus viewed as

diffusion processes through a potential barrier whose minima are

related with the initial and final states of the reactions (i.e.

reactants and products) in which a particle of the activated complex

[15] crosses the potential barrier between those two states. This

allows to write the diffusive current (the flux) as a linear law that

relates the local reaction rate and the gradient of the chemical

potential which is the thermodynamic driving force in the state of

internal variables [8]. This approach is very close to the one that

we will follow later (e.g. in equation 13) when we consider

transcriptional fluxes as generalized transport processes to be

modeled as linear laws with a memory kernel. The fluctuating

hydrodynamics approach in reference [8] will also reveal to be

useful to connect probability (as given by generalized Langevin

dynamics) with nonequilibrium thermodynamics and in particu-

lar with the notion of a generalized entropy as the thermody-

namic potential [3,7,16]. As we know, classical theories for

memory effects have been successful in connecting transport

Hyperbolic Transport in Transcriptional Regulation
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processes with fluctuations and probability. A well known general

account is given in reference [7], here the authors show precisely

the equivalence of theories for transport with memory with

generalized entropies such as the one used in the present paper

and in most of the extended irreversible thermodynamics for-

mulations. A more recent approach to the connection between

classic Langevin dynamics and non-linear thermodynamics was

formulated by Qian [16] in the context of MNET for single

macromolecule description. There are also several other important

examples, which contributions range from fluctuating hydrody-

namic models [17], information theoretical approaches [18],

memory function formalisms [19] and even projection operator

techniques [20].

Feedback between mRNA and protein production may result in

kinetic bistability and oscillations. Bistability in gene transcription

is believed to be widely used as a key ingredient in the regulation of

cellular activity. The physiological role of kinetic oscillations in

gene transcription is still an open question [14,21]. However, the

presence of non-linear transport processes in these reactive sys-

tems could be represented by means of hyperbolic-type differen-

tial equations (HDE). Within the context of transport theory

(especially linear response theory) it is possible to analyze the

connection between HDEs and so-called Memory functions. Memory

functions are thus useful to unify coherent and incoherent tran-

sport. These limiting cases arise as a consequence of two extreme

situations in the dynamic evolution of systems: oscillations and

decays. In fact, one of the most interesting questions in phy-

sicochemical dynamics is the relation between microscopic short-

time oscillations and macroscopic long-time decays. This relation

is deeply connected with questions such as non-locality and

irreversibility, facts that are behind the hyperbolic structure in

transport differential equations [22,23]. Memory functions are

mathematical constructs that enable that wave-like and exponen-

tial solutions coexist. This could be observed if we consider that

the wave equation €yyzv2 y~0 which gives rise to periodic

oscillations, and the damping equation _yyzCy~0 which causes

exponential decays; could be unified by means of the so-called

memory equation:

_yyzC

ð t

0

ds w(t{s)y(s)~0 ð7Þ

Here single-dotted quantities are first time derivatives,

double-dotted quantities second time derivatives, s is a para-

meter and w(t) is called the memory function whose role is

connecting y at all times-past to its present derivative _yy. It is

noticeable that if w(t) is a delta function or a constant (equal

to
v2

C
) equation 7 reduces to either the wave equation or the

damping equation, respectively [22]. However if the memory

function is neither a delta function nor a constant, but it is

defined as: w(t)~a exp{at with a~
v2

C
, the time evolution of y is

a wave at short times and a decay at larger times and is, in this

sense an interesting unification between these two disparate

behaviors. Notice that if we use w(t)~a exp{at in equation 7

and apply time derivative, we obtain the equation of motion

for the damped harmonic oscillator. It is also important to

stress that memory functions are a means of unifying coherent

(wave-like) and incoherent (or diffusive) transport processes.

Real kinetic processes (like the ones present in reaction-diffusion

fronts) often present this combination of wave-like propaga-

tion with diffusive evolution, as has been known for decades

[24].

