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Abstract: Heavy metal poisoning is a rare health condition caused by the accumulation of toxic metal
ions in the soft tissues of the human body that can be life threatening if left untreated. In the case
of severe intoxications, hemodialysis is the most effective method for a rapid clearance of the metal
ions from the bloodstream, therefore, the development of hemodialysis membranes with superior
metal ions retention ability is of great research interest. In the present study, synthetic polysulfone
membranes were modified with reduced graphene oxide functionalized with crown ether, an organic
compound with high metal ions complexation capacity. The physico-chemical characteristics of
the composite membranes were determined by FT-IR, Raman, XPS and SEM analysis while their
efficiency in retaining metal ions was evaluated via ICP-MS analysis. The obtained results showed
that the thermal stability of reduced graphene oxide was improved after functionalization with crown
ether and that the presence of the carbonaceous filler influenced the membranes morphology in
terms of pore dimensions and membrane thickness. Moreover, the ability of Cu2+ ions retention
from synthetic feed solution was up to three times higher in the case of the composite membranes
compared to the neat ones.

Keywords: hemodialysis; covalent functionalization; composite membranes; polysulfone

1. Introduction

Heavy metals are defined as naturally occurring elements, with a relatively high
density compared to water, comprising essential (e.g., Cu, Fe, Ni, Zn) and non-essential
metals (e.g., Cd, Hg, Pb, As). They are considered trace elements because they are present
in very low concentrations (less than 10 ppm) in the environment and also in living
organisms [1,2]. Throughout time, heavy metals found applications in industry, agriculture,
medicine and technology, this severely altering their geochemical cycles and biochemical
balance. These human-related activities, combined with their bio-accumulative potential,
lead to raising concerns regarding their potential adverse effects on human health [3]. It
was found that the main routes for heavy metal poisoning are industrial exposure, air
or water pollution, contaminated medicines, improperly coated food containers, or the
ingestion of lead-based paints. Moreover, studies showed that some of the complications
of heavy metals toxic effects are gastrointestinal and kidney dysfunction, nervous system
disorders, skin lesions, vascular damage, immune system dysfunction, birth defects, and
even cancer [4,5]. There are various methods for the removal of heavy metals from the
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human body, however, if the renal system is severely affected, hemodialysis is the most
recommended one [1].

Hemodialysis is an extracorporeal filtration process in which uremic toxins are re-
moved from the blood using a semipermeable membrane [6]. The efficiency of the dialysis
process is mainly based on the characteristics and performances of the dialysis mem-
branes. A key feature of these membranes is selectivity-they allow only small water soluble
compounds (e.g., urea, creatinine), middle molecules (e.g., β-2 microglobulin, leptin, com-
plement protein), and protein-bond molecules to pass through, while blocking proteins
such as albumin, and other larger molecules [7]. Depending on the type of transported
molecule, solute transport in the membranes is governed by two mechanisms–diffusion
and convection. For example, small water soluble molecules diffuse through the membrane
while the transport of protein-bond molecules is driven by convection [8].

Cellulose in the form of collodion, cellophane or cuprammonium rayon was initially
used for the production of dialysis membranes [9]. However, studies showed that, upon
contact with blood, the hydroxyl groups present on the polymer backbone activate the
complement system and initiate coagulation, thus leading to cardiovascular events [10].
For a better performance of cellulosic membranes, thickness reduction, substitution of
hydroxyl groups and pore size increase were proposed [11].

