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ABSTRACT

Large scale catalogs of common genetic variants (in-
cluding indels and structural variants) are being cre-
ated using data from second and third generation
whole-genome sequencing technologies. However,
the genotyping of these variants in newly sequenced
samples is a nontrivial task that requires extensive
computational resources. Furthermore, current ap-
proaches are mostly limited to only specific types of
variants and are generally prone to various errors and
ambiguities when genotyping complex events. We
are proposing an ultra-efficient approach for geno-
typing any type of structural variation that is not lim-
ited by the shortcomings and complexities of cur-
rent mapping-based approaches. Our method Neb-
ula utilizes the changes in the count of k-mers to
predict the genotype of structural variants. We have
shown that not only Nebula is an order of magnitude
faster than mapping based approaches for genotyp-
ing structural variants, but also has comparable ac-
curacy to state-of-the-art approaches. Furthermore,
Nebula is a generic framework not limited to any
specific type of event. Nebula is publicly available
at https://github.com/Parsoa/Nebula.

INTRODUCTION

Structural variants (SVs) are defined as medium and large
size (>50 bp) genomic alterations. SVs have many different
types, e.g. deletions, insertions, duplication, transposon in-
sertions and inversions (1–4). It has become clear that SVs
are a major contributing factor in diseases (5) and evolution
(6). However, efficient and accurate genotyping of all types
of SVs using whole-genome sequencing (WGS) data is not a
trivial task. In many of the large scale genomic studies SVs
are being ignored or are merely an afterthought. One of the
main reasons behind SVs not being as thoroughly studied as
other types of variants such as SNVs, is due to complexity

of efficient and accurate discovery and genotyping of these
types of variants. It is hypothesized that lack of comprehen-
sive study of SVs is one of the contributing factors among
others to the missing heritability gap observed in complex
disorders (7,8).

The advent of high-throughput sequencing (HTS) tech-
nologies has made it possible to understand the contribu-
tion of SVs in diseases and evolution. In the 1000 Genomes
Project (1KG) more than 42 000 SVs were discovered and
genotyped in over 2500 samples (9). Recently, a few samples
(e.g. CHM1 and CHM13) were sequenced using long-read
technologies (i.e. PacBio). A comparison of the SV predic-
tions made using the state-of-the-art computational meth-
ods (e.g. LUMPY (10), DELLY (11), TARDIS (12) and
Pindel (13)) using the short-read HTS data against the calls
produced using long-read data indicated that many SVs
(> 50%) are missed by our best practices using short-read
sequencing data (14). Thus, we are in need of approaches
which can efficiently genotype these newly found SVs in a
large number of WGS samples.

With WGS data of additional samples being produced
at a breathtaking rate, an approach to accurately and ef-
ficiently genotype the (common) SVs in newly sequenced
samples is needed. In addition, with more comprehensive
sets of SVs being predicted using long-read technologies we
would like to be able to genotype these newly discovered
SVs in the samples that have been already processed.

The current approaches for genotyping SVs using WGS
data are mainly based on first mapping the reads to the ref-
erence genome and then predicting the genotype (15,16).
This framework has three main drawbacks. First, the map-
ping step is resource intensive. Second, these approaches are
mostly tailored to specific types of variants (SNV, small in-
dels and large CNVs). Third, genotyping any variant close
to repeats in the reference genome would be less accurate
due to the potential of inaccurate mapping.

Mapping-free approaches are becoming popular for
different genomic and transcriptome applications. The
mapping-free approaches are not limited by the shortcom-
ings of the mapping algorithms and tend to be much more
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efficient. Mapping-free transcriptome analysis tools such as
Kallisto (17) and Salmon (18) have been very helpful in ef-
ficient and accurate quantification of RNAseq data. These
approaches have also been recently utilized successfully in
variant discovery.

One of the first tools to introduce a mapping-free method
for variant discovery is Cortex (19). Cortex introduces the
concept of colored de bruijn graphs to compare the k-mers
from different samples to predict variants between the sam-
ples (19). Cortex was also used successfully for predicting
variants in the 1000 Genomes Project. The method DIS-
COSNP (20) was one of the first approaches developed
for predicting SNPs efficiently using k-mers counts. This
approach was later developed into DISCOSNP++ to pre-
dict indels between multiple sequenced samples using raw
unassembled reads (21).

