
J Pathol Inform  Editor-in-Chief:
   Anil V. Parwani ,	 Liron Pantanowitz, 
   Pittsburgh, PA, USA	 Pittsburgh, PA, USA 

For entire Editorial Board visit : www.jpathinformatics.org/editorialboard.asp

OPEN ACCESS 
HTML format

Research Article

The analysis of image feature robustness using cometcloud

Xin Qi1,2, Hyunjoo Kim3, Fuyong Xing4, Manish Parashar3, David J. Foran1,2,5, Lin Yang4

1Departments of Pathology and 5Radiology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey, 2Centre for Biomedical Imaging and Informatics,  
The Cancer Institute of New Jersey, New Brunswick, New Jersey, 3Department of Electrical and Computer Engineering, NSF Cloud and Autonomic Computing Centre, 
Rutgers University, Piscatway, New Jersey, 4Department of Biostatistics, Division of Biomedical Informatics, University of Kentucky, Lexington, Kentucky

E-mail: *Xin Qi - qixi@umdnj.edu 
Corresponding author

Received: 16 May 12	 Accepted: 21 August 12	 Published: 28 September 12

This article may be cited as:
Qi X, Kim H, Xing F, Parashar M, Foran DJ, Yang L. The analysis of image feature robustness using cometcloud. J Pathol Inform 2012;3:33.

Available FREE in open access from: http://www.jpathinformatics.org/text.asp?2012/3/1/33/101782

Copyright: © 2012 Qi X. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author and source are credited.

Abstract

The robustness of image features is a very important consideration in quantitative image 
analysis. The objective of this paper is to investigate the robustness of a range of image 
texture features using hematoxylin stained breast tissue microarray slides which are 
assessed while simulating different imaging challenges including out of focus, changes in 
magnification and variations in illumination, noise, compression, distortion, and rotation. 
We employed five texture analysis methods and tested them while introducing all 
of the challenges listed above. The texture features that were evaluated include co-
occurrence matrix, center-symmetric auto-correlation, texture feature coding method, 
local binary pattern, and texton. Due to the independence of each transformation and 
texture descriptor, a network structured combination was proposed and deployed 
on the Rutgers private cloud. The experiments utilized 20 randomly selected tissue 
microarray cores. All the combinations of the image transformations and deformations 
are calculated, and the whole feature extraction procedure was completed in 70 
minutes using a cloud equipped with 20 nodes. Center-symmetric auto-correlation 
outperforms all the other four texture descriptors but also requires the longest 
computational time. It is roughly 10 times slower than local binary pattern and texton. 
From a speed perspective, both the local binary pattern and texton features provided 
excellent performance for classification and content-based image retrieval.
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INTRODUCTION

It has been reported that one in seven women in the 
United States has a risk of developing breast cancer during 
her lifetime. Breast cancer is one of the most frequently 
diagnosed cancers in women. Breast cancer is expected 
to account for 28% (207, 090) of all new cases among 
women in the US during 2010.[1] Tissue microarrays 
(TMAs) consist of small histological sections (histospots) 

arranged in a matrix configuration on a recipient paraffin 
block.[2] TMAs provide an efficient approach to preserve 
tissues while facilitating high-throughput analysis and 
experiments. Digital microscopy and open microscopy 
environment[3,4] have become extremely valuable tools 
for visualizing, archiving and quantitatively analyzing 
pathology specimens.

