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Aims: In garlic cultivation, long-time monoculture has resulted in continuous-cropping
obstacles. However, the cause has not been studied to date.

Methods: We analyzed soils from garlic fields in Pengzhou, China, to determine
continuous-cropping obstacle related changes in soil physicochemical properties
and enzyme activities, and in the diversity and composition of bacterial and fungal
communities. Furthermore, we examined the relationships between soil properties and
the bacterial and fungal communities.

Results: The soil pH and the soil catalase, urease, invertase, and polyphenol oxidase
activities were lower in the cropping obstacle soil than in the healthy control soil. The
richness and diversity of the bacteria were lower in the cropping obstacle soil than in
the control. The bacterial and fungal communities in the cropping obstacle soil were
clearly different from those in the control soil. The differences in bacterial communities
between the cropping obstacle soil and the control soil were associated with differences
in pH and available potassium content. The taxa with higher relative abundances in
the cropping obstacle soils included potential plant pathogens and the taxa with lower
relative abundances included potential plant growth promoters.

Conclusion: The enrichment of plant pathogens and the depletion of plant growth
promoting fungi may have contributed to the poor growth of garlic in the cropping
obstacle soil. The enzyme activity and microbial community differences were associated
with acidification that was likely an important factor in the deterioration of the soil
ecological environment and the garlic cropping obstacle. The results provide information
to guide agricultural practices in cultivating garlic.

Keywords: garlic, cropping obstacles, soily acidification, soil enzyme activity, soil microbial community

Frontiers in Microbiology | www.frontiersin.org 1

March 2022 | Volume 13 | Article 828196


https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2022.828196
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2022.828196
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2022.828196&domain=pdf&date_stamp=2022-03-30
https://www.frontiersin.org/articles/10.3389/fmicb.2022.828196/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

Yu et al.

The Cropping Obstacle of Garlic

HIGHLIGHTS

- Soil acidification was the primary factor correlating with garlic
cropping obstacle.

- The activities of catalase, urease, invertase and polyphenol
oxidase were lower in the cropping obstacle soil than in the
healthy control soil.

- The enrichment of plant pathogens and the depletion of plant
growth promoting fungi may have contributed to the garlic
cropping obstacle.

- The assembly of bacterial communities was dominated by
stochastic processes in garlic cropping obstacle soil.

INTRODUCTION

Garlic (Allium sativum L.) is rich in nutrients and has an
appealing flavor and antibacterial properties; thus, it has been
used as a seasoning, functional food, and traditional medicine
for thousands of years worldwide (Corzo-Martinez et al., 2007;
Liu et al,, 2020). Currently, Asia, Europe, and Latin America
are the main garlic production regions. In China, the garlic
cropping area has reached 830 km? and the annual yield is
approximately 2.3 million tons (FAO, 2019). Growing demand
for yields and the limited arable land have resulted in garlic
production with high cropping intensity and monocultures
over long periods. Generally, long-term monoculture continuous
cropping decreased crop yield and quality a phenomenon known
as cropping obstacle (Zhu et al., 2018). The cropping obstacle
may include numerous biotic and abiotic factors, e.g., changes in
microbial communities (Dong et al., 2017), enriched soil-borne
plant pathogens (Liu et al., 2014), declines in soil enzyme activity
(Fuetal., 2017), changes in soil physicochemical properties (Kaur
and Singh, 2014; Perez-Brandan et al., 2014; Li et al,, 2016), and
autotoxicity of plants (van Wyk et al., 2017).

