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Editorial on the Research Topic

Future challenges and directions in determining allo-immunity in
kidney transplantation
Improving long-term allograft survival remains one of the key contemporary

challenges of transplantation medicine. Despite improvement in short-term kidney

allograft outcomes, more than 1 in 2 kidney transplant recipients will lose their

allograft within 15 years of transplantation (1). Returning to dialysis is associated with

a substantial risk of death which is increased by almost 10-fold compared to patients with

functioning kidney allografts (2). Maintaining a good functioning allograft over time is

complex and multiple risk factors influence long-term allograft survival, ranging from

organ procurement factors, post-transplant adverse events such as delayed graft function

and rejection episodes, to the effects of chronic exposure to immunosuppression. To

improve kidney allograft survival, both traditional and emerging potentially modifiable

risk factors need to be identified.

Another equally important aspect of transplantation medicine is the assessment of

sensitization status (3, 4). Pre-transplant immunological risk assessment typically

involves the screening for anti-human leukocyte antigen (HLA) antibody, which can

occur following prior allograft loss, infection, pregnancy and blood transfusion. Although
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the testing for non-HLA antibody may provide a more

comprehensive profi le of sensit izat ion status pre-

transplantation, the cost-benefit and cost-utility of this

approach remains uncertain. Donor/recipient HLA

incompatibility often increases the risk of allo-sensitization,

resulting in the development of de novo donor specific anti-

HLA antibody (dnDSA), which is strongly associated with acute

rejection, premature allograft loss and reduced retransplant

potential (5, 6).

The HLA system encompasses gene loci that determine

tissue compatibility in organ transplantation and consequently,

HLA-matching has been considered the standard triage test for

immunological risk assessment for deceased donor kidney

allocation worldwide allowing clinicians to modify

immunosuppressive agents according to this risk (7). The

HLA system is extremely polymorphic and functionally

complex and in organ transplantation, this polymorphism has

an important role in determining allo-immunity, including the

development of acute rejection and dnDSA after transplantation.

HLA-typing has evolved from serological (method based on

testing the reactivity of specific anti-sera with antigens) to

molecular typing involving all HLA Class I and II alleles in the

last decade. The latter, combined with advances in structural

HLA modelling, have provided opportunities for more accurate

assessment of HLA compatibility at the molecular level and

underpinned an interest into defining the structural

determinants of HLA allorecognition, also known as HLA B-

cell epitopes. These epitopes consist of configurations of

polymorphic amino acid residues expressed on HLA molecules

that are recognized by the host’s immune system, generating an

immune response that leads to the production of anti-

HLA antibody.

The most commonly used algorithm for determining HLA

compatibility at the molecular level is HLAMatchmaker which

assumes that each HLA incorporates multiple structural epitopes

(15-22 polymorphic amino acid residues) that form part of the

binding surface with alloantibody, with each structural epitope

encompassing at least one, smaller, “functional epitope” (cluster

of surface-exposed amino acid residues at least one of which is

polymorphic) called eplet, which determines the specificity and

binding strength of the alloantibody-HLA interaction. Eplets

comprise of short sequences of amino acid residues within a 3

Angstrom radius that interact directly with the paratope of an

anti-HLA antibody (8, 9). HLA immunogenicity defined at the

eplet level, expressed as the total number of eplet mismatches

present in a donor HLA molecule, has been shown to provide a

more accurate metric of HLA incompatibility beyond

conventional broad antigen HLA mismatch with incremental

eplet mismatches associated with an excess risk of acute

antibody mediated rejection (AMR), development of dnDSA,

transplant glomerulopathy and premature allograft loss in

pediatric and adult kidney transplant recipients (9–17).

Therefore, immunological risk assessment focused on
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quantifying the total number of eplet mismatches, calculated

using HLAMatchmaker (18), may provide a more precise

determination of immunological compatibility and subsequent

risk stratification (8, 19). There are increasing data suggesting

that the relationship between the number of eplet mismatches

and adverse allograft outcome is not linear, and the idea of

considering a population data-driven defined threshold,

ignoring the relative immunogenicity of individual eplet

mismatches, to inform clinical risk prediction is conceivably

flawed. Several groups have attempted to provide insights into

the differential and potentially hierarchical effects of individual

or clusters of eplet mismatches (and at specific loci such as HLA-

DQ), identification of high-risk eplet mismatches, and definition

of eplet mismatch at the single HLA molecule level using novel

machine learning statistical techniques that may provide a more

accurate assessment of immunological risk (20–23).

