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ABSTRACT

Objective: Feature engineering is a major bottleneck in phenotyping. Properly learned medical concept embed-

dings (MCEs) capture the semantics of medical concepts, thus are useful for retrieving relevant medical features

in phenotyping tasks. We compared the effectiveness of MCEs learned from knowledge graphs and electronic

healthcare records (EHR) data in retrieving relevant medical features for phenotyping tasks.

Materials and Methods: We implemented 5 embedding methods including node2vec, singular value decompo-

sition (SVD), LINE, skip-gram, and GloVe with 2 data sources: (1) knowledge graphs obtained from the observa-

tional medical outcomes partnership (OMOP) common data model; and (2) patient-level data obtained from the

OMOP compatible electronic health records (EHR) from Columbia University Irving Medical Center (CUIMC).

We used phenotypes with their relevant concepts developed and validated by the electronic medical records

and genomics (eMERGE) network to evaluate the performance of learned MCEs in retrieving phenotype-

relevant concepts. Hits@k% in retrieving phenotype-relevant concepts based on a single and multiple seed con-

cept(s) was used to evaluate MCEs.

Results: Among all MCEs, MCEs learned by using node2vec with knowledge graphs showed the best perfor-

mance. Of MCEs based on knowledge graphs and EHR data, MCEs learned by using node2vec with knowledge

graphs and MCEs learned by using GloVe with EHR data outperforms other MCEs, respectively.

Conclusion: MCE enables scalable feature engineering tasks, thereby facilitating phenotyping. Based on current

phenotyping practices, MCEs learned by using knowledge graphs constructed by hierarchical relationships

among medical concepts outperformed MCEs learned by using EHR data.
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INTRODUCTION

Phenotyping is a task of identifying a patient cohort’s underlying spe-

cific clinical characteristics. With the widespread adoption of electronic

health records (EHR) data, phenotyping is one of the most fundamental

research challenges encountered when using the EHR data for clinical

research.1 As learned from the electronic medical records and genomics

(eMERGE) network, the process of developing and validating a pheno-

type requires a large amount of manual effort and time, typically up to

6–10months.2,3 A phenotype typically contains thousands to tens of

thousands of relevant medical concepts. For example, type 2 diabetes

mellitus (T2DM) phenotype developed by eMERGE network contains
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about 12000 relevant medical concepts.4,5 Thus, identifying phenotype-

relevant medical concepts (eg, diagnosis, laboratory test, medication,

and procedure concepts), which is called feature engineering, is an es-

sential but often labor-intensive step in developing a phenotype. Addi-

tionally, feature engineering for rule-based phenotyping heavily relies

on domain experts, can be error-prone, and is not generalizable or por-

table. Recently, data-driven phenotyping methods have been proposed

to readily extract relevant features from external knowledge sources.6–

10 Existing methods, however, often required text mining techniques

that are not easy to implement, thus making it difficult to implement in

real-world phenotyping tasks.

Neural embedding, which was originally invented to learn low-

dimensional vector representations of words,11,12 has recently been

adopted to learn the representations of medical concepts since effi-

ciently trained embeddings can capture complex relationships of in-

put features. Since well-trained medical concept embeddings

(MCEs) can capture underlying semantics of medical concepts,

MCEs have been used to improve the performance of various down-

stream tasks,13,14 such as patient visit prediction,15 patient outcome

and risk prediction,16 and phenotyping.17

Knowledge graphs are widely used resources to learn MCEs. A

knowledge graph contains medical concept nodes connected via various

relationships defined from domain knowledge. Commonly used knowl-

edge graphs include Unified Medical Language System (UMLS), Sys-

tematized Nomenclature of Medicine Clinical Terms (SNOMED CT),

International Classification of Disease (ICD), and Human Phenotype

Ontology (HPO). Graph embedding (ie, network embedding) methods

have been leveraged to capture the connectivity patterns and structure

of a knowledge graph to learn the embedding of medical concept

nodes.18 For example, Agarwal et al19 learned MCEs using SNOMED

CT with several graph embedding methods and achieved impressive

performance in various healthcare applications, including multi-label

classification and link prediction tasks.. A knowledge graph can be

enriched by introducing other kinds of relationships to increase connec-

tivity of the nodes in a knowledge graph. Shen et al20 learned the em-

bedding of HPO concepts by enriching an HPO knowledge graph using

heterogeneous vocabulary resources.