Mapping-free approaches have also have gained traction
in predicting somatic variants between a normal sample and
the matching tumor. NovoBreak (22) is one such tool that
utilizes k-mer counts to predict different types of somatic
variants between tumor and normal samples using whole-
genome sequencing data. Another application of mapping-
free approaches is discovery of de novo variants in families.
The tools Scalpel (23), COBASI (24) and Kevlar (25) are
mapping free approach for accurate discovery of de novo
variants using whole-exome sequenced or whole-genome
sequenced samples.

Fast and accurate genotyping of common variants is an-
other recent application of the mapping-free framework.
The tools LAVA (26) and VarGeno(27) are developed for
fast genotyping of common SNPs using k-mer counts. Fur-
thermore, the tool MALVA (28) is a recent mapping-free
method for genotyping both SNPs and indels.

Finally, mapping-free approaches have also been utilized
in improving the association studies using whole-genome
sequencing data (29). The tool HAWK (29) is capable of
fast and accurate discovery of variants associated with phe-
notypes of interest by comparing the k-mers frequencies be-
tween cases and controls.

The growing list of mapping-free methods and their ap-
plications has also resulted in development of several tools
for fast and accurate k-mer quantification. Some of the
tools used for fast k-mer quantification include JellyFish
(30), Khmer (31), DSK (32) and KMC (33).

Here we are proposing a novel mapping-free approach,
Nebula, that utilizes k-mer counts for efficient and accu-
rate genotyping of (common) SVs in any whole-genome se-
quenced sample.

METHODS

Nebula is a mapping-free approach for accurate and effi-
cient genotyping of SVs. Nebula is a two-stage approach
and consists of a k-mer extraction phase and a genotyping
phase (Figure 1). Given as input a set of SV coordinates
(BED/VCF), the reference assembly (FASTA), and a set of
mapped samples on which the genotype of the input SVs is
already known (BAM), Nebula extracts a collection of k-
mers that represent the input SVs (k-mer extraction phase).
These extracted k-mers will then be used to genotype the
same set of SVs on any new WGS sample(s) without the

need to map the reads to the reference genome (genotyp-
ing phase). This is done by counting the k-mers in the WGS
reads of the new sample(s) and predicting genotypes using
a likelihood model.

Likelihood model

The key assumption in Nebula is that each SV will increase
and/or decrease the copy number of a specific set of k-
mers in the genome. Note that the count of each k-mer in
the WGS reads of a sample is directly correlated with the
copy number of the k-mer in the corresponding genome. We
develop a likelihood model to calculate the probability of
different genotypes ({0/0, 0/1, 1/1}) per SV based on the
counts of k-mers.

We define a unique k-mer as one that appears in ex-
actly one loci in the sample’s genome. For a given sam-
ple, we assume the number of reads containing a unique
k-mer that are coming from each haplotype to follow a nor-
mal distribution N (μh, σ

2
h ). We also model the total num-

ber of reads containing that k-mer (i.e., the k-mer’s count)
in a diploid genome as the summation of the two normal
distributions representing the number of reads containing
the k-mer in each haplotype as N (μ, σ 2) = N (μ1, σ

2
1 ) +

N (μ2, σ
2
2 ) where μi and σ 2

i are mean and variance for the
corresponding haplotype. However as we generally don’t
know which haplotype a sequencing read is from, we will di-
rectly estimate the sample-wide parameters μ and σ 2 rather
than the haplotype-specific ones. For this, we select a large
number of unique k-mers from conserved regions of the
genome (e.g. exons) and count them in the sequencing reads
of the sample. By further assuming that the sequencing cov-
erage is equal for both haplotypes, the count of a unique k-
mer present on only one haploid can be approximated using
the normal distribution N (μ/2, σ 2/2). Finally, the count of
a k-mer not expected to be present in the genome is esti-
mated by setting μ to zero and using a small fixed number
for the variance. This provides the basis of the model that
we use to calculate likelihood of SVs genotypes based on
the k-mer counts.

k-mer extraction

Nebula uses the coordinates of the input SVs, the reference
genome and mapped reads of WGS sample(s) on which the
genotype of the SVs of interest are known to extract k-mers
whose copy number is affected by the SVs. These k-mers
either cross the SV’s breakpoint or fall inside the region that
is affected by the SV.