Soil microorganisms play an important role in agricultural
production by maintaining soil quality and affecting nutrient
cycling (Blagodatskaya and Kuzyakov, 2013; Sun et al., 2015;
Beckers et al., 2017). In some instances, the interactions between
soil microbial communities and soil properties modulate plant
health through affecting pathogens (Wei et al., 2015). Cropping
obstacles have been associated with soil bacterial and fungal
communities (Gao et al, 2019, 2021; Xi et al, 2019). For
example, decreases in diversity and abundance of beneficial soil
microbes and an increase in pathogenic fungi such as Fusarium
and Verticillium were associated with sugarcane cropping
obstacle (Pang et al., 2021). However, the relationships between
microbial communities and continuous cropping obstacles are
not necessarily similar across diverse crops and environmental
conditions, thus more studies are called for.

Soil enzymes, i.e., the extracellular enzymes produced by
the microorganisms, are considered as indicators of soil
fertility (Zeng et al., 2007; Paz-Ferreiro and Fu, 2016). The
physicochemical properties of soil affect the composition of soil
microbial communities and the enzyme activities (Liu et al.,
2021). Among the soil physicochemical properties, soil pH
is considered as a master variable in affecting the microbial

communities (Fierer and Jackson, 2006). Evidently, the changes
brought on by continuous cropping, e.g., the often detected
acidification, have resulted in changes in the soil microbial
communities and soil enzymatic activities (Gao et al., 2019, 2021;
Zheng et al., 2019).

Pengzhou in the Chengdu Plain is one of the five major
vegetable cultivation bases in China, with a garlic cultivation
history of more than 30 years. In Pengzhou, garlic is commonly
grown in rotation with spring rice. In recent years, the long-
time monoculture has resulted in continuous-cropping obstacles.
The symptoms of the obstacle include yellowing of the leaves
starting from the tips and edges, stagnated growth of roots and
plant, at its worst, dying of the plants. The continuous-cropping
obstacles appear commonly on patches in a field and sometimes
on an entire field.

To our knowledge, the continuous-cropping obstacles in garlic
cultivation have not been studied to date. We analyzed soils from
garlic fields in Pengzhou, with the aim to determine continuous-
cropping obstacle related changes in (1) soil physicochemical
properties and enzyme activities, and in (2) the diversity and
composition of bacterial and fungal communities. Furthermore,
we examined (3) the relationships between soil properties and
the bacterial and fungal communities. We hypothesized that
the continuous cropping obstacle would be associated with soil
acidification that would further affect the soil microorganisms
and decrease enzyme activities. The results provide information
to guide agricultural practices in cultivating garlic.

MATERIALS AND METHODS
Site Description and Field Sampling

The field experiment was performed in a garlic production
area in Pengzhou (31°02'31”N-31°05'39”N, 103°50'51"E-
103°59'42"'E), Chengdu Plain, China, that is in the northern
part of the subtropical humid climate zone, with a mean
annual temperature of 15.7°C, precipitation of 960 mm and
approximately 1,180 h of sunshine. The soil on the site is fertile
paddy soil. Garlic was grown in rice-garlic rotation and covered
with straw after sowing.

Samples were collected in March 2018 from seven fields with
an area of 700-1,000 m?. In each field, three 60-100 m? plots
were randomly selected in areas with healthy garlic plants (CK)
and in areas with cropping obstacles (D) (Figure 1). Five topsoil
(0-20 cm) subsamples from a 10 cm circle around the plants were
combined into a composite sample, an appropriate amount of
homogenized soil was retained by quartering, and placed into
sterile plastic bags that were sealed. The bags were kept on ice
and transported to the laboratory immediately after sampling.
Roots and other debris were removed from the soil samples and
the samples were divided into two parts for immediate DNA
extraction and physicochemical analyses.

Garlic Growth and Root Activity Analyses
The growth of the plants was assessed by measuring shoot and
root lengths and the fresh weight of aboveground and root
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the cropping obstacle soil (D).

FIGURE 1 | (A) A garlic field with cropping obstacle (foreground) and healthy garlic plants (background). (B) Garlic plants grown in the healthy control soil (CK) and in

biomasses. Root activity was determined using 2,3,5-triphenyl
tetrazolium chloride (TTC) staining (Comas et al., 2008).