EHR data are also commonly used resources to learn MCEs.

Generally, EHR data are sliced into bags-of-medical-concepts by ap-

plying different sizes of context windows (eg, visit window, 1-year

window) and then embedding methods that leverage co-occurrence

information, such as GloVe21 and skip-gram,12 are applied to learn

MCEs. Since complex relationships among co-occurring medical

concepts are captured during training, well-trained MCEs improve

the performance of various downstream tasks. For example, Med2-

vec used EHR data to learn non-negative MCEs and showed strong

performance in predicting medical codes in future visits.15

In this study, we evaluated how MCEs learned by using various

data sources and embedding methods can facilitate feature engineering

for phenotyping. We trained MCEs using 5 different embedding meth-

ods with 2 different data sources—knowledge graphs and patient level

data obtained from EHR. Thirty-three phenotypes developed and vali-

dated by the eMERGE network2 with their corresponding medical con-

cept lists were used as benchmark data that reflect the current

phenotyping practices to evaluate different MCEs. MCEs were evalu-

ated on retrieving phenotype-relevant concepts given seed concept(s) se-

lected from each phenotype. Additionally, we provided a concept

recommender application operating on the learned MCEs to leverage

the utility of MCEs and catalyze future studies.

MATERIALS AND METHODS

Data description and processing
Medical concepts used in this study are defined by the Observational

Health Data Science and Informatics (OHDSI) Observational Medi-

cal Outcomes Partnership common data model (OMOP CDM).

OHDSI is a multi-stakeholder, interdisciplinary collaborative that

aims to bring out the value of health data through large-scale analyt-

ics.22 The OMOP CDM harmonizes several different medical coding

systems, including but not limited to ICD-9-CM, ICD-10-CM,

SNOMED CT, and LOINC, to achieve standardized vocabularies

while minimizing information loss, thus provides a unifying data

format for various analysis pipelines.23 The standard vocabularies

were built by the OMOP CDM and defined the meaning of a clinical

entity uniquely across all databases and independent from the cod-

ing system. Non-standard concepts that have the equivalent mean-

ing to the standard concept were then mapped to the standard

concept. Tables and identifiers (ID) from OMOP were styled in

italics (eg, concept_relationship table, visit_occurrence_id) through-

out this article. In this study, we focused on condition (ie, diagnosis)

concepts, which play a critical role in phenotyping.

We used 2 kinds of knowledge graphs in this study, hierarchical

and enriched knowledge graphs (Figure 1). The hierarchical knowl-

edge graph was constructed by using “is-a” and “subsume” relation-

ships between standard condition concepts obtained from the

concept_relationship table in the OMOP CDM. The enriched

knowledge graph expanded upon the hierarchical knowledge graph

by adding non-standard condition concepts to the hierarchical

knowledge graph. Those non-standard concepts were connected to

the existing nodes of the hierarchical knowledge graph with addi-

tional hierarchical relationships obtained from the OMOP concep-

t_ancestor table.23 As a result, the enriched knowledge graph has

more nodes and increased connectivity in comparison with the hier-

archical knowledge graph (Table 1). A subgraph of the hierarchical

LAY SUMMARY

Phenotyping is a task of identifying a patient cohort’s underlying specific clinical characteristics and has been considered as

one of important research challenges. Among steps of phenotyping, identifying phenotype-relevant medical concepts, which

is called feature engineering, is critical but labor-intensive step.

Neural embedding (ie, embedding), which transforms features into low-dimensional vector representations, has widely

adopted to many tasks in various domains including medical research since efficiently trained embeddings can capture com-

plex relationships of the features leading to improve the performance of downstream tasks.