Sequencing reads that cross a SV’s breakpoint are usu-
ally soft-clipped when mapped to the reference genome. For
each SV, Nebula looks at soft-clipped reads mapping near
its breakpoints and selects k-mers that overlap the clipped
part of the read (Figure 2).

Nebula also uses the reference genome to extract addi-
tional k-mers from within the region that is affected by a
SV (e.g. inside the deleted region for a deletion or from the
sequence that would be inserted into the genome for an in-
sertion). We also extract unique k-mers that cross the break-
points from the reference genome.



PAGE 3 OF 8 Nucleic Acids Research, 2021, Vol. 49, No. 8 e47

Figure 1. An overview of the entire Nebula pipeline. The upper half shows the k-mer extraction stage which takes as input a set of SV coordinates, the
reference assembly, and a set of samples on which the genotypes of these SVs is known. The k-mer extraction stage selects a collection of k-mers to be
used for genotyping. The bottom half shows the SV genotyping phase, which uses the k-mers extracted earlier to genotype the input SVs on any number
of newly sequenced samples without mapping the reads.

Figure 2. k-mer extraction clipped reads for a deletion (A) and an insertion
(B). Red and green segments of the reads are soft-clipped by the aligner and
correspond to the similarly colored regions of the alternate and reference
haplotypes.

With the k-mers selected, Nebula scans the reference
genome to filter any k-mer that also occurs in loci not im-
pacted by the input SVs. Finally, the remaining k-mers are
counted on each of the input sample with known SV geno-

types. We use each k-mer independently to genotype its cor-
responding SV and filter those k-mers that do not predict
the correct genotype. After filtering, the remaining k-mers
are exported as the output of the k-mer extraction phase.

The likelihood of genotype g based on k-mer k with count
ck is calculated using the normal distribution as L(g|k) =
p(k|g) = p(ck|N (μk,g, σ

2
k,g)) where μg,k and σ 2

g,k are derived
from the sample-wide mean μ and variance σ 2 based on the
expected copy number of the k-mer k for genotype g. For
example, for an insertion SV, a k-mer selected from the in-
serted sequence is expected to be present on both haploids
for a 1/1 genotype with μ1/1,k = μ and σ 2

1/1,k = σ 2 and on
only one haploid for a 1/0 genotype with μ1/0,k = μ/2 and
σ 2

1/0,k = σ 2/2. We calculate the likelihood of all three possi-
ble genotypes using the above formulation and choose the
one with the maximum likelihood as the genotype predic-
tion.

Genotyping

Once k-mers have been extracted for a set of SVs, the same
set of SVs can be genotyped on any new WGS sample(s)
without the need to map the reads. The k-mers are counted
on the sample and genotypes are predicted using an ex-
tension of the likelihood model. For a SV supported by
multiple k-mers, the likelihood of each possible genotype
g ∈ {0/0, 0/1, 1/1} can be calculated as L(g|k1, k2, k3, ...) =
p(k1, k2, k3, ...|g) where each ki represents a different k-mer.
Note that the counts of k-mers corresponding to the same
SV might not be independent as the k-mers may overlap
one another. However, if we assume independence between
k-mer counts, we can approximate the above likelihood by
calculating the probability as the multiplication of probabil-
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ities of individual k-mers given the genotype (i.e. �i p(ki |g)).
Note that p(ki|g) is calculated as p(cki |N (μg,ki , σ

2
g,ki

)) where
the random variable cki is the count of k-mer ki in the sam-
ple. Furthermore, the values μg,ki and σ 2

g,ki
are derived from

sample-wide μ and σ according to the genotype g. We calcu-
late the likelihood for all three possible genotypes 1/1, 1/0
and 0/0 for each SV and choose the one with the maximum
likelihood as our prediction.