Nowadays, synthetic membranes are most frequently used for hemodialysis due to
their easily controllable properties [12]. More than that, synthetic membranes usually
have larger pores, thus allowing higher ultrafiltration rates and an effective removal of
uremic toxins with higher molecular weight [13]. Based on their potential to activate the
complement system, polysulfone, acrylonitrile and polyamide were classified as highly
biocompatible in comparison with cuprophane (least biocompatible) and cellulose-acetate
with medium biocompatibility [14]. Amongst synthetic polymers used for the production
of such membranes, polysulfone (PSF) remarks itself in virtue of its appropriate physico-
chemical and biological properties such as good solubility in a large range of polar aprotic
solvents, high thermal and mechanical resistance, chemical resistance on the entire range of
pH and in oxidative medium, intrinsic biocompatibility, high permeability for low molecu-
lar weight proteins and high endotoxin retention ability [8]. Polysulfone-based membranes
with increased hydrophilicity and ability to suppress hemodialysis-induced oxidative stress
were developed by blending PSF with other polymers such as polyethylene glycol [15]
chitosan [16] or amino-silanized poly(methyl methacrylate) [17] or by the incorporation
of active compounds such as resveratrol [18], silibinin [19] or alpha lipoic acid [20] in the
membranes structure.

Polysulfone membranes have certain limitations when they come in contact with
blood due to the fouling phenomenon that causes a decline in terms of flow and selectivity.
Membrane fouling during hemodialysis is a result of apparent protein adsorption, platelet
adhesion, and the activation of clotting enzymes on the membranes surface [21]. The
modification of polysulfone membranes can reduce or prevent the fouling phenomenon
and can be achieved by blending PSF with other polymers [22,23], functionalizing the
polymers surface with various functional groups [24,25] or mixing PSF with different
organic or inorganic fillers [26,27], thus resulting mixed matrix composite membranes.
These composites synergistically combine the properties of the polymer matrix with the
ones of the filler, generating a material with superior properties [28]. Compared to neat
polymeric membranes, composite ones present clearer pore channels, higher porosity and
show better results in terms of filtration rates and toxin retention [29].

Membrane materials have proven their usefulness and necessity due to their selectivity
and large number of practical employments such as water purification by retention of heavy
metal ions [30–32] and pollutants from the pharmaceutical industry [33–35], or biomedical
applications [36–39]. According to various studies, the incorporation of carbonaceous com-
pounds into polymeric membranes increases their thermal stability, improves bioactivity
and mechanical properties [4]. In virtue of their high versatility, availability and affordable
costs, graphene and graphene derivatives are currently the most employed fillers for the
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production of composite materials [40]. Graphene is a bi-dimensional sp2-hybridized
carbon sheet, composed of single carbon atoms, stable in normal conditions [41]. This
material presents a growing research interest for a large area of applications due to its
superior mechanical, thermal and electrical properties, compared to traditional carbona-
ceous materials [42]. Graphene’s unique features include high carrier mobility, good optical
transparency, high specific surface area, full flexibility and intrinsic biocompatibility, these
characteristics making it appropriate for use in the biomedical field [41,43]. Still, the main
disadvantage of graphene is that it does not present functional groups on its surface to
allow interactions with various polymers, this being the reason why graphene oxide, a
graphene derivative was developed [44]. Graphene oxide (GO) is a highly oxidized form of
graphene which contains carboxylic groups on the edges and hydroxyl and epoxide groups
on the basal plane. These oxygen-containing groups increase the interplanar distance and
provide a hydrophilic character to the carbon layers, thus favoring dispersion in water,
organic solvents or different polymeric matrices [45,46]. Graphene oxide also presents
attractive adsorbent properties due to the interactions that can occur between the negatively
charged carboxylic groups and conjugated C−C bond in GO’s structure and the positively
charged metal ions in the surrounding environment [47,48]. Another essential feature of
graphene oxide is that it can be reduced by thermal or chemical treatments, thus resulting
reduced graphene oxide (rGO) with increased electrical conductivity due to its structure
similar with pristine graphene [49].