Analysis

Thermodynamic formalism
It is customary in non-equilibrium thermodynamics to assume

that a generalized entropy-like function Y exists, which may be

written in the form [7,25]:

dtY~T{1½dtUzpdtv{
X

i

midtCi{
X

j

Xj8dtWj � ð8Þ

Eq. 8 is a formal extension of the Gibbs relation of equilibrium

thermodynamics.The quantities appearing therein are as usual: T
is the local temperature, p and V the pressure and volume, etc. Xj

and Wj are extended thermodynamical fluxes and forces [7]. For a

multicomponent mRNA mixture (under fixed volume and

pressure), the set of relevant variables consists in the temperature

T(~rr,t) and concentration of each gene species Ci(~rr,t) as the slow

varying (classical) parameters set and the mass flux of these species
~WWi(~rr,t) as fast variables. These latter variables will take into ac-

count the presence of inhomogeneous regions (concentration

domains formed because of the gene regulatory interactions) to

correct the predictions based on the local equilibrium hypothesis.

The non-equilibrium Gibbs free energy for a mixture of i~
1 . . . M, mRNA transcripts reads [2]:

dtG~{YdtTz
X

i

midtCiz
X

j

Xj8dtWj ð9Þ

Gene expression is of course a chemical process. In principle,

then, it must be useful to consider the extent of reaction j, hence

(dtG)T ,P,Wj
~
P

i m{
i dtNi is rewritten by using the stoichiometric

coefficients ni~
LNi

Lj
and the chemical affinities A~

P
i m{

i ni. The

stoichiometric coefficients and the chemical affinities could be

defined likewise for a set of (k~1 . . . R) regulatory interactions

(considered as chemical reactions) as follows:

dtG~{YdtTz
X

k

Akdtjkz
X

j

Xj8dtWj ð10Þ

or

dtG~{YdtTz
X

k

X
i

m{
i,kni,k

" #
dtjkz

X
j

Xj8dtWj ð11Þ

Biochemical kinetics in Gene Regulation: A Black-Box

model. In most cases, the explicit stoichiometry of the

regulatory interactions is unknown and in the vast majority of

the already studied cases the reactions are given on a one-to-one

basis, i.e. one molecule of a transcription factor on each gene-

transcription site (or one molecule of each kind of transcription

factor in the case of multi-regulated gene targets). Given this, we

will assume ni~1; Vi. In this so-called diluted case we have that the

extent of each reaction is then proportional to the concentration

rate of change and we recover the non-reactive regime similar to

that given by Eq. 9. It is important to stress that this approxi-

mation is not a disparate one, given the fact that usual DNA/RNA

concentrations within the cells are in the picomolar-nanomolar

regime. Also, as an example, of the almost 30,000 different genes

in humans just a small number of these (about 1000–1500) are

Hyperbolic Transport in Transcriptional Regulation
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known to be transcription factors. Nevertheless in order to take

into account the scarce yet important gene regulatory interactions

(albeit in an indirect Black-Box manner) we retain the generalized

force-flux terms to get:

dtG~{YdtTz
X

i

midtCiz
X

j

Xj8dtWj ð12Þ

Since gene regulation occurs within the cell, it is possible to

relate an internal work term with the regulation process itself, being

this a far from equilibrium contribution. This contribution is given by

the generalized force-flux term (third term in the r.h.s. of Eq. 12).

This is so as gene regulation often does not occur in situ and also

since is a means to take into account the changes in the local

chemical potentials that cause the long tails in the fluctuations

distributions characteristic of non-equilibrium small systems (e.g.

cells). As we have already discussed the effect of these fluctuations

could be taken into account by considering their effect in the

chemical potentials [3] which we must do as follows: The term

relating mRNA flows due to transcriptional regulation could be

written as a product of extended fluxes Wj and forces Xj . Here

j~1, . . . M refers to the different mRNA species being regulated,

that is, indexes i and j refer to the very same set of mRNA

transcripts but in one case (i) we take into account their local

equilibrium behavior (as given by their independent chemical

potentials and average local concentrations) and in the other case

(j) we are interested in their highly fluctuating (far from

equilibrium) behavior as given by the term
X

j
Xj8dtWj .

