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Theta-alpha cross-frequency synchronization
facilitates working memory control – a modeling
study
David Chik

Abstract

Despite decades of research, the neural mechanism of central executive and working memory is still unclear. In this
paper, we propose a new neural network model for the real-time control of working memory. The key idea is to
consider separately the role of neural activation from that of oscillatory phase. Neural populations encoding
different information would not confuse each other when the populations have different oscillatory phases.
Depending on the current situation, relevant memories bind together through phase-locking between
theta-frequency oscillation of a Central Unit and alpha-frequency oscillations of the relevant group of Memory
Units. The Central Unit dynamically controls which Memory Units should be synchronized (and the encoded
memory would be processed), and which units should be out of phase (the encoded memory is standby and
would not be processed yet). Simulations of two working memory tasks are provided as examples. The model is in
agreement with many recent experimental results of human scalp EEG analysis, which reported observations of
neural synchronization and cross-frequency coupling during working memory tasks. This model offers a possible
explanation of the underlying mechanism for these experiments.
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Introduction
According to the classical theory of psychology, the work-
ing memory system can be thought of having a star-like
architecture with a central element and several peripheral
elements (Baddeley & Hitch, 1974; Baddeley, (1992). The
central element is known as “central executive”, which
controls how to select and process information. Peripheral
elements are buffers for short-term storage of small
amount of information (for example, a phonological loop
for auditory information and a visuo-spatial sketch pad for
visual information). Despite decades of research, however,
it is not clear how auditory, visual, and other information,
which are stored at different locations, can be coordinated
in order to provide a coherent cognitive function.
Based on recent EEG and fMRI studies, prefrontal cortex

has been considered to be one possible candidate for cen-
tral executive function because of its critical role in top-
down modulation D’Esposito, (2007). Prefrontal cortex

plays an active role in the shift of attention Rossi et al.,
(2009) and task switching Hyafil et al., (2009). It can also
bias its effective connectivity towards different posterior
visual areas depending on the domain of visual features to
which the subject attended Morishima et al., (2009). In vis-
ual working memory task, activity in the prefrontal cortex
and basal ganglia preceded the filtering of irrelevant infor-
mation McNab and Klingberg, (2008). Based on these find-
ings, it becomes a very interesting question to ask, what is
the neural mechanism for prefrontal cortex to coordinate
with posterior areas (e.g. visual cortex and auditory cortex)
during working memory tasks?
The temporal correlation hypothesis has been pro-

posed to be the mechanism of binding. Classically, this
hypothesis was limited to the binding of various visual
features of an object Treisman & Gelade, (1980); Singer,
(1999); Von der Malsburg, (2001). But recent experi-
ments suggest a more powerful role of neural coherence.
The coherence of spikes plays a major role in the control
of attention e.g. Steinmetz et al., (2000); Fries et al.,
(2002), perception e.g. Nakatani & van Leeuwen, (2006);
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Melloni et al., (2007), and memory e.g. Klimesch et al.,
(2008); Anderson et al. (2010). Abnormal neural oscilla-
tions and synchrony have been observed in patients of
psychiatric disorders e.g. Brown, (2005); Uhlhaas &
Singer, (2010).
Recently, Kawasaki et al. (2010) reported that during

human visual and auditory working memory tasks, they
observed alpha rhythm activities of around 12 Hz in sen-
sory specific regions (i.e. parietal or temporal cortex)
which may associate with memory storage. They also ob-
serve theta rhythm of around 6 Hz in frontal region dur-
ing manipulation period. A similar study by Sauseng et al.
(2009) showed that cross-frequency phase synchronization
between theta and gamma oscillations at parietal regions
is associated with successful maintenance of relevant ma-
terial in short term memory. Also, alpha activity increases
with memory load. Other studies also showed that differ-
ent items in working memory are supported by different
synchronized neural oscillations at high frequency from
alpha to gamma range. These activities are located at dif-
ferent phases of a background oscillation of a lower fre-
quency in theta range. Cross-frequency coupling between
the two oscillations has been observed Jensen & Lisman,
(2005); Siegel et al., (2009); Axmacher et al., (2010).
Although there is disagreement on exactly which fre-

quency bands concern with what function, the above evi-
dences converge to a theory that, cross-frequency coupling
and phase coding may serve as an important neural mech-
anism underlying the working memory process (for a re-
cent review, see Fell & Axmacher, (2011). However, what
exactly is the association between the above experimental
observations and the implementation of working memory?
In this paper, we use model simulation to illustrate how a
neural network can generate cross-frequency, dynamical
synchronization for a selected group of neural units, and
how it can carry out the operation and control of working
memory.