The purpose of this study was the synthesis of a novel generation of composite
membranes based on polysulfone and reduced graphene oxide. The membranes were
obtained by blending polysulfone with reduced graphene oxide nanoparticles that were
previously functionalized with 4′-aminobenzo-15-crown-5 ether (CE) in order to provide
them an improved metal ions retention ability. Crown ethers are cyclic molecules that play
a crucial role in the formation of host–guest complexes due to their ability to accommodate
positive metal ions, coordinated to the ring of oxygen atoms inside their central cavity [50].
It was found that crown ethers can be effectively used for the complexation of copper [51],
lead [52,53] and lithium [54] cations. The host-guest complexation mechanism and the
ability of crown ethers to selectively recognize and bind specific metal cations from complex
mixtures [55] encouraged their utilization in sensing, phase transfer catalysis, extraction,
chromatography or biomimetic applications such as membrane-forming amphiphiles and
receptors, model ion channels and ionophores [56].

In virtue of the favorable characteristics of each component described above, we
consider that these novel PSF/rGO-CE membranes could be successfully employed in the
case of heavy metals poisoning, when a rapid detoxification of the human body is required,
for ”one day hemodialysis” procedures. The novelty degree of this study is represented
by the functionalization method that ensures the formation of covalent bonds between the
reduced graphene oxide and the complexation agent (CE), thus preventing the release of
the active compound in the bloodstream.

2. Materials and Methods

Polysulfone with average molecular weight of 35.000 g/mol and pellet form was
purchased from Sigma Aldrich (St. Louis, MO, USA) and used as base polymer in the mem-
brane casting solution. N, N-Dimethylformamide (DMF) with analytical purity of 99.8%
was purchased from Sigma Aldrich and used as solvent. Tetraethylenepentamine-reduced
graphene oxide (rGO-NH2) (Nanoinnova) was employed as functional filler for membrane
modification. Cyanuric chloride (CC) and 4′-aminobenzo-15-crown-5 ether (CE), used for
the functionalization of rGO-NH2, were obtained from Sigma Aldrich. All substances were
used as received without previous purification.
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2.1. Functionalization of rGO-NH2 with CE

Tetraethylenepentamine-reduced graphene oxide was chose for this experiment be-
cause it contains highly reactive amino (NH2) groups in its surface, thus facilitating the
functionalization procedure. First, rGO-NH2 was dispersed in DMF by ultrasonication at
low amplitude for 30 min, on ice bath to prevent overheating. After an even dispersion was
achieved, cyanuric chloride was added into the mixture under magnetic stirring, and the
temperature was set at 40 ◦C. Under the influence of the temperature, the chlorine atoms
from cyanuric chloride react with the amino groups from rGO-NH2 surface forming amine
bonds. For the reaction efficacy to be high, the solution was maintained in these conditions
for 2 h. Afterwards, the temperature was increased at 70 ◦C and the crown ether was added
in the mixture. The reaction mechanism between the crown ether and cyanuric chloride
is similar to the one previously described, more specifically, the amino groups in crown
ether’s structure react with the chlorine atoms from cyanuric chloride forming amine bonds.
The theoretical mechanism of the functionalization reaction is illustrated in Scheme 1. After
2 h, the dispersion was filtered using a Teflon membrane (0.4 µm pore diameter) and dried
in a vacuum laboratory oven for 48 h at 40 ◦C. The resulting fine, black powder was further
subjected to characterization to prove that the functionalization was successful.
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2.2. Preparation of the PSF/rGO-NH2-CE Composite Membranes

The first step consisted in dissolving the PSF pellets in DMF under magnetic stirring,
for 3 h at 50 ◦C to obtain a 12 wt.% PSF solution. After the complete polymer dissolution, a
small amount of functionalized rGO was added (1 wt.%), and the solution was ultrasoni-
cated for 10 min on ice bath to ensure an even filler dispersion. The ultrasonication was
realized at low amplitude to prevent the breaking of the bonds formed between the reduced
graphene oxide and crown ether. The membranes were then prepared by phase inversion.
The phase inversion procedure consisted in casting the cooled polymeric solution on a
glass plate and submerging the plate in a coagulation bath containing a non-solvent, in this
case distilled water. Due to the solvent and non-solvent exchange, polymer precipitation
took place and an asymmetric membrane was formed. The same procedure was followed
for the preparation of the neat PSF membrane and both of the resulting membranes were
kept in distilled water prior to characterization.