Hyperbolic transport processes in non-equilibrium

thermodynamics. It is known that the functions of genes that

act as Transcription Factors (TFs) and genes that are expressed by

the chemical action of such TFs (called Target Genes, TGs) are

different. Research in the energetics of transcriptional regulation

has suggested a noticeable difference between the chemical

affinities between TFs and TGs [26,27]; making that, in general,

it is easier (less costly in energetic terms) to transcribe TFs than

TGs. It has been discussed that TFs are genes whose expression is

regulated by lower activation-energy barriers. TFs are involved in

the transcriptional activation of other genes, then it is expected

that they are synthesized first when energy is started to being

released by metabolic processes within the cell. TGs should, in

general be produced later and with higher activation energies thus

leading to the role of TFs as master regulators of whole-genome

expression. Now we need to propose a form for the extended

fluxes and forces within this highly fluctuating regime, that at the

same time allow for experimental verification, is simple enough to

be solved and it is compatible with the axioms of extended

irreversible thermodynamics. Here we are proposing a system of

linear (in the forces) coupled fluxes with memory that was used to

successfully characterize another highly fluctuating system, a fluid

mixture near the critical point and gave rise to hyperbolic type

(causal) transport equations [28]. The constitutive equations are,

~WWj(~rr,t)~
X

k

ð t

{?
lW

j,k~uue

(t’{t)

tW
j mj,k(~rr,t’)dt’ ð13Þ

~XXj(~rr,t)~

ð t

{?
lX

j e
t

(t’’{t)
X

j ~WWj(~rr,t’’)dt’’ ð14Þ

The l’s are time-independent, but possibly space-dependent

amplitudes, ~uu is a unit vector in the direction of mass flow (the

nature of~uu will not affect the rest of our description, since we will

be dealing with the magnitude of the mass flux j~WWj j) and t’s are the

associated relaxation times considered path-independent scalars.

Since we have a linear relation between thermodynamic fluxes and

forces some features of the Onsager-Casimir formalism will still

hold. This will be especially important when considering cross-

regulatory interactions. It can be shown that Equations 13 and 14

are mathematically equivalent to a system of hyperbolic dif-

ferential (transport) equations (HDE) [29]. By definition, in an

HDE, the Cauchy problem can be locally solved for any initial

data along an arbitrary non-characteristic hyper-surface [30]. The

solutions of HDEs are thus waves, i.e. when a disturbance is made

in the initial data not every space-point registers the disturbance at

once. Relative to a fixed time coordinate, disturbances have a finite

propagation speed. This means that the non-singular solutions of

Cauchy Problems in HDEs are causal. In fact, it is only natural

to expect a lapse of time (lag) between synthesis of transcrip-

tion factors and transcription mediated by these. This dynamic

coupling is modeled by Eq. 13 and 14. Due to the spatial nature of

the experimental measurements (either RNA blots or DNA/RNA

chips and even present-day RNA-Seq techniques, measure space-

averaged mRNA concentrations) it is possible to work with the

related scalar quantities instead.

Wj(~rr,t)~
X

k

ðt

{?
lW

j,k e

(t’{t)

tW
j mj,k(~rr,t’)dt’ ð15Þ

Xj(~rr,t)~

ðt

{?
lX

j et
(t’’{t)

X
j Wj(~rr,t’’)dt’’ ð16Þ

We could see that the energetics related to transcriptional

regulation, as given by the third term in the r.h.s. of Eq. 12,

namely
P

j Xj8dtWj depends via equations 15 and 16 on the

transcription regulation chemical potentials mj,k [2] as well as experimen-

tal parameters like the relaxation times (t’s ) and the amplitudes

(l’s). So whenever we know the dynamics of these energetic

contributions mj,k we are in a position to describe the dynamics of

gene regulation as given by equation 12. By considering the effect

of fast processes in a mesoscopic scale by means of generalized

chemical potentials and their corresponding transport processes,

we are taking an approach which is similar in philosophy to that of

MNET [3], although of a less formal nature.

Three simple mathematical models
In order to test for the applicability of the afore mentioned

hypothesis we will introduce some models intended as working-

examples. It is no-wonder that the dynamics of the regulatory

chemical potentials could be quite complex, however we could

probe the behavior of cell systems by considering simple models

that however capture at least a part of the associated complexity.

In the present work we will consider three different and, to greater

extent complementary scenarios: an instantaneous pulse-like burst

of energy, a cyclic energy release and an activated kinetic process.

These are to be modeled as a delta function, a sinusoidal signal

and a sigmoidal (hyperbolic tangent) process, respectively.

Instant pulse perturbation. Consider a Dirac distribution

of the following form:

ð ?

{?
d(t{t

0
)dt
0 ð17Þ
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Delta distributed stimuli or transcriptional pulses are present in

both, regular and anomalous, transcriptional bursts [31–37]. For

delta functions we have the well-known result

ð b

a

d(x{x0)dx~
f (x0) ifavx0vb

0 c:v:d:

�
ð18Þ

In view of this, the integrated effect of an instantaneous (delta-

like) perturbation is:

ð t

{?
e

(t{t
0
)

t d(t{t
0
)dt
0

with tw0 ð19Þ

By changing variables to s~
t{t

0

t
, the integral in equation (19)

becomes t

ð ?