Soil Physicochemical and Enzyme
Activity Analyses

Prior the analyses, the soil samples were air-dried naturally in a
cool and ventilated place. Soil pH was measured with a pH meter
in a 1:2.5 soil to water slurry. Soil organic carbon content (SOC)
was determined using the K, Cr,O7 oxidization method. Soil total
(TN) and available nitrogen (AN), available phosphorus (AP)
and available potassium (AK) contents were determined using
Kjeldahl digestion, alkaline hydrolysis diffusion method and
molybdenum blue method and flame photometry, respectively.
Soil enzyme activity analyses were performed as described
earlier (Guan et al., 1986). Briefly, urease was assayed by
colorimetric analysis of sodium phenate-sodium hypochlorite,
acid phosphatase was colorimetrically estimated using disodium
phenyl phosphate, invertase was colorimetrically determined by
DNS based on the decreasing sugar content, phenol oxidase was
determined by the pyrogallol colorimetric method, and catalase
activity was assayed by potassium permanganate titration.

DNA Extraction, Amplification, and
Sequencing
Total genomic DNA was extracted from 0.60 to 0.90 g

fresh weight soils (corresponding to 0.50 g dry weight)
using Fast DNA® SPIN for Soil Kit (MP BIO Laboratories,

California, United States) according to the manufacturer’s
instructions. The quantity and quality of extracted DNA
were estimated using a NanoDrop NC2000 spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, United States) and
agarose gel electrophoresis, respectively. DNA samples were
stored at —20°C.

The V3-V4 region of bacterial 16S rRNA gene was amplified
using the primers 338F (5-ACTCCTACGGGAGGCAGCA-
3’) and 806R (5-GGACTACHVGGGTWTCTAAT-3'). The
fungal ITS1 region was amplified using the primers ITS5F
(5'-GGAAGTAAAAGTCGTAACAAGG-3) and ITS1IR
(5'-GCTGCGTTCTTCATCGATGC-3') using the Q5 High-
Fidelity DNA Polymerase (New England Biolabs, Ipswich,
MA). Sample-specific 7-bp barcodes were incorporated into the
primers for multiplex sequencing. The reaction mixture of total
volume 25 pl comprised the following: 5 ul of 5 x reaction
buffer, 5 il of 5 x GC buffer, 2 pl of 2.5 uM dNTPs, 1 wul of
forward primer (10 pM), 1 ul of reverse primer (10 pM), 2 pl
of DNA Template, 0.25 pl of Q5 DNA polymerase, and 8.75 1
of ddH,O. The polymerase chain reaction (PCR) was performed
under the following cycling conditions: initial denaturation at
98°C (2 min), denaturation at 98°C (15 s), annealing at 55°C
(30 s), extension at 72°C (30 s), and a final extension of 72°C
for 5 min, for 25-30 cycles. PCR amplicons were purified with
Vazyme VAHTSTM DNA Clean Beads (Vazyme, Nanjing, China)
and quantified using the Quant-iT PicoGreen dsDNA Assay
Kit (Invitrogen, Carlsbad, CA, United States). Amplicons were
pooled in equal amounts, and paired-end 2 x 250 bp sequencing
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was performed using the Illumina MiSeq platform with MiSeq
Reagent Kit v3 at Shanghai Personal Biotechnology Co., Ltd.
(Shanghai, China).

Sequence Analysis

Sequences were processed with QIIME 2 (Bolyen et al., 2019)
according to the official tutorial' with slight modifications.
Briefly, raw sequence data were demultiplexed using the demux
plugin followed by removing the primers with cut adapt plugin
(Martin, 2011). Quality filtering, denoising, merging and chimera
removal were performed using the DADA2 plugin (Callahan
et al,, 2016). Non-singleton amplicon sequence variants (ASVs)
were aligned with maftt (Katoh et al., 2002) and used to construct
a phylogeny with fasttree2 (Price et al., 2009). Taxonomy was
assigned to ASVs using the classify-sklearn naive Bayes taxonomy
classifier in feature-classifier plugin (Bokulich et al., 2013) against
the SILVA Release 132 and UNITE Release 8.0 databases (Koljalg
et al, 2013). Taxonomic compositions were visualized using
MEGAN and GraPhlAn (Asnicar et al, 2015). Chaol and
Shannon alpha diversity indices were calculated using the ASV
table in QIIME2.