2.3. Metal Ions Retention Efficiency

The metallic ions adsorption capacity of the composite membranes was tested using
copper sulfate and calcium chloride synthetic feeding solutions with concentration of 1 g/L.
A small amount of each feeding solution was kept for analysis, in order to determinate
the initial concentration of Cu2+ and Ca2+. The feeding solutions were then divided in
two recipients in which 2 cm× 2 cm samples from the neat and composite membranes were
added and kept under magnetic stirring at room temperature. After 4 h, the membranes
were extracted and the remaining solutions were analyzed using an Agilent 8800 ICP-MS
Triple Quadrupole equipment (Agilent Technologies, Santa Clara, CA, USA). The following
equation was used to determine the amount of metal ions retained by the membranes:

Q[%] =
(Ci− C f )

Ci
× 100 (1)

where Q is the adsorption capacity expressed in percentages, while Ci and Cf are the initial
and final concentration of metal ions in the tested solutions.

2.4. Physico-Chemical Characterization

Thermogravimetric curves were recorded using a Q500 TA Instruments equipment (TA
Instruments, New Castle, DE, USA). The samples were placed in alumina crucibles and
heated with 10 ◦C/min from room temperature (RT) to 800 ◦C, under nitrogen flow.

ATR FT-IR spectra were recorded using a Bruker VERTEX 70 spectrometer (Bruker,
Billerica, MA, USA), equipped with a diamond ATR device, in the 4000–600 cm−1 region, at
4 cm−1 resolution. The spectra were recorded as an average of 32 successive measurements
for each sample.

Raman spectrometry was conducted using a DXR Raman Microscope (Thermo Fischer
Scientific, Waltham, MA, USA) with a laser line of 532 nm, focused by a 10X objective. The
spectra were computed based on a number of 10 scans.

Cross-sectional and surface morphology were evaluated using a XL 30 Field Emission
ESEM (Philips, Amsterdam, Netherlands) equipped with a high brightness field emission
gun operating from 200 V–30 kV with 20 Å resolution digital imaging.

X-Ray microtomography (µCT) was performed on a Bruker SkyScan 1272 microCT
(Bruker, Billerica, MA, USA). Rectangular specimens (~2.5 mm length and ~1.5 mm width)
were cut from the middle of each membrane. Image acquisition was made with a resolution
(pixel size) of 2 µm, a rotation step of 0.4◦ and 8 average frames per capture. For the
reconstruction of the raw images, a Bruker NRecon 1.7.1.6 software package was used and
the total porosity and pore size were quantified using the Bruker CTAn analysis software.
For that, the 3D reconstructed images obtained from µCT were subjected to a sequence of
steps including the selection of a region of interest, image binarization after thresholding
and morphometric 3D analysis.
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The surface chemistry was studied by X-ray Photoelectron Spectroscopy (XPS) using a
K-Alpha instrument from Thermo Scientific (Thermo Fischer Scientific, Waltham, MA, USA),
with a monochromated Al Kα source (1486.6 eV), at a bass pressure of 2 × 10−9 mbar.
Charging effects were compensated by a flood gun and binding energies were calibrated by
placing the C 1s peak at 284.4 eV as internal standard. A pass energy of 200 eV and 20 eV
were used for survey and high resolution spectra acquisition respectively.

3. Results
3.1. Characterization of Functionalized rGO-NH2

In order to analyze the chemical changes induced by the functionalization reaction,
FT-IR spectroscopy was performed. Figure 1 represents the ATR FT-IR spectra recorded
for the neat (rGO-NH2) and functionalized reduced graphene oxide (rGO-NH2-CE). In
both spectra, the peaks characteristic rGO-NH2 can be observed. The peaks at 1651 and
1549 cm−1 correspond to the N−H bending vibrations from the secondary amide bonded
at the reduced graphene oxide surface and the amine groups respectively [22], while the
peaks at 1440 cm−1 and 1166 cm−1 correspond to stretching vibrations of C–N and epoxy
groups (C–O–C) in rGO-NH2 structure [57]. In the case of rGO-NH2-CE, a novel peak
is visible at 1087 cm−1, value corresponding to the vibrations of C–O bonds from crown
ether’s structure, thus confirming that the functionalization reaction was successful [24].
The peaks and their spectral assignments were summarized in Table 1.
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Figure 1. FT-IR spectra of rGO-NH2 before and after functionalization with CE.