0

es d(s) ds. So that we have:

t

ð ?

0

es d(s) ds~te0~t ð20Þ

By introducing such result in equation 15, and by having in

mind that in our case mj,k(r,t
0
)~m0

j,kd(t
0
{t), with m0

j,k a constant,

we obtain:

Wj~
X

k

lWj,k

ð t

{?
e

(t
0
{t)

tW
j d(t

0
{t)dt

0
;

which means that Wj~
X

k

lWj,km0
j,k tWj ~W0

j ð21Þ

and now, introducing this result into equation 16

Xj~

ð t

{?
lX

j e

(t
00

{t)

tX
j W0

j dt
00 ð22Þ

Now, let us consider the following change of variables

w~
t
00
{t

tX
j

, or wtX
j ~t

00
{t; hence

d(wtX
j )~dt

00

The integral in equation 22 becomes:

ð 0

{?
tewtX

j dw ð23Þ

Substituting,

Xj~lj W
0
j tjX

ð 0

{?
ewdw; or Xj~lj Wj tjX ½e0{e{?� ð24Þ

to obtai

Xj~ lj Wj tjX ~X 0
j ð25Þ

Hence, in the case that m(j,k)~d(t0{t) we get that

Wj~W0
j ; and also Xj~X 0

j ð26Þ

This means that the time-integrated effect of an instantaneous

free energy pulse, reduces to the general case of a constant

transcriptional flux and driving force [2]. This may seem a little bit

counter-intuitive to molecular biologists, because in some instances

they have assumed that pulses in energy influx (i.e. m(j,k)~
d(t0{t)) will necessarily imply pulses in transcriptional fluxes,

something which do not happen due to memory effects (lags in the

system’s response). This is so, because by considering memory

effects (i.e. a kernel such as the exponential one in equations 15 and

16) one is precluding the possibility of parabolic transport processes

which are not of a causal nature and are thus un-physical [29].
Periodic biochemical stimuli. Now, let us turn our

attention to a periodic chemical potential mj,k~Aj,k sin(vt
0
zw)

a case related to cyclic metabolic processes [38–44] with Aj,k a

system specific constant. In such case the integral in equation 15 is

given by:

ð
e

t
0
{t
t Aj,ksin(vt

0
zw) dt

0
~Aj,ke

{t
t

ð
e

t
0
t sin(vt

0
zw) dt

0 ð27Þ

If we call I to the expression in the r.h.s. of equation 27, we can

show that:

I~
t Aj,k

1zv2t2
½sin (vtzw){tv cos (vtzw)� ð28Þ

Let us see how; by substitution in Eq. 15 we get:

Wj~
X

k

lWjk

ð t

{?
e

t
0
{t

tW
j Aj,k sin (vt

0
zw)dt

0 ð29Þ

Wj~
X

k

lWjk
tWj Aj,k

1zv2t2
jW

½sin (vtzw){tWj v cos (vtzw)� ð30Þ

Now, if we insert equation 30 into equation 16 we obtain:

Xj(r,t)~

ð t

{?
lX

j e

t
00

{t

tX
j Wj(r,t

00
)dt
00 ð31Þ

Xj~

ð t

{?
lX

j e

t
00

{t

tX
j
X

k

ljk

tWj Aj,k

1zv2t2
jW

½sin (vt
00
zw){tWj v cos (vt

00
zw)�dt

00

ð32Þ

Xj~lX
j

X
k

ljk

tWj Aj,k

1zv2t2
jW

ð t

{?
e

t
00

{t

tX
j ½sin (vt

00
zw){tWj v cos (vt

00
zw)�dt

00

ð33Þ

ð21Þ
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Xj~lX
j

X
k

ljk

tWj Aj,k

1zv2t2
jW

e

{ t

tX
j ½
ð t

{?
e

t
00

tX
j sin (vt

00
zw)dt

00

{tWj v

ð t

{?
e

t
00

tX
j cos (vt

00
zw)dt

00 �

ð34Þ

That is to say:

Xj~lX
j

X
k

ljk

tWj Aj,k

1zv2t2
jW

e

{ t

tX
j ½I1{tWj vI2� ð35Þ

where

I1~

ð t

{?
e

t
00

tX
j sin (vt

00
zw)dt

00 ð36Þ

and

I2~

ð t

{?
e

t
00

tX
j cos (vt

00
zw)dt

00 ð37Þ

Solving I1 by partial integration we obtain

I1~

ð t

{?
e

t
00

tX
j sin (vt

00
zw)dt

00 ð38Þ

~tX
j e

t
00

tX
j sin (vt

00
zw){tX

j v

ð t

{?
e

t
00

tX
j cos (vt

00
zw)dt

00 ð39Þ

But this last integral equals I2 so we solve it by partial

integration too

I2~

ð t

{?
e

t
00

tX
j cos (vt

00
zw)dt

00 ð40Þ

~tX
j e

t
00

tX
j cos (vt

00
zw)ztX

j

ð t

{?
e

t
00

tX
j sin (vt

00
zw)dt

00 ð41Þ

Then, we have

I2~tX
j e

t
00

tX
j cos (vt

00
zw)ztX

j I1 ð42Þ

Hence

I1~tX
j e

t
00

tX
j sin (vt

00
zw){tX

j vI2 ð43Þ

~tX
j e

t
00

tX
j sin (vt

00
zw){tX2

j ve

t
00

tX
j cos (vt

00
zw)ztX

2

j vI1 ð44Þ

That gives

I1~
tX

j e

t
00

tX
j

1zvtX2
j

½sin (vt
00
zw){tX

j v cos (vt
00
zw)� ð45Þ

After solving both integrals by partial integration, their sum is

given by:

Xj~lX
j

X
k

ljk

tWj Aj,k

1zv2t2
jW

e

{ t

tX
j ½I1{tWj vI2�

~lX
j

X
k

ljk

tWj Aj,k

1zv2t2
jW

½(
tX

j e

t
00

tX
j

1zvtX2
j

½sin (vt
00
zw){tX

j v cos (vt
00
zw)�)(1{tWj tX

j v)

ztWj tX
j ve

t
00

tX
j cos (vt

00
zw)� ð46Þ

If we examine equations 30 and 46, we notice that periodic

biochemical stimuli induces periodic transcriptional responses.

These responses are (in spite of the nonlinearities) still coherent to

the stimulus. Such nonlinearities reflect, although in a highly

idealized manner, the effect of the lag in the response to

transcriptional activation. In the results section we will discuss

these phenomena more deeply.
Saturation kinetics. Let us now turn our attention to a

model for saturation stimuli, namely that mj,k~Aj,k tanh (t=t
0
).

Hyperbolic tangent models in a simplified yet appropriate way

those processes which start to grow gradually due to activation

kinetics, then enter into a regime of constant grow and finally

reach an asymptotic behavior due to saturation. By substituting

this hyperbolic tangent model in equation 15 we obtain:

Wj(~rr,t)~
X

k

ð t

{?
lWj,k e

(t’{t)

tW
j Aj,k tanh (t=t

0
) dt

0 ð47Þ

Since there is no closed, analytical solution of the integral in

equation 47, we will resort to numerical estimates to it. Due to the

singular behavior of the integrand, we introduced a cut-off time in
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Figure 1. Transcriptional regulation flux (Wj) dynamics for periodic biochemical stimuli with v~0:1 Hz. Different lines indicate different
values of the associated relaxation time tWj in seconds.
doi:10.1371/journal.pone.0021558.g001

Figure 2. Transcriptional regulation flux dynamics for periodic biochemical stimuli for several values of frequency v. Panel A
w~0:07 Hz, Panel B w~0:08 Hz, Panel C w~0:09 Hz, Panel D w~0:1 Hz (same as previous figure). Different lines indicate different values of the
associated relaxation time tWj in seconds.
doi:10.1371/journal.pone.0021558.g002
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the lower limit (instead of setting it equal to {?), based on

asymptotical considerations. Numerical integration was performed

by means of the [R] mathematical and statistical computing

system, using an implementation of the QUADPACK algorithm

by Piessens, et al [45] that integrates by performing an adaptive

quadrature of functions of one variable over a finite or infinite

interval with extrapolation by the Epsilon algorithm and globally

adaptive interval subdivision. More details in the results section

below.