Statistical Analyses

Statistical analyses were performed using QIIME2, SPSS 21
(Version 21.0, SPSS Inc., Chicago, IL, United States) and R
v.3.6.1.% Differences in plant and soil properties were tested
using Student’s t-test. The associations between garlic growth
parameters and soil properties were analyzed using Pearson
correlation. Differences in alpha diversity indices between
treatments were tested using Kruskal-Wallis test and visualized
as box plots. Beta diversity was analyzed based on Bray-Curtis
dissimilarity and visualized using non-metric multidimensional
scaling (NMDS) (Ramette, 2007). The differences in community
compositions were tested using permutational multivariate
analysis of variance (PERMANOVA) (McArdle and Anderson,
2001). Differential abundance of taxa was tested using linear
discriminant analysis effect size (LEfSe) analysis (Segata et al.,
2011). The relationships between environmental factors and
microbial community structure were analyzed using distance-
based redundancy analysis (dlbRDA) in the “vegan” package in
R v2.5.6 (Oksanen et al., 2020).

Uhttps://docs.qiime2.org/2019.4/tutorials/
Zhttp://www.r-project.org

The weighted p nearest taxon index (BNTI) and Bray-Curtis-
based Raup-Crick (RCpray) values were calculated via a null
model methodology to differentiate the ecological processes
that regulate microbial community assembly (Stegen et al,
2013, 2015). The BNTI was quantified by determination of
the standard deviation between an observed level and the
null distribution of the mean nearest taxon distance metric
(BMNTD). The BMNTD and RCp,y were calculated using the
R packages “picante” and “vegan,” respectively (Kembel et al.,
2010). Specifically, B-NTI > 2 indicated variable selection,
and B-NTI < —2 indicated homogeneous selection; at |3-NTI|
< 2, deterministic processes were associated with dispersal
limitation when RCp,y > 0.95, homogeneous dispersal when
RCpray < —0.95, and undominated when [RCyrqy| < 0.95 (Stegen
et al.,, 2015; Jiao et al., 2020; Luan et al., 2020).

RESULTS

The Properties of Garlic Plants and Soils

The biomasses, root and shoot lengths and root activities of
cropping obstacle plants were lower than those of healthy plants,
in which root activities decreased by 61.16% (P < 0.05) (Table 1).
The pH was lower and AK content higher in the cropping
obstacle soil than in the control (P < 0.05) (Table 2). Thus, the
soil pH correlated positively and AK content negatively with the
garlic growth parameters (P < 0.01) (Supplementary Table 1).

TABLE 2 | The properties of cropping obstacle soil (D) and healthy
control soil (CK).

D cK
pH 5.09 + 0.19 6.02 + 0.46*
WC (%) 28.31 + 1.99 27.02 + 4.38
AP (mg/kg) 58.81 + 5.87 55.58 + 11.13
AK (mg/kg) 250.09 + 26.49* 194.14 + 28.35
AN (mg/kg) 65.40 + 6.26 65.25 + 8.24
TN (g/kg) 1.86 +0.16 1.86 + 0.25
SOC (g/kg) 34.97 + 6.61 38.38 + 9.09

Values are means + standard deviation. *In a row indicate statistically significant
difference at P < 0.05 (Student’s t-test).

WC, soil water content; AR, available phosphorus content; AK, available potassium
content; AN, available nitrogen content; TN, total nitrogen content; SOC, soil
organic carbon content.