Nevertheless, clinicians should be cognizant of the limitations of

these studies and should cautiously interpret the study findings and

applicability in clinical practice. Many of the studies reporting on

the association between eplet mismatches and allograft outcome

were confined to predominantly homogenous White populations,

often undertaking imputation of the most likely 2-field molecular

typing based on serological or low/intermediate resolution

molecular typing using National Marrow Donor Program

algorithm, the catalogue of Common and Well Documented

(CWD) alleles integrated into the Allele Frequencies Net

Database (AFND), Haplostats and the IMGT/HLA Database (24–

27); and therefore misclassification bias of the total number and

specificity of eplet mismatches may occur (28–32). The lack of

large-scale data analysis from non-White populations, the

inadequacies of imputation programs and presence of novel HLA

alleles in Indigenous populations have further complicated the

widespread acceptance of structural HLA compatibility in organ

allocation and immunological risk assessment. There are several

papers in this article collection that highlight the importance and

limitations when considering HLA and non-HLA immunity in

kidney transplantation. The paper by Larkins et al. highlights one of

these issues and showed that a lack of high-resolution donor typing

at the time of deceased donor kidney allocation can erroneously

identify donor-specific anti-HLA antibody and eplet mismatches,

which may have corresponding downstream effects on organ

allocation and acceptance.

There is considerable debate regarding the optimal

assessment of the immunogenicity of mismatched HLA alleles

that could lead to the development of dnDSA and rejection. The

methodology of defining clinically relevant immunogenic eplet

mismatches and their reporting in the HLA-eplet registry is a

subject of ongoing discussion (20, 33–35). The papers by

Bezstarosti et al. review the evaluation of antibody-verified

eplets, highlighting the need for internationally accepted

standardized eplet verification methods. Moreover, using

recombinant human HLA-DQ-specific monoclonal antibodies

generated by isolated allospecific memory B cells from
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immunized individuals, the authors also propose a new platform

for future antibody-verification of eplets within HLA-DQ alleles.

Undoubtedly, additional studies verifying the risks associated

with mismatched eplets captured in the HLA Eplet Registry in

other well characterized cohorts are urgently required to validate

the HLAMatchmaker eplet concept and potentially inform

clinical care. It is important to note additional strategies and

available software to assess donor/recipient HLA compatibility

considering quantificat ion of amino acid sequence

polymopshism, differences in donor-recipient HLA

physicochemical properties (3-dimensional electrostatic

mismatch), and donor-derived Predicted Indirectly

Recognizable HLA Epitopes presented by recipient HLA class

II (PIRCHE-II, assesses the HLA-mismatch derived T-cell

epitopes by quantifying the number of polymorphic donor

HLA-derived peptides that can be presented on recipient HLA

class II molecules). In addition to HLAMatchmaker, these

algorithms have also been shown to predict adverse allograft

outcomes post-kidney and simultaneous pancreas-kidney

transplantation (36–45). Although these alternative algorithms

independently predict the development of dnDSA beyond

conventional broad antigen HLA-mismatches, there is little

evidence to suggest that one algorithm is superior to another

and a high degree of correlation between different outputs is

often notable (46). Accordingly, the added advantage of a global

integrat ion of these measures in predic t ing HLA

immunogenicity remains uncertain. Interestingly, a recent

cohort study of 691 live-donor kidney transplant recipients

suggested that eplet mismatches and PIRCHE score may be

complementary in improving the discrimination of dnDSA risk,

suggesting that a combined immunological risk prediction

considering both B and T cell epitopes may be the way

forward (43). Another European study showed that

PIRCHE-II score may help to identify acceptable HLA

mismatches that are associated with a lower risk of dnDSA

independent of antigen mismatch and HLAMatchmaker

epi topes , further suggest ing the potent ia l c l in ica l

applicability of this measure (40). With a growing body of

evidence showing that mismatches at non-HLA variants may

influence kidney transplant outcomes, a greater understanding

of the clinical relevance of non-HLA genetic loci and their

interaction with HLA-matching is required. The paper by

Jethwani et al. provides a comprehensive review of the

potential role and applicability of mismatches at non-HLA

gene variants in predicting kidney allograft outcomes. The

questions of the expected “value-added” of non-HLA variants

in improving discrimination of adverse allograft outcomes

above and beyond HLA incompatibility, as well as when and

how to incorporate non-HLA genetic assessments in organ

allocation and acceptance, require further study. Importantly,

balancing between the cost-benefit of such approach must also

be ensured. A group of younger kidney transplant candidates,

who are more likely to require retransplantation in the context
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of suboptimal compatibility with their donors, may be the

ideal group to benefit from a more precise assessment of HLA

and non-HLA gene profiles.

Even though there are important caveats when considering

the clinical applicability of utilizing structural HLA

compatibility in immunological risk assessment and to inform

allocation practices, there have been reports of successful

integration of molecular compatibility in programs like the

Eurotransplant Acceptable Mismatch program and in the

context of deceased donor allocation to pediatric patients with

kidney failure in Australia (47, 48). In a simulated model of

implementing an alternative allocation strategy to avoid

immunogenic “risk” molecular mismatches (i.e. mismatches

associated with high risk of dnDSA) in lung transplantation,

the avoidance of these high-risk mismatches could reduce the

absolute rate of developing class II dnDSA by 30% (from 36% to

6%), with the trade-off that between 60% and 98% of donors

would be excluded (22). On a practical level, by virtue of the

population composition and more specifically the genetic profile

of the donor pool and transplant candidates, different high risk

molecular incompatibilities may be observed. Additionally,

whether the added waiting time when striving to avoid high-

risk mismatches at a population level might abolish the potential

immunological gain from the avoidance of these high-risk

molecular mismatches must be considered.