Results

Model results
It is known that the process of transcribing a gene can be divided

roughly into three phases: initiation, elongation and termination. The

initiation step involves the organization of the transcriptional complex

onto the duplex genome at the promoter site for the specifically

activated gene. The elongation step involves rate constants Kr between

30 and 100 Hz and occurs at high ribonucleotide triphosphate

concentrations (i.e. in a high free energy supply environment due to

intense metabolic activity ). In the case that a Pyrophosporolysis

reaction is involved the rate constants are also between 30 and 100 Hz,

whereas the termination step is usually characterized by more

moderated rate constants in the 0.1–1 Hz range. A typical gene (if

such a thing it exists) would take on average up to some 2 minutes to be

transcribed, hence tWj *100 seconds [46]. Transcriptional processes

are assumed as first order kinetic processes, hence within a single step

sscenario, they may be described by Arrhenius type relations

Kr~A0 exp

{DGprocess

R T . If we consider a conservative value for the

pre-exponential factor A0 of, say 108 s{1 then, DGprocess~

{RT ln
Kr

A0

� �
would give us DGelongation [ (35:62

kJ

mol
, 38:73

kJ

mol
) and DGtermination [ (47:50

kJ

mol
, 53:44

kJ

mol
). With regards to

the initiation process, its energetics are more specific and system-

dependent. Here we will consider an extremely simplified model with

an approximate value of DGinitiation^100{120
kJ

mol
. In such a

Figure 3. 3D Plot of the relaxation-time dependent transcriptional regulation flux dynamics for periodic biochemical stimuli for
several values of v. Panel A w~0:07 Hz, Panel B w~0:08 Hz, Panel C w~0:09 Hz, Panel D w~0:1 Hz.
doi:10.1371/journal.pone.0021558.g003
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manner that just for illustrative purposes the amplitude constant

for transcription lWj,k would be given by lWj,k*DGinitiation
j,k z

DG
elongation
j,k zDGtermination

j,k . Given the figures just sketched, we have

lWj,k [(183,212)
kJ

mol
. So, for now on we will be taken

tWj ƒ100 seconds, and lWj,k*200
kJ

mol
.

Instant pulse. As we have already discussed, under a

memory function formalism, the response of the gene-regulatory

system to an instantaneous free energy supply is not that of a

transcriptional pulse. A (small) constant transcriptional flux is

established instead. In the highly simplified theory presented here,

we are not yet taking into account degradation mechanisms that

would modify the dynamics of mRNA level profiles. The reason is

that nucleic acid degradation is controlled usually by means of

hunter proteins which act upon post-translational modifications

difficult to model. First of all, because the actual mechanisms of

activation of these degraders are still under scrutiny [47] and second

because experimental information about the dynamics of RNA

degradation are not still available.

Periodic stimuli. In Figure 1 we show the time evolution of

the transcriptional flux Wj (i.e. the amount of mRNA for gene j

released per unit time) under the periodic stimuli model as given

by equation 30. The model almost preserves the periodicity of the

original energy influx (mj,k) yet with a slight delay (or lag)

dependence on the relaxation time of transcription (tWj ), as it could

be seen in the phase shift that different relaxation times curves

(from tWj = 15 to 100 seconds) show in Figure 1. It is also possible

to notice from Figure 1 that smaller transcriptional relaxation

times induce higher transcriptional fluxes (as it is expected since

genes regulated faster, could be transcribed more often in a given

time lapse). In Figure 2 we could notice that the aforementioned

effect of the relaxation time on the flux is now supplemented with

an additional frequency (of the energy uptake) dependence. This

effect is even more dramatic than that of the relaxation times, since

a relatively small variation in frequency from v~0:07 Hz (panel

A) to v~0:1 Hz (panel D) induces a tenfold change in the

maximum transcriptional flux (It should be noted that negative

values of the flux are un-physical because when there is no free

energy intake, transcriptional regulation -which is an activated

process- simply do not proceed. Thus, only positive values of Wj

are to be considered on a physicochemical discussion.). Faster

metabolic energy release dynamics give rise to smaller tran-

scription fluxes due to a dynamic coupling effect which is

modulated by the relaxation times tWj . In other words, even if

the metabolism is pumping energy faster to the system, the rate of

transcription is limited by transcription factor dynamics and not

only by energy availability. It is interesting to see that even in such

a simplified model for the coupling between metabolism (as given

by the release of energy that plays the role of a source of free

energy, mj,k) and transcriptional regulation (given by tran-

scriptional flux Wj i.e. the rate of release of a given transcript j

regulated by transcription factors k) the fundamental features of

the phenomena show up, namely the interplay between energy

and time that are crucial to determine both the biochemical

kinetics and its associated dynamics. The key factors in this model

are thus the free energies and the relaxation times.