TABLE 1 | The properties of garlic plants grown in cropping obstacle soil (D) and
healthy control soil (CK).

TABLE 3 | Soil enzyme activities in cropping obstacle soil (D) and healthy
control soil (CK).

Item tested D CK
Shoot length (cm-plant=1) 26.34 4+ 4.21 71.69 £+ 5.14*
Maximum root length (cm-plant=") 4.85 +1.03 13.87 £ 1.91*
Aboveground biomass (g-plant™'-FW) 4.65 + 0.86 40.73 + 11.04*
Root biomass (g-plant~'-FW) 0.34 £0.12 411 £ 1.56*
Root activity (Lg-g~" -h="-Fw) 23.54 +5.84 60.61 + 9.83*

Enzyme D CK

Catalase (KMnO4 ml/g-20 min) 0.54 + 0.09 0.92 + 0.23*
Urease (NHz-N mg/g-24 h) 0.21 £0.02 0.31 £+ 0.06*
Polyphenol oxidase (Purple gallate mg/g-2 h) 0.88 +£0.18 1.99 + 0.49*
Acid phosphatase (Phenol mg/g-24 h) 1.98 £+ 0.38* 1.64 + 0.21
Invertase (Glucose mg/g-24 h) 2.52 £ 0.69 3.57 £ 0.52*

Values are means + standard deviation. *In a row indicate statistically significant
difference at P < 0.05 (Student’s t-test).

Values are means =+ standard deviation (n = 21). *In a row indicate statistically
significant difference at P < 0.05 (Student’s t-test).
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FIGURE 2 | Alpha-diversity of bacterial and fungal communities in the garlic cropping obstacle soil (D) and healthy control soil (CK). *** Indicates statistically
significant difference at P < 0.001.

The activities of soil catalase, urease, polyphenol oxidase and
invertase were lower and the activity of acid phosphatase
was higher in the cropping obstacle soil than in the control
(P < 0.05) (Table 3).

Changes in Bacterial and Fungal

Communities

The 974,584 16S rRNA gene and 1930,751 ITS sequences were
grouped into 67,658 bacterial ASVs and 18,166 fungal ASVs. The
richness and diversity indices of the bacteria were lower in the
cropping obstacle soil than in the control (P < 0.05) (Figure 2).

At the phylum level, the bacterial sequences were classified
into 36 phyla, out of which the relative abundances of
Proteobacteria, Chloroflexi, Acidobacteria, and Actinobacteria
were high (Figure 3A and Supplementary Table 2). Out of
the 13 fungal phyla, the relative abundances of Ascomycota
and Basidiomycota were high (Figure 3B and Supplementary
Table 3). The bacterial sequences were classified into 893 genera
and the fungal sequences into 453 genera (Figures 3C,D and
Supplementary Tables 4, 5).

Linear discriminant analysis (LDA) effect size (LEfSe) analysis
was used to identify differentially abundant taxa. For the bacteria,
the taxa with higher relative abundances in the cropping obstacle
soil included phylum Chloroflexi, order Xanthomonadales and
genera JG30-KF-AS9, Chujaibacter and Rhodanobacter; the taxa
with lower relative abundances in the cropping obstacle soil
included phyla Acidobacteria and Rokubacteria (Figure 4A).
For the fungi, the taxa with higher relative abundances in
the cropping obstacle soil included genera Stemphylium and
Aspergillus; the taxa with lower relative abundances in the

cropping obstacle soil included phylum Basidiomycota and
genera Phialophora and Oidiodendron (Figure 4B).

The Relationship Between the Microbial

Community and Environmental Factors

In the non-metric multidimensional scaling (NMDS) based
on the Bray-Curtis dissimilarity, the bacterial and fungal
communities in the cropping obstacle soil were separated from
those in the control soil (Figure 5). In addition, PERMANOVA
indicated that the community compositions were different
(P < 0.05) (Supplementary Table 6).