Table 1. FT-IR peaks spectral assignments.

Chemical Bond Wavenumber (cm−1)

N–H (amide II) 1651

N–H (amine) 1549

C–N 1440

C–O (epoxy) 1166

C–O (ether) 1087
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Raman spectra were also recorded for the neat and functionalized samples to investigate
if the functionalization reaction influenced the disorder degree of reduced graphene oxide.
In both spectra (Figure 2), the D and G bands characteristic to graphene-based structures are
clearly visible. According to literature, the D band at 1350 cm−1 is attributed to the out of
plane vibrations attributed to the disordered structure and defects such as vacancies, grain
boundaries, and edges in the carbon lattice [58], while the G band at 1580 cm−1 corresponds
to the in plane vibrations of the sp2 bonded carbon atoms [59]. The intensity ratio of D and G
peaks (ID/IG) in the case of functionalized reduced graphene oxide has a similar value to the
one obtained for the neat sample, this suggesting that no additional defects were induced in
the structure of rGO-NH2 during the functionalization reaction [60].
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Figure 2. Raman spectra of rGO-NH2 before and after functionalization with CE.

For a better understanding of the samples surface chemistry, XPS analysis was per-
formed simultaneous, the obtained spectra being provided in Figure 3 and the data are
presented in Table 2. In the XPS survey spectra, for both rGO-NH2 and rGO-NH2-CE,
3 main peaks can be noticed at 285, 399 and 531 eV corresponding to C 1s, N 1s and O 1s
respectively. Compared to the neat sample, the functionalized one presents an increased
oxygen percentage due to the additional oxygen molecules present in the structure of the
bonded crown ether.

Table 2. XPS atomic percentages of rGO before and after functionalization with CE.

Atomic Percentage [%]

rGO-NH2 rGO-NH2-CE

C 1s 82.97 78.78

O 1s 9.02 13.25

N 1s 8.01 7.97

The success of the functionalization reaction was also demonstrated by the high
resolution C 1s spectrum of rGO-NH2-CE (Figure 4) that, besides the bonds characteristic
to rGO-NH2, also displayed an additional peak at 285.16 eV corresponding to the sp3