Implementation

Nebula is implemented entirely in C++ and is heavily par-
allelized using OpenMP (34). To improve speed and reduce
memory usage, k-mers are hashed into integer values and
string comparison operations are implemented in binary
arithmetic. This allows Nebula to count millions of k-mers
in WGS reads at a rate of >500 000 reads per second using
a single processor core.

To increase the accuracy of k-mer counts, Nebula keeps
the immediate left and right k-mers surrounding a selected
k-mer during the extraction phase and checks that at least
one of these k-mers exists around the k-mer in a sequenc-
ing read before incrementing the count. This is discussed in
more detail in the Supplementary Materials.

Although Nebula is meant to genotype unmapped
FASTQ files, k-mers can also be counted in SAM, BAM and
CRAM files with slight differences in performance between
the different formats due to parsing and decoding. Unlike
many mapping-based tools that require certain fields in in-
put VCF files, Nebula only requires the SV coordinates (and
optionally the inserted sequence for insertions). For the ex-
periments presented in this manuscript, we have also devel-
oped a Docker version of Nebula that can be easily deployed
to various cloud computing platforms such as Cancer Ge-
nomics Cloud (35).

RESULTS

We utilized both simulations and real data to quantify
and evaluate the performance of Nebula using high qual-
ity SV predictions from long-read sequencing data on 1KG
samples HG00514 (CHS trio, child), HG00733 (PUR trio,
child) and NA19240 (YRI trio, child) (36).

Simulation

An extensive WGS simulation was performed to evaluate
Nebula’s performance for accurately genotyping SVs. The
simulation consists of two stages: first we mutated a genome
with the set of SVs from the 1KG dataset and used it for k-
mer extraction. Second, we simulated a subset of these SVs
on a new sample and used the extracted k-mers to genotype
the simulated SVs.

During the first step, a diploid GRCh38 genome was mu-
tated with the union of all insertions and deletions reported
for samples HG00514 and HG00733 (11551 total SVs) with
random genotype assignments of 1/0 or 1/1. Short paired-
end sequencing reads were simulated from this diploid sim-
ulated genome using wgsim (https://github.com/lh3/wgsim)
at 30x coverage and mapped using BWA-mem (37). After

running the k-mer extraction phase, Nebula found k-mers
to genotype 11330 (98%) of the simulated SVs.

During the second stage of the simulation, another
diploid genome was constructed from GRCh38 and was
randomly mutated with the same set of SVs but with all
three possible genotypes (0/0, 0/1 and 1/1) allowed. Paired-
end short reads were generated from this genome at 30×
coverage in FASTQ format and the extracted k-mers were
used to genotype the sample.

The entire procedure was also repeated at 10× coverage
to measure Nebula’s resilience to low coverage. For the 10×
simulation, k-mers could be extracted for 11304 (97.8%)
SVs.

We compared Nebula’s predictions against those of the
mapping-based approaches SVTyper (16) and Delly (11),
the graph-based approach Paragraph (38) and the k-mer-
based approach BayesTyper (39). Due to limitation of SV-
typer and Delly on genotyping long insertions (40), we
have excluded these tools from the comparison for inser-
tions. Note that none of the mentioned methods except
BayesTyper can genotype unmapped samples in FASTQ
format directly and instead require mapped reads as input.

We calculated four different measures of accuracy for
each method: The true genotyping rate (TGR) is defined as
the number of correct genotype calls for each tool divided
by the total number of input events. The false genotyping
rate (FGR) is similarly defined as the number of false geno-
type calls made by a tool divided by the total number of
calls made by that tool. Precision is defined as the number
of true positive calls divided by all the positive calls (1/1 and
1/0) made by a tool and finally recall is defined as the num-
ber of true positive calls produced by a tool divided by the
total number of 1/1 or 1/0 SVs present on the sample. The
detailed results for each simulation, separated by event type
are presented in Figure 3 and Supplementary Figure S1. In
both simulations, Nebula has produced comparable results
to state-of-the-art genotyping approaches without requir-
ing the mapping of the reads to the reference genome.