Based on the distance-based redundancy analysis (dbRDA)
analysis, the differences in bacterial community composition
across samples were related to soil water content, pH, AP, AK,
SOC, TN, polyphenol oxidase and acid phosphatase contents
(P < 0.001) (Figure 6A and Supplementary Table 7). The
differences in community composition between the garlic
cropping obstacle soil and the control soil were associated
with pH, AK, acid phosphatase, polyphenol oxidase and
invertase (Figure 6A and Supplementary Table 7). The
differences in fungal community composition across samples
were associated with all the measured soil properties, but no
clear treatment related associations were detected (Figure 6B and
Supplementary Table 7).

Assembly Processes of Soil Microbial

Communities
In the bacterial communities, |3-NTI| > 2 accounted for 32.4% in
the cropping obstacle soil and 61.9% in the control (Figure 7A),
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suggesting that the contribution of deterministic processes to
community assembly were lower in the cropping obstacle soil.
In the cropping obstacle soil, homogeneous dispersal accounted
for 65.6% of the community assembly (Figure 7B). In the
control soil, homogeneous selection accounted for 40.0% of
the community assembly and variable selection accounted for
21.9%. In the fungal communities, |3-NTI| > 2 accounted
for 53.8% in the cropping obstacle soil and 58.6% in the
control, suggesting that the assembly processes were primarily
deterministic with homogeneous selection as the dominant
assembly process (Figure 7B).

DISCUSSION

Continuous-cropping obstacle soils have received considerable
attention in recent years. For example, the biotic and abiotic
factors in cropping obstacle of peanut, strawberry and American
ginseng have been determined (Li et al.,, 2014, 2018; Liu et al,,
2021). To our knowledge, whether the conclusions based on other
crops can be extrapolated to garlic cropping obstacle problem is
still not known. We sampled soil and plants in fields with poorly
growing garlic plants and noticed that in addition to the evidently
lower aboveground biomass, the root biomass and root activity
were also lower in the cropping obstacle soil than in the control
soil with healthy garlic plants.

Soil properties can directly affect plant health (Wang et al.,
2017). In agreement with previous studies (Li et al, 2018;
Liu et al., 2021), compared to the control, the garlic cropping
obstacle soil was characterized by lower pH and higher available

potassium content. Acid stress in pH below 5.5 triggered
sensitivity responses in roots, e.g., arrested root growth and
death of root tip cells, and acidic soil limited plant growth
and the uptake of nutrients from soil (Agegnehu et al., 2016;
Gracas et al, 2021). The application of synthetic fertilizers
with high level in rice-vegetable rotation has led to a soil
acidification (Li et al., 2020; Shen et al,, 2021) that may be
an important cause for the garlic cropping obstacle. Although
differences in the abiotic and biotic characteristic may exist even
within close soil environments that share the same geographies
(Fierer, 2017), what causes the patchiness of acidification requires
further research.

Soil enzyme activities are employed as one of the important
indicators of soil quality and fertility (Bastida et al., 2008).
In long-period strawberry cropping, the soil enzyme activities
decreased and the probability of diseases increased (Li et al.,
2018). Similarly, compared to the control, the activities of soil
urease, catalase, sucrase and polyphenol oxidase, i.e., enzymes
that release soil nutrients for plants, were lower in the garlic
cropping obstacle soil. Since soil enzyme activities and pH
correlated strongly (Acosta-Martinez and Tabatabai, 2000), the
acidification of the garlic cropping obstacle soil could have
affected soil enzyme activity. As the soil enzymes mainly originate
from soil microorganisms, changes in microbial metabolic
activity, lower microbial abundance or changes in the microbial
community composition (Zhao et al., 2009; Nannipieri et al,
2012) may have led to the lower enzyme activities.