Despite the decreased incidence of acute rejection over the

last few decades, this remains an important cause of allograft loss

after kidney transplantation. Early identification and treatment

of acute rejection is critical to avoid the deleterious effect on

long-term allograft survival (49). Pre-transplant immunological

risk stratification strategies can be used to personalize transplant

immunosuppression and monitoring approaches and can be

complemented by a careful assessment of the effect of

immunosuppressive agents on the functionality, distribution

and compartmentalization (peripheral blood, lymphoid organs,

allograft) of alloreactive T and B cell subsets. This is critical to

allow for ensuing strategies to personalized immunosuppression,

balancing between the risk of “inadequate” immunosuppression

(causing acute rejection) versus “excessive” immunosuppression

(causing infection and cancer). While many centres administer

induction immunosuppression based on patient’s sensitization

history, the paper by Aschauer et al. reports that while reduced

dose T-cell depleting induction therapy provided a greater early

reduction of donor-reactive T cells compared to interleukin-2

inhibitor induction, there was no change on the overall T-cell

receptor repertoire after immune reconstitution. The clinical

implications of this observation and how the monitoring of

circulating donor-specific T and B cells and corresponding T and

B cel l repertoires should inform modificat ions to

immunosuppression regimens remain unknown and require

evaluation in large prospective cohort studies and clinical trials.

The deleterious effect of post-transplant blood transfusion

on risk of allosensitization (with development of dnDSA), acute
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rejection and allograft survival has been inconclusive, with the

risk of allosensitization following blood transfusion being as

high as 20% (50–55). However, the paper in this article collection

by Jouve et al. challenged this notion by showing that blood

transfusion in the first 3 months post-kidney transplant was not

associated with an excess risk of developing dnDSA, with over

80% of these recipients receiving T-cell depleting antibody as

induction therapy. Given the short-term follow-up of this study,

the longer-term risk of allo-sensitization cannot be determined

with certainty.

With the expansion in the knowledge of defining

immunological r isk and a greater avai labi l i ty and

accessibility of high resolution molecular HLA typing

techniques and Luminex technology to detect donor-specific

anti-HLA and non-HLA antibodies, there continues to be a

high degree of uncertainty as to the practical utility of eplet

and other algorithms assessing structural HLA-compatibility,

as well as the integration of this information into the complex

process of organ allocation and decision making in clinical

kidney transplantation. There is currently no single assay or

measure that can capture all aspects of alloreactive cellular and

humoral immune responses and the selection of one or

multiple immunological risk prediction tools that may be

complementary (or mutually exclusive) in risk stratification

remain inadequately defined. Since the early seminal papers

that have highlighted the potential clinical importance of HLA

compatibility at the eplet or amino acid level, along with the

prognostic significance of donor-specific anti-HLA and non-

HLA antibodies, there has been an upsurge of studies that have

attempted to validate these findings in different population

cohorts and to identify other novel aspects of these

associations or to report on diagnostic accuracy using big

data and novel data science methodologies. However, there are

important caveats the readers will need to consider when

interpreting the study design, findings and conclusions of

the growing number of publications addressing this issue,

including highly selected and often homogenous patient

populations and small sample sizes, differences in statistical

techniques and adjustment of important confounders in

multivariable models, lack of adherence to the Standards for

Reporting of Diagnostic Accuracy Studies (STARD) statement

(for diagnostic accuracy studies), inconsistent definitions and

measurements of the predictors and outcomes, and the
Frontiers in Immunology 04
potential for inaccurate ascertainment of antibody profiles

(incorrect or uncertain HLA imputation methods, lack of high

resoluting typing across all HLA alleles and antibody

verification) (56, 57). We hope this editorial, and selection

of our article collection provides some insights into the

challenges and limitations of the current landscape in the

understanding of allo-immunity in kidney transplantation.

We do envisage future prospective cohort studies and

clinical trials focusing on a “global” evaluation of

immunologic risk related to HLA and non-HLA-related

injury and on immune monitoring using T cell receptor and

other novel measures, such as HLA-specific B cells and donor-

derived cell-free deoxyribonucleic acid, to provide much

needed insight into this complex research field. Integration

of the findings of such studies into clinical practice may

inform future personalized immunosuppression strategies,

reduce the risk of post-transplant allo-immune responses,

and prolong allograft survival and clinical outcomes

following kidney transplantation.
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