Figure 4. 3D Plot of the relaxation-time dependent transcriptional regulation flux dynamics for periodic biochemical stimuli for
v~0:06 Hz.
doi:10.1371/journal.pone.0021558.g004
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In order to appreciate better the nature of such dynamic

coupling effects in the transcriptional flux, Figure 3 shows a 3D

plot with both the relaxation-time and time dependence of Wj for

different values of the frequency of energy release v. There we

appreciate that the biggest effect is due to the frequency and also

that the effect of the relaxation times is diminished at larger

frequencies. However, if we look at the very-small relaxation times

region of the plot (tWj ?0), the effect of the relaxation times in

increasing the flux is stronger. In Figure 4 we will see a closer look at

this effect. The effect of short-relaxation time enhancement of the

transcriptional flux is more dramatic in the low frequency

domains, so we are plotting the behavior for v~0:06 Hz. In

Figure 5 we can observe that the behavior of the flux-conjugate

(Xj ) force dynamics is pretty similar to that of the flux, an expected

result given the linear character of equations 15 and 16.

Saturation kinetics. Numerical solutions of equation 47

have been obtained for different transcriptional relaxation times

from tWj ~15 to 100 seconds. Results are shown in Figure 6. We

could notice that for fast processes (i.e. processes with com-

paratively small values of tWj , say tWj v30 seconds) the activation

phase occurs very quickly (as it is obvious), nevertheless saturation

is also attained in a shorter time and maximum transcriptional

fluxes are smaller than in the case of larger transcription relaxation

times (tWj §40 seconds). For these latter case we have found that

the activation process take more time, but once activation is

attained there is a longer lasting growing stage and in some

instances saturation didn’t even occurred within the considered

time range. Maybe we could have a clearer picture by considering

Figure 7, which is a 3D plot of the same results. As in the periodic

signal we should take into account that only positive values of the

transcriptional flux W are physical, then the behavior observed

would be as follows: in the case of shorter relaxation times one

could notice a steeper activation stage followed by a fast growing

stage that soon reaches saturation (steady state fluxes); whereas in

the case of larger relaxation times what one could observe is a

latency time with no flux, followed by a moderate growing stage,

that is however, longer lasting than that for smaller relaxation

times and it is prolonged so much that we could not see saturation

reached during the time range under consideration.

Discussion

Experimental evidence for Anomalous Transcriptional
Bursts

Experimental techniques in genomics are rapidly evolving, in

such a way that probing the cell in real time under almost in vivo

conditions is now becoming possible. In particular with regards to

experimental verification of our models, there have been several

instances in which related work has been done. One approach to

provide real-time semi-quantitative analysis of transcription is the

imaging of reporter gene expression, for example, using firefly

luciferase [48,49], such studies bring evidence to the hypothesis

that gene expression is very dynamic over large periods and

occurs in transcriptional bursts of varying duration that are not

coordinated between different cells [50]. However, understanding

real-time dynamics by direct quantification of transcription rates of

multiple genes over time in single cells has not been achieved yet.

As we have already mentioned, the energy stimulation me-

chanisms just proposed are just highly idealized approximations to

real phenomena. However, it still has been possible to observe

experimental situations in which these approximations seem to

hold, or at least seem to represent qualitatively the system’s

behavior. Transcriptional bursting activated by pulse-like stimuli

have been observed in glandular expression [31] where pulses of

light induce the expression of hormone response related genes in

rats. Chemical pulses in which sudden release of a chemical stimulant

Figure 5. Thermodynamic flux-conjugate (Xj) force dynamics for periodic biochemical stimuli with v~0:09 Hz. Different lines indicate
different values of the associated relaxation time tWj in seconds.
doi:10.1371/journal.pone.0021558.g005
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produces the expression of the Gonadotrophin gene (another

important hormone in mammal metabolism and signalling

pathways) is reported in [32]. Even sets or networks of genes

have been found to present transcriptional response to instanta-

neous perturbations [34–36]. It is noticeable that the examples

from the literature correspond to genes associated to either

signalling or hormone-related pathways.