Continuous cropping obstacles
with lower microbial diversity,
microorganisms, and the

have been associated
a decrease in beneficial
enrichment of pathogenic
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microorganisms (Gao et al., 2019, 2021; Tan et al, 2021).
According to the insurance hypothesis, biodiversity may act as
a buffer against disturbances; in a diverse community, some
species are likely to withstand disturbance and carry on functions
(Yachi and Loreau, 1999). Alarmingly, in our study, both the
richness and the diversity of the bacterial communities were
lower in the cropping obstacle soil than in the control. Similar
with (Shen et al., 2013), the lower bacterial alpha diversity in
cropping obstacle soil may have been due to the lower pH.

Beta diversity analyses showed that the compositions of both
the bacterial and fungal communities in the cropping obstacle soil
were different from those in the control. Environmental factors
affect the microbial communities in soil, with soil pH considered
as the master variable in affecting bacterial communities

(Fierer and Jackson, 2006). In our study, the differences in the
bacterial communities between the cropping obstacle soil and
the control were associated with differences in soil pH and
AK content. Similarly, pH and AK content were among the
main factors associated with bacterial community differences
in continuously cropped potato fields (Zhao et al., 2020). Even
though pH and nutrient contents affect fungal communities
as well (Glassman et al., 2017; Li et al., 2022a), we found no
clear associations between fungal community composition and
soil properties.

Through studies on the community composition of bacteria
and fungi, the differentially distributed taxa were identified
by LEfSe analysis. The phylum Chloroflexi and the order
Xanthomonadales were enriched in the cropping obstacle
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soil. Xanthomonadales include plant pathogens of significant
economic and agricultural impact (Bayer-Santos et al., 2019). The
higher relative abundance of Chloroflexi was mostly due to the
uncultured genus JG30-KF-AS9 that can adapt to acidic soil and
be detrimental to enzyme activities (Wang et al., 2019). Thus, the
enrichment of JG30-KF-AS9 may be connected with the lower
enzyme activities in the garlic cropping obstacle soil. Chujaibacter
and Rhodanobacter which were actively developing in the
presence of mineral fertilizers were acidophilic microorganisms
participating in the nitrogen cycle (Semenov et al., 2020), it
is speculated that the increase of these microorganisms may
be related to soil acidification. Likewise, the fungal genera
Stemphylium and Aspergillus that were enriched in the cropping
obstacle soil include plant pathogens (Syed et al., 2020; Dumin
et al., 2021). For example, Stemphylium spp. caused garlic leaf
spot disease (Dumin et al., 2021). Genus Oidiodendron, one of
the most widely investigated ericoid mycorrhizal fungi that had
plant growth promoting characteristics (Wei et al., 2016; Baba
etal., 2021), was depleted in the cropping obstacle soil. Thus, the
enrichment of Xanthomonadales, Stemphylium and Aspergillus
and depletion of Oidiodendron may have contributed to the poor
growth of garlic in the cropping obstacle soil.

Uncovering the microbial community assembly processes
is a challenging task (Stegen et al, 2013; Luan et al., 2020).
Our results showed that the bacteria assembly processes in
garlic cropping obstacle soil was governed by homogeneous
dispersal, a stochastic process that homogenizes the bacterial
community structure and causes low compositional turnover
(Stegen et al., 2013). In the control, the community assembly
was characterized by deterministic processes. Root exudates
increase available resources that may facilitate the recruitment
and selection of bacterial taxa (Li et al., 2022b), which may explain
why deterministic processes governed assembly processes in the
control soil with vigorously growing garlic plants.

Homogeneous selection was regarded as a factor leading
to a stable state after disturbance in progressive succession
of communities (Dini-Andreote et al, 2015). Together with
the diversity and environmental factor association results, the
dominance of homogeneous selection in both the cropping
obstacle and control soils suggested that the fungal communities
were more resilient than the bacterial communities.

SUMMARY

Cropping obstacle soil was characterized by acidification
and lower enzyme activities except for the activity of acid
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