Real data

We also used real WGS data for experimental evaluation
of Nebula. We considered the union of all insertions, dele-
tions and inversions reported from non-repeat regions of
the HG00514 and HG00733 genomes as the set of input
SVs (36). We used these two samples to extract k-mers for
the SVs and used the k-mers to genotype a third sample
NA19240 with Nebula. We also used Delly, SVTyper, Para-
graph and BayesTyper to genotype the selected set of SVs
on NA19240 and validated their predictions against the
1KG callset.

For evaluation, we only considered SVs that could be cor-
rectly genotyped on HG00514 and HG00733 using at least
one of the four methods (Delly, SVTyper, Paragraph and
BayesTyper) in the comparison. For consistency in validat-
ing genotypes, we have merged overlapping deletions and
insertions (less than 10bp apart) in different samples into a
single event. A total of 4810 deletions, 7511 insertions and
81 inversions were considered for our evaluation.

https://github.com/lh3/wgsim
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Figure 3. Comparison of different accuracy metrics between Nebula and
other methods when genotyping SVs on the 30× simulation.

We use the same metrics introduced earlier for compar-
ing the performance of different methods and we observe
that Nebula consistently performs equal to or better than
the other state-of-the-art methods (Figure 4). As the input
callset does not include genotypes for inversions and only
marks them as present or not, we have only reported pre-
cision and recall for inversions. We could not genotype the
inversions using Delly or BayesTyper and we have thus re-
moved these tools from the comparison for inversions. Note
that BayesTyper requires exact SV breakpoints for optimal
performance; as a result, its performance for insertions and
deletions may have been negatively affected due to inexact
breakpoints for some of the SVs in the dataset.

We also compared the performance of different tools
for genotyping SVs in repeat regions of the genome. We
used each method to genotype SVs reported in HG00514
and HG00733 on the NA19240 sample. Nebula and other
methods perform relatively well on SVs involving mobile
elements (e.g., SINE or LINE elements) and all methods
achieve a precision of over 90% (Supplementary Figure S2).
However, on SVs incorporating genomic satellite and tan-
dem repeat regions all tools perform relatively poorly with
every tool having a FGR of at least 40% (Supplementary
Figure S3). Our results indicate novel methodological de-
velopments are required to accurately genotype these types
of SVs.

Figure 4. Comparison of different accuracy metrics between Nebula and
other methods when genotyping SVs on NA19240.

Time and memory performance

Nebula’s main advantage is its ability to directly genotype
unmapped samples with high efficiency and comparable ac-
curacy to the state-of-the-art mapping-based genotypers.
Furthermore, Nebula is not limited to specific types of SVs
and can genotype deletions, insertions, inversions, or other
types of SVs using a universal algorithm. We measured the
runtime and peak memory usage of Nebula and other tools
for genotyping NA19240 (Figure 5).

Assuming k-mers have already been extracted for a com-
mon set of SVs, Nebula can be as much as 40 times
faster than mapping-based methods in genotyping newly se-



e47 Nucleic Acids Research, 2021, Vol. 49, No. 8 PAGE 6 OF 8

Figure 5. Comparison of single-thread runtime (A) and peak memory us-
age (B) of Nebula and other genotyping tools while genotyping 12321
insertion and deletion SVs on unmapped NA19240 reads. Nebula and
BayesTyper are k-mer-based methods and don’t require read-mappings.
Delly and SVtyper mainly parallelize over the number of input samples
and don’t benefit from multiple threads when genotyping a single sample.
Peak memory usage excludes the memory usage of BWA-mem (peak mem-
ory usage of BWA-mem mapping was 16GB).

quenced samples. This is particularly useful in large studies
with hundreds to thousands of samples, where Nebula can
be efficiently used to genotype common SVs on the entire
cohort an order of magnitude faster than other approaches.

Nebula also has advantages when genotyping mapped
samples. For a mapping-based genotyper, the sequenc-
ing reads should be mapped against the same reference
genome version that the SV coordinates are from; how-
ever, once Nebula has extracted k-mers for a set of SVs re-
ported against a certain reference genome (e.g. GRCh38),
it can genotype them on samples mapped to other refer-
ence genome versions (e.g. GRCh37) directly and without
the need to remap the samples or lift SV coordinates.