C–C bonds in CE skeleton [61]. According to previous studies, the other C 1s peaks were
attributed to the following types of bonds: 284.73 eV sp2/sp3 C–C (graphene aromatic
structure); 285.5 eV C–N; 286.36 eV C–O (epoxy and alkoxy) and 287.91 eV O–C=O [62,63].
Another interesting fact that can be observed in the C 1s spectra is that the functionalized
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sample presents an increased number of sp2/sp3 C–C and C–O bonds correlated with a
decrease in the number of C–N bonds, thus suggesting not only that CE is present on the
surface of rGO-NH2 but also that the functionalization may have occurred at the epoxy
groups level [64]. The atom ratio of O/C in rGO-NH2 vs. rGO-NH2-CE is 0.108 vs. 0.168,
which also confirm the functionalization with CE.
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Thermogravimetric analysis (Figure 5) was realized in order to study the effect of the
functionalization on the thermal stability of rGO-NH2. The temperature at 10% weight
loss (T10%), the maximum degradation temperature (Tmax), the residue at 800 ◦C (R800)
and the weight loss at 100 ◦C (WL100) were extracted from the thermogravimetric curves
and are shown in Table 3. According to the resulting thermogravimetric curves, the neat
sample suffered a 32 % weight loss between 100 and 300 ◦C, with a maximum weight loss at
around 179 ◦C, due to the pyrolysis of the oxygen containing functional groups in reduced
graphene oxide’s structure. After reaching the temperature of 600 ◦C, the observed weight
loss was attributed to the degradation of the amino groups present on rGO-NH2 surface and
to the degradation of the carbonaceous skeleton. The total weight loss recorded at 800 ◦C
was 61.83%. The thermal stability of rGO-NH2 was improved after the functionalization
with crown ether, both T10% and Tmax being shifted towards higher values [65]. The rGO-
NH2-CE curve illustrates two steps. The first decomposition step, between 24 and 100 ◦C,
is due to the evaporation of residual water molecules, adsorbed on the sample surface. The
second degradation step is due to the decomposition of CE molecules attached on rGO’s
surface, combined with the combustion of the oxygen containing functional groups [64].
The total weight loss of the functionalized sample was 53.67%, lower compared to the neat
one, due to the benzene ring in the crown ether’s structure that protected the carbonaceous
skeleton from thermal degradation. Considering these results, the TGA analysis provided
another proof that the functionalization of rGO-NH2 surface took place.
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To summarize the obtained results, it can be said that the additional FT-IR peak at
1087 cm−1, corresponding to the C–O bonds in the crown ether structure, and also the
increase in the oxygen percentage and the novel C–C peak (285.16 eV) in rGO-NH2-CE XPS
spectra demonstrated the successful functionalization of reduced graphene oxide. More
than that, due to the similarity between the Raman spectra of the neat and functional-
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ized samples, it was concluded that the functionalization reaction did not generate any
supplementary defects in the structure of rGO.
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Table 3. T10%, Tmax, R800 and WL100 values obtained from the thermogravimetric curves.

Sample T10% [◦C] Tmax [◦C] R800 [%] WL100 [%]

rGO-NH2 160.26 179.15 38.17 1.95

rGO-NH2-CE 300.44 344.48 46.33 2.75

3.2. Characterization of PSF/rGO-NH2-CE Composite Membranes

The peaks observed in the ATR FT-IR spectra (Figure 6) recorded for the neat mem-
brane are in good agreement with the characteristic adsorption bands of PSF reported in
literature. More specifically, 1042 cm−1 corresponding to S=O stretching vibrations from
SO3H groups, 1099 cm−1 and 1244 cm−1 C–O–C stretching, 1149 cm−1 O–S–O symmet-
ric stretching in sulfonyl groups (R(SO2)-R), 1489 cm−1 and 2958 cm−1 corresponding to
the aromatic ring and aliphatic C–H stretching respectively [66,67]. For the composite
PSF/rGO-NH2-CE membrane, two additional peaks were observed at 1651 cm−1 and
1735 cm−1, and were attributed to N–H and carbonyl groups (C=O) in the structure of
functionalized reduced graphene oxide [68]. The presence of these groups confirmed the
presence of rGO-CE in the structure of the composite membranes.

The Raman spectra (Figure 7), recorded for both the neat and composite membrane
presented peaks at approximately 790 cm−1, 1130 cm−1, 1600 cm−1 and 3063 cm−1. Ac-
cording to previous studies, these values are in good agreement with standard PSF [69].
The spectrum obtained for the PSF/rGO-NH2-CE composite membrane also contains the D
and G bands, characteristic to graphene based structures, at 1350 and 1580 cm−1 [67]. The
presence of these bands confirms that the carbonaceous filler was successfully included in
the polymeric matrix.



Polymers 2022, 14, 148 11 of 18

Polymers 2022, 14, x FOR PEER REVIEW 11 of 18 
 

 

cm–1, and were attributed to N–H and carbonyl groups (C=O) in the structure of function-
alized reduced graphene oxide [68]. The presence of these groups confirmed the presence 
of rGO-CE in the structure of the composite membranes. 

 
Figure 6. FT-IR spectra of PSF and PSF/rGO-NH2-CE. 