In this study, we implemented several embedding methods to obtain embeddings of medical concepts and comparatively

evaluated obtained medical concept embeddings on a task of identifying phenotype-relevant concepts.
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knowledge graph and the enriched knowledge graph are depicted in

Supplementary Figure S1 as examples.

EHR data were obtained from the Columbia University Irving

Medical Center (CUIMC) EHR database containing inpatient and

outpatient data from more than 5 million patients. To ensure consis-

tent data quality, we used the recent 5-year EHR data from January

1, 2013 to December 31, 2017.24,25 We sliced the EHR data into

bags-of-medical-concepts by applying 2 different context windows:

visit-window; and 5-year window (Figure 1). The visit-window was

defined for each patient by distinct and unique visits and identified

by visit_occurrence_id, an OMOP identifier assigned to each

patient’s inpatient and outpatient visit. It is worth noting that visit

window corresponding to each visit has different length since visits

vary in length, generally less than a few hours. Five-year window ag-

gregated all visits of each patient. We excluded the bags-of-medical-

concepts containing only a single concept since they do not provide

any meaningful co-occurrence information. Summary statistics of

the sliced EHR data are provided in Table 2.

Learning medical concept embeddings from EHR data
GloVe

GloVe was originally developed to learn word representations by us-

ing global co-occurrence statistics of the words in an input corpus.21

Although GloVe was designed to learn word embeddings, we can

apply GloVe to learn MCEs by treating medical concepts as words

and sliced EHR data as the collection of bags-of-medical-concepts

Figure 1. The entire process to obtain medical concept embeddings (MCEs) from knowledge graphs and electronic health record (EHR) data. EHR data were sliced

into the collection of bags-of-medical-concepts by applying visit windows and 5-year windows. Sliced bags-of-medical-concepts containing only a single concept

were excluded. Blue nodes and edges of the knowledge graphs represent standard concepts and “is-a” or “subsume” relationships, respectively. Orange nodes

and edges of the knowledge graphs represent non-standard concepts and additional hierarchical relationships that are used to enrich hierarchical knowledge

graph, respectively. Processed data were used as input to obtain MCEs. SVD, node2vec, and LINE were employed to generate MCEs from the knowledge graphs.

GloVe and skip-gram were used to generate MCEs from the EHR data.

Table 1. Summary statistics of the knowledge graphs

Hierarchical knowledge graph Enriched knowledge graph

# of unique condition concepts (medical con-

cept nodes)

306 266 312 089

# of edges (relationships) 588 298 671 591

Avg. degree of nodes 1.93 2.15
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to calculate co-occurrence statistics. We obtained 2 sets of MCEs,

GloVeEmb_V and GloVeEmb_5Y, by implementing GloVe on the

global co-occurrence statistics of the EHR data sliced by visit win-

dow and 5-year window, respectively.

Skip-gram

Similar to GloVe, skip-gram was developed to learn word represen-

tations. Skip-gram learns word representations by maximizing oc-

currence probabilities of the context words given a target word.

Context words are the words around the target word based on the

pre-defined context window size, therefore skip-gram tries to make

the distance between the words that appear together in the same

context window closer in an embedding space.12 We can apply skip-

gram to learn MCEs by slicing the EHR data by visit window and 5-

year window, creating 2 sets of MCEs, SGEmb_V and SGEmb_5Y,

respectively.

Learning medical concept embeddings from knowledge

graphs
Singular value decomposition

Singular value decomposition (SVD) is one of the commonly used

traditional matrix factorization methods, which factorizes a data

matrix into a lower dimensional matrix. Two sets of MCEs were

obtained by implementing SVD on the adjacency matrix of the hier-

archical and enriched knowledge graphs, named SVD and SVDþ,

respectively.

node2vec

node2vec26 learns embeddings of the nodes in a graph using random

walk. Since node2vec has 2 hyperparameters that govern breadth-

first and depth-first search, the resulting node embeddings have in-

formation regarding homophily and structural equivalence of the

nodes. Two sets of MCEs, n2vEmb and n2vEmbþ, were obtained

by implementing node2vec on the hierarchical and enriched knowl-

edge graphs, respectively.