In the case of periodic or quasi-periodic stimulation we have

found that it has been reported in the context of cell synchro-

nization even in species so simple as algae [38] and protozoa [39]

but also in higher species like yeast [43,44] and even mammals

[42]. Different techniques have been used [39–41]. The very

existence of gene clocks and circadian rhythms point-out to the

presence of these oscillatory expression patterns (see reference [27]

and references 8,9 and 14 therein) that are thus extremely

important to understand time-regulated biological processes.

Saturation kinetics are of course extremely common in bio-

chemical processes, from enzyme kinetics to protein complex

formation to morphogenesis. In particular, sigmoidal saturation

kinetics in gene expression have been observed in such disparate

scenarios as cis regulation in chordates [51] (in this case in the

highly conserved HOX gene family, extremely important in

embryonic development, cell differentiation and morphogenesis),

transport enhanced expression in rat retina [52] and thyroid

hormone -mediated expression in glial cells [53], and are thus

expected processes in many other instances [54].

General discussion, importance, principal findings and
perspectives

It is of course of general interest in current genomic studies to

relate temporal patterns of gene expression associated with, for

example, different developmental stages or disease conditions to

study patterns of long-term developmental gene regulation either

in homeostatic or in pathological conditions [55,56]. Gene

expression dynamics is central also to understand transcriptional

regulation, it has been stated [57] that in order to express specific

genes at the right time, the transcription of genes is regulated by

the presence and absence of transcription factor molecules, but

because of transcription factor concentrations undergoing constant

changes, gene transcription takes place out of equilibrium

undergoing complex dynamics [58,59]. These changes may be

related with signaling processes [60], promoter architecture [61],

and many other biological processes. However, some of the most

important changes in expression dynamics are due to the inter-

action between metabolism and transcriptional regulation [62]

now commonly linked to extreme transcriptional de-regulation

and cancer [63,64]. It is no wonder that gene expression and

metabolism have strongly tied connections but the explicit phy-

sicochemical mechanisms remain largely unexplored. Some

studies have focused in network based semi-quantitative models

of cross-talk interactions [65]; other studies aim to determine the

extent to which the different levels of metabolic and transcriptional

regulatory constraints determine metabolic behavior by means of a

Figure 6. Transcriptional regulation flux dynamics for saturation kinetics. Different lines indicate different values of the associated
relaxation time tWj in seconds.
doi:10.1371/journal.pone.0021558.g006
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new flux-balance analysis under steady state conditions [66], in

some instances, simultaneous measurements of cyclic AMP and

gene expression for selected genes revealed a suspected relation-

ship between specific gene expression and metabolism [67,68].

One paradigmatic example of the tight relationship between

changes in metabolism and gene expression levels is that of tumor

cells. It is known that tumors could depend on energy production

pathways that are different from those of normal cells. These

unique pathways require in some cases the expression and func-

tion of so-called tumor-specific enzymes. Some of these glycolytic

enzymes, as well as other modulators of tumor behavior, have

recently been analyzed in search for a clue that inhibition of such

enzymes or appropriate tuning of such modulators should deprive

tumors of energy, while leaving nontransformed cells unaffected.

Recent findings seem to point out to several so-called metabolic

transformations that permit neoplasms survival, thus suggesting a role

of metabolic pathways as potential pharmacological targets [69]. In

fact, preliminary experiments on animals with hepatocellular

carcinoma have indeed shown very encouraging results. It appears

that modulating the energy production pathways of tumors is poised

to become a substantial research area for cancer treatment [70].

In view of these hallmarks it is thus of foremost importance to

have quantitative models, firmly founded in a physicochemical

description, to probe for the behavior (although in a highly sim-

plified manner yet) of genomic systems. Within this setting, we have

found (for three different general models) the dependence that the

amount of mRNA transcribed per unit time (what we call the

transcriptional flux) have in the associated relaxation times and

other kinetic parameters (activation energy amplitudes, frequency

of periodic energy oscillations and so on) under a mandatory

assumption of causality, i.e. as modeled by means of hyperbolic

equations or memory functions. We are confident that such

simplified description could serve as a basis for more detailed

systematic studies that will help to unveil the role of thermodynamic

processes in transcriptional regulation, and to ultimately understand

the relationship between energetics and cell functioning.
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