Image texture analysis has been widely investigated for 
pathology images.[5-10] There are three principal approaches 
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to represent image texture: statistical methods, structural 
methods and model based methods. [11,12] For statistical 
approaches, the relationships between each pixel and 
its neighboring pixels are quantified by the spatial 
distribution of their intensities. For structural approaches, 
an image is modeled as a set of texture units or primitives, 
and image texture is a representation of the geometric 
properties of these texture units. Model based texture 
analysis methods rely on utilizing the model parameters 
to describe the essential perceived qualities of texture, 
such as Markov random fields, fractals, et al. Statistical 
and structural approaches are often combined to extract 
texture features.[12] When texture analysis algorithms are 
applied to large image sets, it is generally time-consuming. 
CometCloud[13,14] is an autonomic computing engine 
that enables the dynamic and on-demand federation 
of clouds and grids as well as the deployment and 
execution of applications in such federated environments. 
It supports highly heterogeneous and dynamic cloud/
grid infrastructures, enabling the integration of public/
private clouds and autonomic cloudbursts, i.e., dynamic 
scale-out to clouds to address dynamic workloads, spikes 
in demands, and other extreme requirements. Since a 
single cloud/grid/cluster has finite resources (nodes) it 
may not satisfy all types of heterogeneous jobs. In such 
cases a computing middleware which provides a flexible 
architecture which can federate heterogeneous computing 
environments and deploy heterogeneous jobs on the 
federated computing environments is required. The 
CometCloud is very well suited for such efforts.

CometCloud supports the dynamic addition or removal 
of master and/or worker nodes from any of the federated 
environments (i.e., clouds, grids, local clusters, etc.) 
to enable on-demand scale up/down or scale out/in. It 
provides two classes of workers, the secure worker and 
the unsecured (isolated) worker as shown in Figure 1. 
Secure workers can access and possibly host part of the 

Comet virtual coordination space as well as provide 
computational cycles, while isolated workers only provide 
computational cycles. CometCloud supports both 
pull-based and push-based task scheduling models as 
appropriate to the specific computing environment. For 
example, traditional high performance computing grids 
such as TeraGrid uses batch queues to submit jobs, and 
in such an environment, CometCloud pushes jobs into 
the queue. However, for public clouds such as Amazon 
EC2, each node can be started on-demand and workers 
on these nodes pull tasks whenever they become idle. The 
pull-based model is especially well suited for cases where 
the capabilities of the workers and/or the computational 
requirements of the tasks are heterogeneous. The Comet 
virtual coordination space is used to host application 
tasks and possibly small amounts of data associated with 
the tasks. Secure workers can connect to the space and 
pull tasks from the space directly whileunsecured workers 
receive tasks only through a proxy.

IMAGE FEATURE ROBUSTNESS

Image feature robustness is a general problem and an 
extremely important characteristic to measure in image 
analysis applications. The objective of our work was 
to investigate the robustness of a spectrum of texture 
features under different image transformations and 
deformations. This study includes a random selection of 
ten normal and ten cancer cores from 122 hematoxylin 
stained breast TMA discs. The corresponding images 
were evaluated by domain experts to confirm the fact 
that they were representative of normal and abnormal 
samples after multiple random runs. All the images 
were taken using a Nikon microscope. Figure 2 shows 
one representative normal breast TMA core acquired 
while varying the magnification, focus, illumination, 
speckle noise, compression, distortion and rotation, 
respectively. A robust texture descriptor should generate 
similar texture features under all these deformations 
and transformations. Thanks to the contribution of 
cloud computing, it enabled our team to conduct this 
study reliably and efficiently. In the following section we 
explain the transformations and deformations we utilized 
to test the robustness of the texture descriptors.

Transformation Methods
Each TMA core was physically imaged at 3 different 
magnifications (10×, 20×, 40×) using the same center 
of the core. Out of focus was performed under 20× 
magnification with using an even illumination. The 
other transformations including different levels of 
illumination, speckle noise, compression, distortion and 
rotation were performed after digital acquisition. All 
digital and physical transformations were introduced 
to simulate the artifacts and variations that are often 
introduced during the preparation of TMA slides and Figure 1: Overview of the scale-out to clouds using CometCloud
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different imaging conditions. All the transformed images 
were compared with images taken at 20× magnification 
under an even illumination light condition and within a 
focal plane.

For images at 20× magnification objective within a focal 
plane, we transformed the color image from RGB space 
to CIE xyY space. Within the xyY space, each image was 
transformed at 2,1/2,1/4 and 1/8 times of the original 
images’ luminance. Speckle noise is a random pattern in 
an image caused by coherent process of back scattered 
signals from multiple distributed targets. It is directly 
proportional to the local intensity. Define J = I + n*I, 

where I is an original image, J is the noisy image, and 
n represents the uniformly distributed random noise with 
zero mean and variance at different levels. In order to 
test the speckle noise, we set the variance to 0.02, 0.04, 
0.08 and 0.16, respectively.