Large-scale information network embedding

Large-scale information network embedding (LINE) learns embed-

ding of the nodes in a graph by approximating first-order proximity

and second-order proximity of the nodes.27 The first-order proxim-

ity is the local pairwise proximity between the nodes in the graph

and the second-order proximity is the context proximity among the

nodes in the graph. We obtained 2 sets of MCEs, LINEEmb and

LINEEmbþ, by implementing LINE on the hierarchical and

enriched knowledge graphs, respectively.

Implementation details
All MCEs were trained on a machine equipped with 2� Intel Xeon

Silver 4110 CPUs with 192GB RAM and using 1 Nvidia GeForce

RTX 2080 TI GPU. SVD was implemented using Numpy 1.18.5.

GloVe and skip-gram were implemented using Tensorflow 2.2.0.28

LINE and node2vec were implemented using OpenNE,29 a python

package for graph embedding. Python 3.7.1 was used for implemen-

tation. Hyperparameter settings are provided in Supplementary Ta-

ble S1. Source codes are publicly available at https://github.com/

WengLab-InformaticsResearch/mcephe.

Evaluation strategy
To evaluate the performance of learned MCEs on retrieving relevant

medical concepts for phenotypes, we first obtained 33 available phe-

notyping algorithms generated and validated by the eMERGE Net-

work and built evaluation concept set by using those phenotyping

algorithms. We obtained all available phenotyping algorithms from

the eMERGE Network’s Phenotype Knowledgebase30 (PheKB) as of

September 2018. PheKB was created by the eMERGE Network to

facilitate phenotyping and sharing of phenotyping knowledge. Phe-

notypes are shared in PheKB as descriptive texts, workflow charts,

and code books of medical concepts. The Columbia eMERGE team

converted code books of the 33 phenotyping algorithms into OMOP

standard concepts, on which the evaluation concept set for the 33

phenotypes are based. In total, the evaluation concept set for the 33

phenotypes contained 20 640 unique condition concepts. A list of all

33 phenotypes and the number of concepts in the evaluation concept

set for each phenotype are provided in Supplementary Table S2. We

excluded the concepts related to exclusion criteria of each pheno-

type.

A concept must be included in both the input data (ie, knowledge

graphs or EHR data) and the evaluation concept set to be trained

and evaluated. Since the unique concepts included in each kind of in-

put data are different across all 4 data sources (hierarchical knowl-

edge graph, enriched knowledge graph, EHR data sliced by visit

window, and 5-year window), we built an evaluation set for each

data source for comparable evaluation. The evaluation set for each

data source only contains the concepts that lies in the intersection of

the evaluation concept set and the input data (Figure 2).

In practice, feature engineering is often started by generating

seed concepts or features. Inspired by this seed generation step, we

quantitatively evaluated the performance of MCEs on retrieving

phenotype-relevant concepts given varying numbers of seed con-

cepts, from a single seed concept to multiple seed concepts. In addi-

tion to quantitative evaluation, we also visualized MCEs in two-

dimensional space.

Evaluation based on a single seed concept

Hits@k is a commonly used metric in information retrieval to assess

how well the retrieved results satisfy a user’s query intent. Given a

single seed concept selected from a phenotype, each MCE retrieved

the topmost candidate concepts based on the cosine similarity to the

seed concept from the evaluation set. Since the number of relevant

concepts in each of 33 phenotype varies, we used a modified version

of Hits@k—Hits@k% as our evaluation metric to provide a more

Table 2. Summary statistics of the sliced EHR data based on visit-window and 5-year window

EHR data sliced with visit-window EHR data sliced with 5-year window

# of patients 1 292 369 1 370 787

# of bags-of-medical-concepts 8 865 691 1 370 787

# of unique concepts 17 175 17 288

Avg. (SD) # of concepts per bag-of-medical-

concepts

4.3 (3.3) 12.4 (17.2)
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consistent comparison across different phenotypes. Specifically,

Hits@k% for phenotype p based on MCE e is defined as Eq (1):