The Raman spectra (Figure 7), recorded for both the neat and composite membrane 
presented peaks at approximately 790 cm–1, 1130 cm–1, 1600 cm–1 and 3063 cm–1. According 
to previous studies, these values are in good agreement with standard PSF [69]. The spec-
trum obtained for the PSF/rGO-NH2-CE composite membrane also contains the D and G 
bands, characteristic to graphene based structures, at 1350 and 1580 cm–1 [67]. The pres-
ence of these bands confirms that the carbonaceous filler was successfully included in the 
polymeric matrix. 

Figure 6. FT-IR spectra of PSF and PSF/rGO-NH2-CE.

Polymers 2022, 14, x FOR PEER REVIEW 12 of 18 
 

 

 
Figure 7. Raman spectra of PSF and PSF/rGO-NH2-CE. 

The SEM images obtained for the porous side of the membranes, at different magni-
fication scales, are shown in Figure 8. At 50× magnification, it can be observed that both 
PSF and PSF/rGO-NH2-CE membranes have a high porosity with interconnected, asym-
metric pores. At a higher magnification scale (200×) it is also clear that there are some 
differences between the neat and composite membrane in terms of pore dimensions, the 
composite ones having smaller pores. This indicates that the reduced graphene oxide in-
troduced in the composite membranes influenced their morphology and porosity. SEM 
analysis was also performed in cross-section. The images recorded in transversal section 
show that the membranes have different thicknesses, even if the same initial quantity of 
polymer was used. The thickness difference was attributed to the influence of the carbo-
naceous filler on the polymer’s coagulation process during phase inversion. As the coag-
ulation speed is increased due to the presence of rGO, the solvent is trained to exit more 
rapidly from the polymeric matrix, thus influencing both the thickness and the porosity 
of the membrane [70]. Even if its presence was confirmed by previous analysis, the carbo-
naceous filler was not clearly visible in the SEM images of the composite membranes. This 
fact was attributed on one hand to the low amount of filler in report to the polymer mass 
and also to the good dispersion of rGO-NH2-CE in the PSF matrix due the ultrasonication 
treatment. 

Figure 7. Raman spectra of PSF and PSF/rGO-NH2-CE.

The SEM images obtained for the porous side of the membranes, at different magnifi-
cation scales, are shown in Figure 8. At 50×magnification, it can be observed that both PSF
and PSF/rGO-NH2-CE membranes have a high porosity with interconnected, asymmetric
pores. At a higher magnification scale (200×) it is also clear that there are some differences
between the neat and composite membrane in terms of pore dimensions, the composite
ones having smaller pores. This indicates that the reduced graphene oxide introduced
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in the composite membranes influenced their morphology and porosity. SEM analysis
was also performed in cross-section. The images recorded in transversal section show that
the membranes have different thicknesses, even if the same initial quantity of polymer
was used. The thickness difference was attributed to the influence of the carbonaceous
filler on the polymer’s coagulation process during phase inversion. As the coagulation
speed is increased due to the presence of rGO, the solvent is trained to exit more rapidly
from the polymeric matrix, thus influencing both the thickness and the porosity of the
membrane [70]. Even if its presence was confirmed by previous analysis, the carbonaceous
filler was not clearly visible in the SEM images of the composite membranes. This fact was
attributed on one hand to the low amount of filler in report to the polymer mass and also to
the good dispersion of rGO-NH2-CE in the PSF matrix due the ultrasonication treatment.

The porosity and the pore size of the membranes were further calculated using µCT
analysis. A decrease of the porosity from 80% in the case of pure PSF membrane to 73% in
the case of the composite membrane could be observed. Moreover, as it could also be seen
in the SEM images, the pore size of the membranes decreased from 2.5–7 µm to 1.2–4.5 µm
after introduction of rGO-NH2-CE within the polymer matrix.