Singular value decomposition is used to model the 
compression. The singular values of the original image 
are ranked in a decreasing order, and the sum of the first 
several principle components were used to reconstruct 
the original images. In the experiments the first 100, 
200, 400 and 800 ranked components were tested to 
reconstruct the original images, respectively.

Figure 2: One representative normal breast TMA core taken at different magnification objectives 10× (A1), 20× (A2), and 40× (A3). 
A4 represents out of focus under 20x. B1 to B4 represent different levels of illumination; C1 to C4 denote different levels of speckle noise 
with zero mean and variance at 0.02, 0.04, 0.08 and 0.16, respectively; D1 to D4 represent different levels of compression; E1 to E4 denote 
different levels of B-spline distortion; F1 to F4 show the transformed images under different rotation angles at 10, 20, 40 and 80 degrees 
using the center of the image as the origin
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Region distortion is implemented using a B-splines 
transformation, which deforms a specific region in the 
image by manipulating an underlying mesh of control 
points.[15] In our experiments, B-spline transformations 
with different parameters were applied to 60% of the 
original images from the center of each TMA image. For 
rotation experiments, we tested at angles of 10, 20, 40 
and 80 degrees respectively, using the center of the image 
as its origin.

Texture Analysis Methods
The five texture analysis methods evaluated in this 
paper are: co-occurrence matrix (COOC), center-
symmetric auto-correlation (CSAC), texture feature 
coding method (TFCM), local binary pattern (LBP), and 
texton. COOC[16,17] and CSAC[18] belong to statistical 
methods. TFCM[19] and LBP[20] are combined statistical 
and structural approaches. The texton is a model based 
texture method.[21] Previous studies[22,23] had shown 
that some texture features can capture the underlying 
variations that exist in normal and cancer tissues. In 
recent studies, texture has been successfully characterized 
through textons.[21,23-25] We chose to investigate those five 
image analysis algorithms for this study because they 
capture rotation- and intensity- invariant texture features 
and are not sensitive to region of interest size.

COOC (also called spatial gray-level dependence matrices) 
were first proposed by Haralick et al,[16,17] and are based 
on the estimation of the intensity second-order joint 
conditional probability density functions for various 
distances and for four specified directions (0°, 45°, 90° and 
135°) between two pixels. Texture features calculated using 
the COOC quantify the distribution of gray-level values 
within an image. For this study, four texture features 
including contrast, correlation, energy and homogeneity 
were calculated from the co-occurrence matrices within 
the segmented ROIs from four specified directions 
within a 3 × 3 local window. Contrast is a measure of 
the gray-level variation between pairs of image elements. 
Correlation is sensitive to uniform and repeated structures. 
Energy is sensitive to image regions that have only a small 
number of intensity distribution patterns; it is an indicator 
of uniformity or smoothness. Homogeneity is sensitive to 
images with lower contrast values.

CSAC can be regarded as a generalization of Laws’ kernel 
method. [26] It measures covariance of any local center-
symmetric patterns. Two local center-symmetric auto-
correlations, linear and rank-order (SAC and SRAC), 
together with a related covariance measure (SCOV) and 
variance ratio (SVR), within-pair variance (WVAR) and 
between-pair variance (BVAR) were calculated. All of 
these are rotation-invariant measures.[18]

TFCM[19] is a coding scheme in which each pixel is 
represented by a texture feature number (TFN). The TFN 
of each pixel is generated based on a 3 × 3 texture unit 

as well as the gray-level variations of its eight surrounding 
neighbor pixels. The TFNs are used to generate a TFN 
histogram from which texture feature descriptors are 
quantified. In this work, we calculated coarseness, 
homogeneity, mean convergence and variance. Coarseness 
measures drastic intensity change in the 8-connective 
neighborhood. Homogeneity measures the total number 
of pixels whose intensity have no significant change in the 
8-connective neighborhood. Mean convergence indicates 
how closely the texture approximates the mean intensity 
within a texture unit. Variance measures deviation of 
TFNs from the mean. Code entropy, which measures the 
information content of coded TFNs, was also calculated, 
in four Orientations 0°, 45°, 90° and 135°.