Hits@k%p; e ¼
1

t

X
seedi2p

TPseedi
@k%

t
(1)

where t is the number of unique concepts in phenotype p, TPseedi
is

the number of relevant concepts retrieved for the embedding of the

seed concept seedi (ie, true positives), and k% is the percentage that

determines the number of candidate concepts retrieved for the seed

concept. The seed concept seedi was selected by iterating over all

concepts in phenotype p. The number of retrieved candidate con-

cepts is k% of t, which is proportional to the number of unique con-

cepts in phenotype p. Therefore, Hits@k% provides a consistent

comparison across different phenotypes regardless of the number of

unique concepts in the phenotypes. We reported the average

Hits@k% for each MCE by averaging individual Hits@k% of all

phenotypes.

Evaluation based on multiple seed concepts

We again calculated Hits@k% using multiple seed concepts selected

from each of the 33 phenotypes. Given n randomly selected seed

concepts from a phenotype, we generated a “conceptual” single seed

embedding by summing the embeddings of n seed concepts. Each

MCE then retrieved the topmost candidate concepts based on the

cosine similarity to the conceptual seed embedding. Retrieval for the

evaluation was repeated t times for a given phenotype, where t is the

number of unique concepts in the given phenotype, yielding the

same number of retrievals as in the single seed concept case. We con-

ducted the evaluation with n¼5. Similar to the single concept seed

case, Hits@k% for phenotype p based on MCE e are defined as Eq

(2):

Hits@k%p; e ¼
1

t

Xt

i¼1

TPseedembi
@k%

t
(2)

where seedembi is the conceptual single seed embedding generated

by summing the embeddings of n randomly selected concepts from

phenotype p and TPseedembi
is the number of relevant concepts re-

trieved for the seedembi. Average Hits@k% was reported for each

MCE.

Visualization of MCEs

We visualized the embeddings of the 1221 concepts which lie in the

intersection between all 4 standard evaluation sets in two-

dimensional space using t-SNE.31 For clear visualization, we ex-

cluded the concepts that were included in multiple phenotypes,

resulting in 26 phenotypes.

Figure 2. Set diagrams between the unique concepts in the evaluation concept set of 33 phenotypes and in each data source: (A) hierarchical knowledge graph;

(B) enriched knowledge graph; (C) EHR data sliced by visit window; and (D) EHR data sliced by 5-year window. The intersection of each set diagram forms the

evaluation set for the MCE learned by using the corresponding data source. Since we excluded bags-of-medical-concepts that had less than 2 concepts, there are

slight differences in the total number of unique concepts between the EHR data sliced by visit window and EHR data sliced by 5-year window.

JAMIA Open, 2021, Vol. 00, No. 0 5



EXPERIMENT RESULTS

Overall performance
Figure 3 shows the average Hits@k% of all MCEs based on a single

seed concept and 5 seed concepts. Of all MCEs based on both single

seed concept and multiple seed concepts scenarios, n2vEmbþ out-

performed all other MCEs. n2vEmb and n2vEmbþ outperformed

others among MCEs learned by using knowledge graphs. Glo-

VeEmb_V and GloVeEmb_5Y outperformed others among MCEs

learned by using EHR data.

Performance on individual phenotypes
Figure 4 shows average Hits@500% of all individual phenotypes for

each MCE based on a single seed concept (4A) and 5 seed concepts

(4B). Hits@k% when k¼100, 200, 500, 1000, 2000 based on a sin-

gle and 5 seed concept(s) are provided in Supplementary Tables S3–

S22. We excluded 1 phenotype (Diverticulosis), which contains less

than 10 concepts, from the evaluation based on 5 seed concepts. In

both evaluations based on a single concept seed and 5 seed concepts,

n2vEmbþ showed the best performance among the MCEs in more

than half of the phenotypes.

Visualization of learned MCEs
t-SNE scatterplots of the embeddings of the 1221 concepts for all

MCEs are shown in Figure 5. The color of each marker represents

the phenotype that the concept belongs to.