Model implementation
Working memory tasks
We shall consider two working memory tasks. The first
task is called Move-a-dot, which is shown in Figure 1a.
The screen would show briefly a visual signal of a red

dot inside a grid, followed by a blank screen. After that,
the screen would show another visual signal which is an
arrow. The subject would need to move the position of
the dot according to the direction of the arrow.
The second task is called Multi-task, which is shown

in Figure 1b. The screen would show a red dot inside a
grid, followed by another red dot and an arrow. The
subject would need to memorize the position of the first
dot, and then do a move-a-dot task using the second
and third visual signal.

Neural network structure
Let us consider a neural network with convergent-style
(or star-like) architecture, as shown in Figure 2a. This
type of network with a central element has been used
for modeling selective attention Borisyuk & Kazanovich,
(2003); Chik et al., (2009), novelty detection Borisyuk &
Kazanovich, (2004), image object segmentation Wang &
Terman, (1995); Borisyuk et al., (2009a), as well as visual
perception of ambiguous figures Borisyuk et al., (2009b).
In the present study, we borrow this modeling idea to
consider a working memory system consisting of a Cen-
tral Unit and some Memory Units. The Central Unit
connects to all Memory Units through synchronizing
connections (shown as red arrows in Figure 2a). The
Memory Units connect to each other through de-
synchronizing connections (blue arrows in Figure 2a). In
addition, the system is controlled by two currents: First,
sensory inputs (green arrows in Figure 2a), which, in our
case, are the visual signals for the working memory tasks;
Second, executive signal (pink arrows in Figure 2a), which
is a “go” or “no-go” signal being delivered to the Central
Unit from a motion cue.
In terms of physiology, the Central Unit represents the

central executive which is responsible for the manipula-
tion of working memory. It is a population of neurons
probably located in prefrontal cortex, and we are inter-
ested in its theta frequency oscillation due to aforemen-
tioned experimental results. In addition, we assume that
there are some neurons which respond selectively to
various stimuli. These neurons may be located in par-
ietal cortex or frontal eye field. We called them Memory
Units which represent the memory of either various

Figure 1 Working memory tasks being used in our simulation. (a) Move-a-dot task: move the position of a red dot according to the
direction of an arrow. (b) Multi-task: memorize the position of another red dot while doing a move-a-dot task.
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positions of a red dot in a grid, or various motion com-
mands from arrow symbols. We assume that their activ-
ity is in the alpha band. In terms of physiology, the
neurons encoding the location of a red dot may be
found along the dorsal stream Mishkin & Ungerleider,
(1982) while the neurons recognizing the arrow symbols
may be found in the ventral stream. Therefore, the
memory units may be located in different brain regions.
We wish to remark that in real brain, the connectivity
between dorsal and ventral visual streams is extremely
complicated. The model here only reflects a portion of
the actual network. We assume that this portion of net-
work helps to carry out the executive function, which
will be demonstrated later. In addition, we also remark

that we do not propose grandmother cell. We assume
one memory unit corresponds to one visual signal just
for the sake of simplicity.
Generation of output is given by another network as

shown in Figure 2b. One position-related Memory Unit
and one motion-related Memory Unit converge to a co-
incidence detection unit which can activate the corre-
sponding position-related Memory Unit as an output.
The correct mappings between inputs and outputs have
been trained beforehand.

Equations
There are many options for our model simulation, such
as using Hopfield model Hopfield, (1982), phase oscilla-
tor model Kuramoto, (1984; Ermentrout, (1994), or
conductance-based neuronal models. The author decides
to use Wilson-Cowan oscillator model Wilson & Cowan,
(1972); Wilson, (1999) because this model is simple yet
sufficient for the study of both activity and oscillatory
phase. Let us consider a neural “unit” which consists of
a group of excitatory and inhibitory neurons. The activ-
ity rate of this unit is,

dE tð Þ
dt

¼ a1 �E tð Þ þ S b1E tð Þ � I tð Þ þ K tð Þð Þð Þ ð1Þ

dI tð Þ
dt

¼ a2 �I tð Þ þ S b2E tð Þð Þð Þ ð2Þ

S xð Þ ¼ c1x2

c22 þ x2
ð3Þ

where E(t) is the activity rate of the excitatory neurons inside
this unit; and I(t) is the activity rate of the inhibitory neurons
inside this unit. The values of parameters are:a1=0.26;
a2=0.13;b1=1.6;b2=1.5;c1=100;c2=30. The values ofa1 and a2
are used for adjusting the time scale to the range of theta to
alpha frequency band. The values of (b1,b2,c1,c2) are identical
to those given by Wilson (1999).
External current received by the unit is denoted by K