The local binary pattern (LBP) method is a multi-
resolution approach for gray-scale and rotation invariant 
texture extraction based on local binary patterns.[20] Its 
principle is analogous to TFCM. Each pixel is labeled 
with the code of the texture primitive that best matches 
the local neighborhood. Thus each LBP code can be 
regarded as a micro-texton. The derivation of the LBP 
follows that represented by Ojala et al.[20] Texture T in a 
local neighborhood of a gray-scale image can be defined 
as the joint distribution of the gray levels of P + 1 
image pixels. Based on the assumption that the intensity 
differences between center pixel and its neighbors are 
independent to the intensity of center pixel, the joint 
distribution can be factorized as

T t g t g g g gc c p c≈ − −−( ) ( , , )0 1
�

(1)

Where gc corresponds to the gray values of the center 
pixel of a local neighborhood. gp(p = 0, ... , p - 1) 
corresponds to the gray values of P equally spaced pixels 
on a circle of radius R that form a circularly symmetric 
set of neighbors. Because t(gc) describes the overall 
luminance of an image which is unrelated to local image 
texture and to achieve invariance with respect to any 
monotonic transformation of the gray scale, only the signs 
of the differences are applied. After a binomial weight 2p 
is assigned to each sign of the difference transforming the 
differences in a neighborhood into a unique LBP code. 
The code characterizes the local image texture around 
(xc, yc).
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So the texture of the image can be approximately 
described with a 2p -bin discrete distribution of LBP code 
as T ≈ t(LBPp, R(xc, yc))

The local binary pattern (LBP) method was applied to 
extract rotation-invariant, uniform patterns for each 
image. Within the segmented ROI, three different 
radii (R) of a circle with corresponding numbers (N) 
of local neighbors of center pixel for the circle were 
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calculated using a multi-resolution approach to gray-
scale and rotation invariant texture extraction based 
LBP. The radii (R) of circles used in the experiments 
and corresponding numbers (N) of local neighbors were 
R = 1 and N = 8; R = 2 and N = 12; R = 4 and N = 
16 respectively.

In more recent studies, texture has been characterized 
through textons, which are basic repetitive elements of 
textures.[21,24,25] Due to characteristics of expressiveness 
and generalization of textons,[21] a texton library can be 
built through responses to a set of well-defined linear 
filters using randomly selected image data from whole 
data set, and clustering of the resulting filter responses 
gives centers that represent the texton library of the 
whole dataset. In our studies, we randomly selected 30 
normal discs and cancerous discs respectively to construct 
a texton reference library. First, each of the TMA images 
were filtered using a filter bank containing 48 filters,[21] 
including 36 oriented filters with 6 orientations, 3 scales 
and 2 phases, 8 center-surround derivative Gaussian 
filters, and 4 low-pass Gaussian filters. Allowing Nm 
to represent the number of pixels within the mask 
region for each disc. After filtering, each pixel within 
the mask region is transformed to a 48-dimensional 
vector. For each image, each pixel is mapped to a 48 x 
(Nm   ×  3)-dimensional space. Next, the resulting vectors 
were clustered using a vector quantization algorithm, (we 
chose a k-means clustering algorithm[27] for this purpose). 
Here, we set k equal to 25 empirically. After clustering, 
each image was represented by 25 centers with 48 filter 
responses. Subsequently the textons of all the normal 
and cancerous TMA images were concatenated to form 
two large texton sets separately. After applying k-means 
clustering again on those two texton sets separately 
using k = 250 (here using a much larger value than the 
number of training dataset), we built texton libraries of 
500 centers with 48 filter responses for the whole dataset 
of TMA images. Finally the texton histogram library of 
images was used to compute the texton histogram of 
each TMA image. For TMA image, using the same filter 
bank, the histograms were created by assigning the filter 
responses of each pixel within the mask to the closest 
texton in the library.