Hyperparameter sensitivity analysis
Besides using the hyperparameter settings suggested by the original

publications of the methods to learn MCEs, we also empirically

evaluated the sensitivities of the methods to hyperparameter choices.

Table 3 lists important hyperparameters for each method and Fig-

ure 6 shows the average Hits@500% based on a single seed concept

for each MCE in terms of different hyperparameter choices. We did

not experiment with the different sizes of context window of skip-

gram since the results were already shown in Figure 3.

DISCUSSION

In this study, we evaluated MCEs learned by using 5 methods with 2

different data sources on the task of retrieving phenotype-relevant

medical concepts. MCEs learned by using node2vec with knowledge

Figure 3. Average Hits@k% of medical concept embedding learned from (A and C) knowledge graphs and (B and D) EHR data based on a single seed concept and

5 seed concepts, respectively.
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graphs achieved the best performance. In practice, feature engineer-

ing can be facilitated by retrieving relevant medical concepts based

on the given query concepts along with well-trained MCEs. We pro-

vided a medical concept recommender application (https://github.

com/WengLab-InformaticsResearch/concept-recommender) that can

be used to find relevant medical concepts based on the given query

concept(s) for future studies and a practical use of trained MCEs

used in this study.

Among 3 different graph-based embedding methods, node2vec

achieved the best performance. SVD showed the worst performance,

which indicates feature engineering tasks often involve complex

relationships among nodes rather than first-order proximity that can

be captured by simple matrix factorization. While LINE and node2-

vec both consider the first- and second-order proximity to learn the

embeddings of the nodes, node2vec is able to reuse the samples via a

random walk strategy. Our results suggest that node2vec learns bet-

ter MCEs for feature engineering tasks, indicating random walk is

an important strategy to learn more efficiently from large knowledge

graphs with low average degree of nodes. We admit that there are

many other popular graph embedding methods in addition to the

methods used in this study. Graph Convolutional Networks32

(GCN) and Graph Autoencoder33 (GAE) are graph embedding

methods leveraging the power of neural networks. GCN and GAE,

however, cannot be implemented on a large graph with currently

available source codes. DeepWalk34 and VERSE35 are also widely

used graph embedding methods. Since node2vec can be considered

as a generalized version of DeepWalk and VERSE shares some simi-

larities with node2vec and LINE depending on the choice of similar-

ity function for learning, we did not include those 2 methods in this

study.

The difference of the performance between MCEs learned from

hierarchical knowledge graph and enriched knowledge graph

showed that enriching a knowledge graph by introducing additional

relationships connected to the existing nodes is beneficial for effi-

cient learning of MCEs. This finding aligns with the result from

Shen et al ,20 where the authors obtained efficient embeddings of the

concepts in HPO using an enriched knowledge graph. It is not al-

ways true, however, that enriching a knowledge graph will lead to

more efficient learning of MCEs. For example, introducing a singu-

lar node that is connected to less than 1 existing node cannot im-

prove learning since the singular node does not increase connectivity

of the knowledge graph, which is crucial for learning efficient MCEs

from a knowledge graph. This hinders MCEs from leveraging a

knowledge graph that is built upon concepts from multiple domains

but which lacks sufficient inter-domain relationships. The currently

available knowledge graphs from OMOP CDM have this limitation.

In contrast to the 2 148 636 and 23 435 796 relationships between

condition–condition and drug–drug concept pairs, respectively,

there are only 22 334 relationships between condition–drug pairs in

the concept_relationship table.

Figure 4. Average Hits@500% of all individual phenotypes based on (A) a single seed concept and (B) 5 seed concepts for MCEs. Full names for abbreviated phe-

notypes are provided in Supplementary Table S2.

JAMIA Open, 2021, Vol. 00, No. 0 7

https://github.com/WengLab-InformaticsResearch/concept-recommeder
https://github.com/WengLab-InformaticsResearch/concept-recommeder


Figure 5. t-SNE scatterplots of the 1221 concepts which lie in the intersection between the evaluation set of all MCEs, for (A) n2vEmbþ, (B) LINEmbþ, (C) SVDþ,

(D) SGEmb_5Y, and (E) GloVeEmb_5Y. Since we excluded concepts that were included in multiple phenotypes, there were only 26 phenotypes included in the

scatterplots. Full names for abbreviated phenotypes are provided in Supplementary Table S2.