Simons Genome Diversity Project Data (SGDP)

We used k-mers extracted for a total of 14103 insertion and
deletion selected from the three 1KG samples HG00514,
HG00733 and NA19240 to genotype the entire set of 279
samples from the Simons Genome Diversity Project (41)
stored in BAM format on the cloud computation platform
Cancer Genomics Cloud (CGC) (35).

Figure 6. Population clustering of SGDP samples.

On average, we see about 19% homozygous and 24% het-
erozygous genotype predictions among all samples. We ex-
pect the genotypes to cluster samples based on geographical
origin. For this, we preformed a principal component anal-
ysis (PCA) on the SV genotypes and plotted the two most
significant components (Figure 6). The PCA clearly sepa-
rates populations of different continents with a greater level
of separation between Africa and the rest (Figure 6A). We
repeated the PCA analysis using one million randomly se-
lected SNP calls from the Simons Genome Diversity Project
(41) and plotted the two most significant components (Fig-
ure 6B). The plot from Nebula’s genotypes captures the
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same structure as SGDP’s SNP calls, showing the accuracy
of our method for population studies.

The 1KG SVs are based on GRCh38 coordinates, how-
ever the SGDP samples are mapped against GRCh37. With
Nebula’s modest resource requirements and independence
from mapping, each sample was genotyped accurately in
under an hour and at a cost of $0.30 per sample without
the need to remap the reads to GRCh38.

DISCUSSION

We have presented here, Nebula, a novel approach for ultra-
efficient and accurate genotyping of any type of SV with-
out the need to map the reads to the reference genome. We
have demonstrated that k-mers can act as a lightweight and
simple alternative for expensive mapping-based methods
to genotype polymorphic SVs. Several tools have already
achieved similar conclusions for other types of variants such
as SNVs (26,27) and indels (21,28). Furthermore, our pro-
posed approach can easily be modified to genotype other
types of variants (i.e. SNVs and indels). Thus, we believe
that utilizing a combination of these mapping-free methods
can provide a framework for accurate and efficient genotyp-
ing of all types of variation using k-mer counts. This would
significantly reduce the computational resources needed to
analyze new WGS samples and will speed-up large scale
studies.

Note that Nebula does not require exact SV breakpoints
for genotyping SVs and can work with approximate break-
points. This is an advantage over approaches that require
exact breakpoints or assembled haplotypes to guide k-mers
selection and accurate variant genotyping. Nebula only
counts the k-mers directly associated with the SVs, signif-
icantly reducing the runtime and memory usage compared
to other k-mer based approaches.

Furthermore, genotype imputation algorithms (42) can
be incorporated into Nebula’s pipeline to improve the
method’s accuracy and ability to genotype variants that
are difficult to genotype using solely k-mers, e.g. SVs with
breakpoints in repeat regions of the genome.

Finally, extending Nebula to utilize k-mers that are
shared between different SVs may help us improve our per-
formance when genotyping SVs in repeat regions of the
genome (e.g. tandem repeats).

DATA AVAILABILITY

The code and data used in these experiments are available
at https://github.com/Parsoa/Nebula.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Casacuberta,J.M. and Castanera,R. (2019) A benchmark of
transposon insertion detection tools using real data. Mobile DNA, 10,
53.

5. Stankiewicz,P. and Lupski,J.R. (2010) Structural variation in the
human genome and its role in disease. Annu. Rev. Med., 61, 437–455.

6. Zhang,F., Gu,W., Hurles,M.E. and Lupski,J.R. (2009) Copy number
variation in human health, disease, and evolution. Annu. Rev. Genom.
Hum. G., 10, 451–481.

7. Manolio,T.A., Collins,F.S., Cox,N.J., Goldstein,D.B., Hindorff,L.A.,
Hunter,D.J., McCarthy,M.I., Ramos,E.M., Cardon,L.R.,
Chakravarti,A. et al. (2009) Finding the missing heritability of
complex diseases. Nature, 461, 747.

8. Eichler,E.E., Flint,J., Gibson,G., Kong,A., Leal,S.M., Moore,J.H.
and Nadeau,J.H. (2010) Missing heritability and strategies for finding
the underlying causes of complex disease. Nat. Rev. Genet., 11, 446.