Performance Evaluation
The robustness of the features is evaluated using two 
matrices. Type I is to evaluate each texture method’s 
own robustness under different levels of transformations, 
which we called generative power. A more robust texture 
analysis algorithm should produce similar feature vectors 
under different transformations, and therefore has 
more generative power. The χ2 distance is utilized to 
measure the similarity of feature vectors. Type II is to 
evaluate the discriminative power under different levels 
of transformations. The texture analysis algorithm with 
higher discriminative power should maximize the inter-

class disparity while minimizing the intra-class similarity. 
Define the following measurement,

D
d x x

d x x
i j N or c i j

i N k c i k

= ∈

∈ ∈

∑
∑

,

,
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where N is the normal TMA image features and C is the 
cancer TMA image features, x represents a feature vector 
at different transformation levels for a specific texture 
method. A texture feature with higher discriminative 
power should produce smaller D value by definition.

HIGH THROUGHPUT FEATURE 
CALCULATION ON THE COMETCLOUD

Because of the independence of each transformation and 
texture feature method, this can be parallelized on clusters. 
Figure 3 shows all the possible executions for image 
transformation and feature extraction. The application was 
implemented with master/worker programming model using 
CometCloud. A master generates each of the combination 
of image transformation and feature extraction as a task 
and inserts it into the CometCloud shared space. Then, 
a worker picks up a task from the space, executes it, and 
sends the results back to the master. Whenever a worker 
completes a task, it consumes a next task immediately from 
the space so as to minimize the idle time.

EXPERIMENTAL RESULTS

Feature Robustness
Figures 4a and b show the type I and type II 
evaluations at different magnifications (10×, 20× 

Figure 3: A workflow of the procedures of image transformations 
and feature extractions
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and 40×) with even illumination under focal plane. 
Figures  5 and  show the type I and type II evaluations 
at 20× magnification objective with even illumination 
but out of focus. Figures 6a and b show the type I and 
type II evaluations at different levels of illumination 
with its corresponding luminance at 2, 1/2, 1/4 and 1/8, 
respectively. Figures 7 and  show the type I and type  II 
evaluations at different levels of zero mean speckle noise 
with its corresponding variance at 0.02, 0.04, 0.08 and 
0.16 respectively. Figures 8a and b show the type I and 
type II evaluations at different levels of compression 
with its corresponding singular value at 800, 400, 200 
and 100 respectively. Figures 9a and b show the type 
I and type II evaluations at different levels of B-spline 
distortion degree (2, 4, 8, and 16). Figures 10a and b 
show the type I and type II evaluations at different 

rotation angles (10°, 20°, 40° and 80°) using center of 
the image as the origin.

The type I and type II evaluation ranking results are 
shown in Table 1.

Type I Evaluation Results
At different magnification objectives, TFCM has the 
highest generative power while the Texton has the lowest; 
CSAC, LBP, and COOC have the middle level generative 
power. There is no significant difference among 
magnification 10×, 20×, and 40× for type I evaluation of 
CSAC, LBP and texton; but COOC and TFCM show 
significant difference.

For out of focus, TFCM has the highest generative 
power; COOC has the lowest generative power; CSAC, 
texton and LBP have the middle generative power.

Figure 4: (a) type I evaluation of each texture method at 10×, 20× and 40× magnification objectives with even illumination under focal 
planet; (b) Type II evaluation of each texture method at 10×, 20× and 40× magnification objectives with even illumination under focal plane

Figure 5: (a) Type I evaluation of each texture method at 20× magnification objective with even illumination but out of focus purposely; 
(b) Type II evaluation of each texture method at 20× magnification objective with even illumination under focal plane and out of focal 
plane purposely

a b

ba
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At different illumination levels, TFCM has the highest 
generative power; Texton has the lowest generative 
power; CSAC, COOC and LBP have the medium 
generative power. There is no significant difference 
among each level of illumination for type I evaluation 
of CSAC, LBP and TFCM; but COOC and texton 
show significant difference among each level of 
illumination.

At different speckle noise levels, CSAC and TFCM 
have higher generative power; LBP and texton have the 

medium generative power; and COOC has the lowest 
generative power. With the noise level increased, each 
image texture feature shows decreased generative power 
as one might expect.