Table 3. Important hyperparameters for the embedding methods used in this study

Method Hyperparameters

GloVe • xmax: the maximum number of co-occurrences so that frequent co-

occurrences are not overweighted
• Embedding dimensionality

skip-gram • Context window size: the size of window to be considered as neigh-

borhood for the target concept
• Embedding dimensionality

Singular value decomposition • Embedding dimensionality

node2vec • Return parameter (p): a parameter that controls the likelihood of im-

mediately revisiting a node in the random walk. High p value ensures

the random walk to less likely sample an already visited node in the

following 2 steps
• In-out parameter (q): a parameter that controls the degree of

breadth-first search (BFS) and depth-first search (DFS). High q value

makes the random walk more inclined to BFS
• Embedding dimensionality

Large-scale information network embedding (LINE) • Embedding dimensionality

8 JAMIA Open, 2021, Vol. 00, No. 0



Of EHR-based embedding methods, GloVe achieved the best

performance. The better performance of GloVe can be explained by

its ability to learn by using global co-occurrence statistics instead of

using local context windows in skip-gram. Besides the methods used

in this study, there are other powerful embedding methods that can

be applied to learn MCEs from EHR data, such as ELMo36 and

BERT,37 2 widely used state-of-the-art models to learn pre-trained

word representations. Future efforts, however, will be needed to tai-

lor those methods to learn MCEs.

Between GloVeEmb_5Y and GloVeEmb_V, GloVeEmb_5Y out-

performed GloVeEmb_V. This is perhaps because phenotype-

relevant condition concepts often appear across multiple visits with

irregular time intervals between visits. For example, concepts related

to heart failure, including initial presenting signs, symptoms, and

complications, can appear in multiple visits with the progression of

heart failure within a long time period. The 5-year window, which

aggregates multiple visits within a 5-year time range, can capture

the long-term relationships between concepts better than the visit

window. The 5-year window also builds a less sparse co-occurrence

matrix of the concepts than visit window, resulting in learning more

efficient MCEs. Among SGEmb_5Y and SGEmb_V, however,

SGEmb_V outperformed SGEmb_5Y. The disparity of the result in

using GloVe and skip-gram is because skip-gram simply tries to min-

imize the distance between co-occurring concepts while GloVe uti-

lizes global co-occurrence statistics to cancel out the noise from non-

discriminative concepts.

The context window size to slice EHR data can be adjusted with

consideration of data quality and downstream tasks. We decided to

use visit and 5-year window to ensure data quality of our EHR data

obtained from CUIMC.24 It is worth noting that a larger window

size might introduce noise into the co-occurrence statistics for some

acute diseases where intra-visit information between concepts is

more important than inter-visit information. Therefore, if one aims

to learn MCEs using EHR data for feature engineering of a specific

phenotype, characteristics of the phenotype must be considered

while selecting a context window size. For example, visit window

can be used to learn MCEs for acute diseases such as clostridioides

difficile and a larger context window (eg, lifetime window or 5-year

window) can be used to learn MCEs for the diseases where symp-

toms appear in a long time period, such as heart failure and chronic

kidney disease.

From Figure 3, we can confirm that the performance improved

with multiple seed concepts. This is natural since more seed concepts

from a specific phenotype can provide more information to find the

concepts relevant to that phenotype. In practice, however, as a

trade-off for the improved performance, selection of seed concepts

will require more efforts from domain experts.

We can see from Figure 5 that n2vEmbþ and LINEEmbþ
showed better visualized embeddings that align with phenotypes

than other MCEs. This result suggests that co-occurrence informa-

tion from EHR data may not be sufficient for learning interpretable

MCEs that are consistent with phenotypes. It is interesting to see

that other existing studies also found that simple co-occurrence in-

formation cannot learn interpretable embeddings that align with

medical knowledge, although they did not use phenotyping knowl-

edge to assess interpretability.38,39 Nevertheless, co-occurrence in-

formation from EHR data can reflect daily clinical operations,

providing complementary information to ontological knowledge for

phenotype development.