The metal ions retention ability of the neat and composite membranes was tested
using copper sulfate and calcium chloride synthetic feeding solutions (1 g/L concentration).
The results obtained following ICP-MS analysis are schematically represented in Figure 9 It
can be observed that the neat PSF membrane presented 14% and 18% adsorption efficiency
for Cu2+ and Ca2+ ions respectively, probably due to the electrostatic interactions between
the polymer’s surface functional groups and the metal ions and also due to the retention of
the metal ions in the membrane pores [71]. However, the composite membranes presented
an improved Cu2+ and Ca2+ ions retention ability, the percentages of adsorbed ions being
increased to 31% for Cu2+ and 29% for Ca2+. Furthermore, the higher retention of copper
compared to calcium was attributed to the supplementary interactions between the lone
pair of nitrogen from the amine groups of rGO-NH2 and Cu2+ according to the acid-base
Lewis theory [72].

Water flux through membranes was evaluated using 500 mL of deionized water
under continuous recirculation for 4 h in simulated conditions comparable with medical
procedure (Figure 10). After a short decrease (at first hour of recirculation), attributed to
the hydrodynamic stabilization of membranes, the composite membrane showed a more
stable behaviour, the flux remaining constant in comparison with the neat PSF membrane.
This can be explained by the mechanical stabilization of membrane structure given by the
presence of the graphene and its high surface area [32]. The measured contact angle was
86.5◦, respectively 81.6◦ for polysulfone, respectively polysulfone composite membrane.

In order to evaluate the membranes performances for haemodialysis, 250 mL of urea
(0.1 mg/mL) and creatinine (0.1 mg/mL) synthetic solutions were used for the clearance of
these two uremic toxins evaluation (Figure 11). The rejection for urea increased from 27% for
neat polysulfone membrane to 39% for composite polysulfone membrane (an improvement
of 44%), while the rejection of creatinine increased from 22% for neat polysulfone membrane
to 31% for composite polysulfone membrane (an improvement of 41%), after 4 h of dialysis
(in simulated conditions comparable with medical procedure). The obtained results showed
a good behaviour of composite membrane with improved capacity in retention of uremic
toxins, fact that recommend it for potential use in haemodialysis.
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4. Conclusions

During this study, composite PSF/rGO-NH2-CE membranes were designed for heavy
metal retention. Initially, the reduced graphene oxide was functionalized with crown ether,
a compound with a high ability to complexate metal ions. The successful functionalization
of reduced graphene oxide was demonstrated by FT-IR, Raman, XPS, and TGA analysis. It
was observed that the functionalized reduced graphene oxide had a higher thermal stability
due to the thermal protection effect of the benzene ring in the structure of the attached crown
ether. rGO-NH2-CE was further used to prepare composite polysulfone membranes via
phase inversion. The presence of reduced graphene oxide in the PSF membrane structure
was demonstrated by FT-IR and Raman analysis. The physico-chemical characterization
revealed that rGO-NH2-CE was identifiable in PSF structure, aspect confirmed by the
novel FT-IR peaks at 1651 cm−1 and 1735 cm−1 attributed to N–H and C=O bonds in the
functionalized rGO structure, and also by the presence of D (1350 cm−1) and G (1580 cm−1)
bands in the Raman spectra of the composite membranes. The addition of the carbonaceous
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filler influenced the thickness and porosity of the PSF membranes, as observed in the SEM
images. Metal ion adsorption ability was studied using ICP-MS. The obtained results
showed that PSF/rGO-NH2-CE composite membranes presented an up to three times
higher metal ions adsorption ability compared to the neat PSF ones.
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In virtue of their favorable physico-chemical characteristics, it can be said that these
novel PSF/ rGO-NH2-CE composite membranes could be employed for heavy metal ions
retention in “one day hemodialysis” procedures. However, future perspectives consist in
testing the PSF/rGO-NH2-CE composite membranes in terms of hydrodynamic stability
and biocompatibility in order to determine if these membranes indeed present all the
requirements for use in biomedical applications. Moreover, the study will be continued
by attaching other types of organic molecules on the surface of reduced graphene oxide,
depending on the chemical species that are intended to be separated.
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