At different compression levels, CSAC and TFCM 
have the highest generative power; COOC and LBP 
have the medium generative power; and texton has 
the lowest generative power. With the compression 
level increased, each texture feature shows decreased 
generative power.

Figure 7: (a) Type I evaluation of each texture method without extra speckle noise and with added speckle noise with its corresponding 
zero mean and variance at 0.02, 0.04, 0.08 and 0.16 at 20× magnification under focal plane with even illumination; (b) Type II evaluation of 
each texture method without extra speckle noise and with added speckle noise with its corresponding zero mean and variance at 0.02, 
0.04, 0.08 and 0.16 at 20× magnification under focal plane with even illumination

Figure 6: (a) Type I evaluation of each texture method with even illumination and with extra luminance at 2, 1/2, 1/4 and 1/8 at 20× 
magnification under focal plane; (b) Type II evaluation of each texture method with even illumination and with extra luminance at 2, 1/2, 
1/4 and 1/8 at 20× magnification under focal plane

ba

ba
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Table 1: The performance evaluation ranking results

Type I COOC CSAC LBP Texton TFCM Type II COOC CSAC LBP Texton TFCM

M 2 4 3 1 5 M 2 3 4 5 1
O 1 4 2 3 5 O 2 5 3 4 1
I 3 4 2 1 5 I 2 4 5 3 1
N 1 5 3 2 4 N 3 5 4 1 2
C 3 5 2 1 4 C 2 4 3 5 1
D 3 5 1 2 4 D 2 5 3 4 1
R 3 5 2 1 4 R 2 5 3 4 1

5 denotes the highest score (the smallest D value) and 1 denotes the lowest score (the largest D value) for both generative (type I) and discriminative (type II) powers. Here  
M: Magnification, O: Out of focus, I: Illumination, N: Noise, C: Compression, D: Distortion, R: Rotation

Figure 8: (a) Type I evaluation of each texture method at different levels of compression with its corresponding singular value at 800, 400, 
200 and 100 at 20× magnification under focal plane with even illumination; (b) Type II evaluation of each texture method at different levels 
of compression with its corresponding singular value at 800, 400, 200 and 100 at 20× magnification under focal plane with even illumination

Figure 9: (a) Type I evaluation of each texture method at different levels of B-spline distortion degree at 2, 4, 8 and 16 at 20× magnification 
under focal plane with even illumination; (b) Type II evaluation of each texture method at different levels of B-spline distortion degree at 
2, 4, 8 and 16 at 20× magnification under focal plane with even illumination

ba

a b
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At different distortion levels, CSAC has the highest 
generative power; COOC, TFCM and texton have the 
medium level generative power; and LBP has the lowest 
generative power. With the distortion level increased, 
each feature extraction method shows the decreased 
generative power.

At different rotation angles, CSAC has the highest 
generative power; COOC, TFCM and LBP have the 
medium generative power; and texton has the lowest 
generative power. With the rotation angle increases, each 
feature extraction method shows a decreased generative 
power in general.

Type II Evaluation Results
At different magnification objectives, texton has the best 
discriminative power; LBP and CSAC are in the middle 
range. COOC and TFCM have the least classification 
power. Meanwhile there is no significant difference 
among different magnification objectives for type II 
evaluation.

For out of focus, CSAC has the best discriminative 
power, LBP and texton are in the middle. COOC and 
TFCM have the least discriminative power.

At different illumination levels, LBP, CSAC and texton 
show better discriminative powers compared to COOC 
and TFCM. Meanwhile, there is slight difference among 
various illumination levels among CSAC, LBP, texton and 
TFCM for type II evaluation except COOC.

At different speckle noise levels, texton, CSAC and LBP 
show better discriminative power than COOC, TFCM. 
With the speckle noise level increasing, CSAC and texton 

show a decreased discriminative power while LBP, TFCM 
and COOC are opposite.