From Figure 6, we can see the performance of MCEs for the fea-

ture engineering task is sensitive to hyperparameter choices. All

MCEs showed saturated performance between 128 and 256 embed-

ding dimensionality. For MCEs learned by using GloVe, low xmax

resulted in better performance. For MCEs learned by using node2-

vec, better performance was achieved with larger p and smaller q,

perhaps because the knowledge graphs used in this study have low

average degree of nodes.

Several limitations of the study warrant mention. First, since

benchmark data for evaluating MCEs were obtained from the phe-

notypes based on rule-based algorithms, our findings may not be

generalized well to the phenotypes based on machine learning or

data-driven approaches. Second, considering that concepts from

domains other than the condition domain (eg, drug and procedure)

are often involved in phenotype development, future efforts will be

required to expand the study using concepts from multiple domains.

Finally, we admit that besides the embedding methods investigated

in this study, there are other more powerful embedding methods. Al-

though this study focused on evaluation of MCEs learned by using

knowledge graphs and EHR data, our evaluation framework can be

applied to a wide range of MCEs learned by using diverse data sour-

ces. Therefore, future works will include more extensive evaluation

of MCEs learned by using more diverse data sources and embedding

methods.

Analysis of false positive concepts
The above evaluation assessed the accuracy of recommended con-

cepts from the perspective of using the recommended concepts in

conventional rule-based phenotyping, which create inclusion and ex-

clusion criteria based on medical concepts that are directly related to

the phenotype. Data-driven and machine learning-based phenotyp-

ing approaches might leverage other concepts that are relevant but

not necessarily directly related to the phenotype from the perspective

of rule-based phenotyping approach. Concepts retrieved by using

MCEs that were considered false positives relative to the PheKB

evaluation sets could still be useful for feature engineering in data-

driven phenotyping. We thus qualitatively investigated the false pos-

itive concepts in the retrieved results (ie, retrieved as candidate con-

cepts but not included in the evaluation concept set of a phenotype)

based on n2vEmbþ and GloVeEmb_5Y for a selected phenotype—

the type 2 diabetes mellitus (T2DM). T2DM was selected because it

is one of the phenotypes that have been validated across multiple

clinical sites in the eMERGE Network.40 We first manually selected

5 seed concepts to create the conceptual seed embedding and

obtained the top 50 retrieved concepts given the seed. The false posi-

tive concepts were then scored based on the relevance to the T2DM

phenotype: 1 was assigned for concepts that were considered as

strongly relevant to the T2DM and can directly be included in the

phenotype; 0.5 was assigned for concepts that were considered as

relevant to the T2DM and can be used a covariate concept or proxy

concept for developing the phenotype; and 0 was assigned for con-

cepts that were considered as irrelevant to the T2DM. The selection

of the seed concepts and scoring of the false positive concepts were

conducted with help of a clinically experienced researcher. Table 4

shows the average relevant score of the false positive concepts for

T2DM based on n2vEmbþ and GloVeEmb_5Y. Among 27 and 40

false positive concepts for n2vEmbþ and GloVeEmb_5Y, respec-

tively, 67% and 50% of them were confirmed to be strongly rele-

vant or relevant to the T2DM phenotype. This result suggests that

although there were some phenotypes that showed low Hits@k%, it

does not necessarily mean the MCE is not useful for feature engi-

neering tasks in developing phenotypes.
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CONCLUSIONS

We assessed the potential of several different MCEs for feature engi-

neering based on current phenotyping practices. MCEs learned by

using knowledge graphs outperformed MCEs learned by using EHR

data in a task of retrieving phenotype-relevant concepts. We also

found that enriching a knowledge graph by adding relationships to

increase connectivity of the knowledge graph improves the perfor-

mance of MCEs in retrieving phenotype-relevant concepts. Future

works include more extensive evaluations of MCEs using concepts

from multiple domains and additional embedding methods.
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