9. Sudmant,P.H., Rausch,T., Gardner,E.J., Handsaker,R.E.,
Abyzov,A., Huddleston,J., Zhang,Y., Ye,K., Jun,G., Fritz,M. H.-Y.
et al. (2015) An integrated map of structural variation in 2,504
human genomes. Nature, 526, 75.

10. Layer,R.M., Chiang,C., Quinlan,A.R. and Hall,I.M. (2014) LUMPY:
a probabilistic framework for structural variant discovery. Genome
Biol., 15, R84.

11. Rausch,T., Zichner,T., Schlattl,A., Stütz,A.M., Benes,V. and
Korbel,J.O. (2012) DELLY: structural variant discovery by integrated
paired-end and split-read analysis. Bioinformatics, 28, i333–i339.

12. Soylev,A., Le,T.M., Amini,H., Alkan,C. and Hormozdiari,F. (2019)
Discovery of tandem and interspersed segmental duplications using
high-throughput sequencing. Bioinformatics, 35, 3923–3930.

13. Ye,K., Schulz,M.H., Long,Q., Apweiler,R. and Ning,Z. (2009)
Pindel: a pattern growth approach to detect break points of large
deletions and medium sized insertions from paired-end short reads.
Bioinformatics, 25, 2865–2871.

14. Chaisson,M.J., Huddleston,J., Dennis,M.Y., Sudmant,P.H.,
Malig,M., Hormozdiari,F., Antonacci,F., Surti,U., Sandstrom,R.,
Boitano,M. et al. (2015) Resolving the complexity of the human
genome using single-molecule sequencing. Nature, 517, 608.

15. Handsaker,R.E., Korn,J.M., Nemesh,J. and McCarroll,S.A. (2011)
Discovery and genotyping of genome structural polymorphism by
sequencing on a population scale. Nat. Genet., 43, 269.

16. Chiang,C., Layer,R.M., Faust,G.G., Lindberg,M.R., Rose,D.B.,
Garrison,E.P., Marth,G.T., Quinlan,A.R. and Hall,I.M. (2015)
SpeedSeq: ultra-fast personal genome analysis and interpretation.
Nat. Methods, 12, 966.

17. Bray,N.L., Pimentel,H., Melsted,P. and Pachter,L. (2016)
Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol.,
34, 525.

18. Patro,R., Duggal,G., Love,M.I., Irizarry,R.A. and Kingsford,C.
(2017) Salmon provides fast and bias-aware quantification of
transcript expression. Nat. Methods, 14, 417.

19. Iqbal,Z., Caccamo,M., Turner,I., Flicek,P. and McVean,G. (2012) De
novo assembly and genotyping of variants using colored de Bruijn
graphs. Nat. Genet., 44, 226.

20. Uricaru,R., Rizk,G., Lacroix,V., Quillery,E., Plantard,O., Chikhi,R.,
Lemaitre,C. and Peterlongo,P. (2014) Reference-free detection of
isolated SNPs. Nucleic Acids Res., 43, e11.

https://github.com/Parsoa/Nebula
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkab025#supplementary-data


e47 Nucleic Acids Research, 2021, Vol. 49, No. 8 PAGE 8 OF 8

21. Peterlongo,P., Riou,C., Drezen,E. and Lemaitre,C. (2017)
DiscoSnp++: de novo detection of small variants from raw
unassembled read set (s). bioRxiv doi:
https://doi.org/10.1101/209965, 27 October 2017, preprint: not peer
reviewed.

22. Chong,Z., Ruan,J., Gao,M., Zhou,W., Chen,T., Fan,X., Ding,L.,
Lee,A.Y., Boutros,P., Chen,J. et al. (2017) novoBreak: local assembly
for breakpoint detection in cancer genomes. Nat. Methods, 14, 65.

23. Narzisi,G., O’rawe,J.A., Iossifov,I., Fang,H., Lee,Y.-h., Wang,Z.,
Wu,Y., Lyon,G.J., Wigler,M. and Schatz,M.C. (2014) Accurate de
novo and transmitted indel detection in exome-capture data using
microassembly. Nat. Methods, 11, 1033.
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