Without compression, texton shows the best 
discriminative power; while TFCM has the least 
discriminative power. With the compression level 
increasing, texton shows the best discriminative power at 
various compression levels. CSAC and LBP show better 
classification power compared to COOC at different 
compression levels. TFCM shows the worst discriminative 
power at different compression levels.

Without distortion texton exhibits the best 
discriminative power; TFCM has the least discriminative 
power. With an increasing distortion level, CSAC has 
the best discriminative power at various distortion 
levels. Texton and LBP show better discriminative power 
compared to COOC at different compression levels. 
TFCM shows the worst discriminative power at various 
distortion levels.

Without rotation texton shows the best discriminative 
power; TFCM has the least discriminative power. When 
the rotation angle increases, CSAC shows the best 
discriminative power at different rotation angles. Texton 
and LBP show better discriminative power compared to 
COOC. TFCM has the worst discriminative power for 
rotation.

Feature Calculation on the CometCloud
We used Rutgers cluster with 30 nodes where each node 
has 8 cores, 6 GB memory, 146 GB storage and 1 GB 
Ethernet connection, and varied the number of workers 
from a single node to 30 nodes. Figure 11 shows the 

Figure 10: (a) Type I evaluation of each texture method at different rotation angles at 10°, 20°, 40° and 80° respectively using center of 
the image as the origin at 20× magnification under focal plane with even illumination; (b) Type II evaluation of each texture method at 
different rotation angles at 10°, 20°, 40° and 80° respectively using center of the image as the origin at 20× magnification under focal plane 
with even illumination

a b
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average runtime for each feature extraction method to 
execute an image on a single worker. CSAC and TFCM 
are the most computational expensive algorithms 
compared to other feature extraction methods. 
Figure  12 shows the time-to-completion (TTC) of all 
the combinations of image transformations and feature 
extractions varying the number of workers as well as 
the average number of tasks completed by a worker. 
When the number of workers increases, the TTC of 
the combinations of image transformations and feature 
extractions dramatically decreases accordingly. We found 
that parallelizing the task on 20 nodes achieved the 
best computational efficiency and the TTC increases 
slightly on 30 nodes. This is due to the increasing idle 
time of workers. When there is no task to consume in 
the space, the workers become idle and wait for a new 
task. This happens when the task generation rate is 
smaller than task consumption rate, which indicates 
that there are so many workers for small tasks than the 
master can generate. For example, the master generates 
tasks for LBP featuring, which has the smallest execution 
time as shown in Figure 11, and if there are too many 
workers than generated tasks, then the workers consume 
those small tasks quickly and become idle waiting for 
new tasks to be generated. In this experiment, the total 
idle time of all workers is 809 seconds at 20 nodes and 
1,724  seconds at 30 nodes and this causes the slight 
increase of TTC.

We deployed the application on the Rutgers cluster 
(a private cloud) due to the static workloads of the 
application and to reduce data transfer overhead across 
networks; however, if the workloads increases and a 
shorter TTC is required, then public clouds such as 
Amazon EC2, etc. can be provisioned additionally to 
scale up resources and the workers on both private clouds 
and public clouds consume tasks.

DISCUSSION AND CONCLUSION

The aim of this study is to investigate feature robustness 
under different transformations and deformations. For 
type I evaluation (generative power), CSAC and TFCM 
outperforms the others; however, both features require 
longer computational time compared to other methods as 
shown in Figure 11. For type II evaluation (discriminative 
power), CSAC outperforms LBP or texton, which are 
better than COOC and TFCM. In general considering 
speed, LBP or texton would be the preferred methods.

Using CometCloud, the heavily over-loaded work can be 
easily parallelized on multiple nodes. We experimentally 
prove that CometCloud plays a critical role for large 
scale, computationally expensive applications. In addition 
to the CometCloud, a combination offederated high-
performance computing cyber-infrastructure (Grids and 
Clouds) will be utilized in our future studies.

In our study, type I and type II evaluation metrics are 
utilized to select the most robust features for analyzing 
breast cancer tissue microarrays. Similar comparisons 
can be conducted for other types of images, such as lung 
cancer, colon cancer, etc. Our team also plans to apply 
similar procedures to investigate the robustness of image 
features across a wider range of pathology applications.
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