(t). Regarding the Central Unit, Kc(t)=0 or 5 correspond-
ing to whether the Central Unit is quiet or activated.
Regarding the Memory Unit, this term incorporates the
effect of neural connections:

Ki tð Þ ¼ K0 þ w1EC tð Þ � w2

XN

j¼1;j≠i
Ej tð Þ ð4Þ

Where K0=0 or 20 corresponding to whether the Memory
Unit is quiet or activated, which is controlled by the visual
inputs. The middle term corresponds to a synchronizing in-
fluence from the Central Unit to the Memory Units, with
connection strength w1. The right term with a summation
corresponds to a de-synchronizing influence among N
Memory Units, with connection strength w2. This is not a

Figure 2 Network architecture. Neural units are represented by
circles. (a) The executive control network consists of one Central
Unit and some Memory Units which represent different positions of
a dot or different directions of an arrow. The Central Unit oscillates
at theta rhythm while the Memory Units oscillate at alpha rhythm.
The Central Unit tries to synchronize the Memory Units (red arrows)
but the Memory Units de-synchronize each other (blue arrows).
Memory Units receive sensory inputs (green arrows). Motion-related
Memory Units can give a go / no-go signal to the Central Unit (pink
arrows). (b) One position-related Memory Unit and one motion-
related Memory Unit converge to a co-incidence detection unit
which generates the output by activating the corresponding
position-related Memory Unit.
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winner-take-all competition because w2 is not strong
enough to silence an opponent. The role of this term is sim-
ply de-synchronizing.
In the simulations, we numerically integrate the equa-

tions using fourth-order Runge–Kutta method with a
fixed time step equals to 0.01 milliseconds. Reliability of
numerical integration is guaranteed by the fact that
using different initial values or doubling the time step
will not affect the simulation results.

Results
Basic dynamics
First, let us consider a single Memory Unit with no con-
nections to other units, that is, w1=0;w2=0. We only
change the constant current K0. As shown in Figure 3,
the dynamics of the unit is described by a fixed point
when 0 < K0 < 2; and then a limit cycle when 2 < K0 < 25;
and finally a fixed point again (saturation) when K0 > 25.
Next, let us consider a network of one Central Unit

and 4 Memory Units. The Central Unit receives a con-
stant current of Kc=5 and oscillates at theta frequency,
while the Memory Units are oscillating at alpha fre-
quency due to a higher constant current K0=20 We in-
vestigate the effect of connections described by the
second and third terms in Equation 4.
The influence from Central Unit (the second term)

can be seen by setting w1=0.1;w2=0. As shown in
Figure 4a, the 4 Memory Units become synchronized. It
is interesting to note that their waveforms show some ir-
regularities although there is no noise in the system.
Their oscillations are not periodic but quasi-periodic.
Therefore, it is actually a complex, high dimensional dy-
namical behavior.
In addition, the influence among Memory Units (the

third term) can be seen by setting w1=0;w2=0.02. As
shown in Figure 4b, the 4 Memory Units are totally de-
synchronized. Their phases distribute evenly along an
alpha cycle.
When both influences exist (both w1 and w2 are non-

zero), we shall observe a very interesting phenomenon
where some of the Memory Units are synchronized
while others are not, which will be shown in the next
section.

Simulation of move-a-dot working memory task
We perform a simulation of a move-a-dot working
memory task, which has been described in Figure 1a. In
the task, the model needs to move a dot to a new loca-
tion according to the direction of an arrow sign. In the
simulations, we use N=3 Memory Units to represent
two positions of dots and one direction of an arrow. The
values of connection strength are w1=0.15;w2=0.005.
The activity rates of the units are shown in Figure 5.

At the beginning, all units are quiet with zero activity

Figure 3 Bifurcation diagram of a Wilson-Cowan unit as a
function of constant current K0. The dark area in 2<K0<25
indicates the existence of a stable limit cycle.

Figure 4 Activity rates of the excitatory components of 4
Memory Units. To give a clear distinction, different colors are used
for different Memory Units, and also the values of their activity rates
are modified as E(t);E(t)+5;E(t)+10;E(t)+15 respectively. Parameter
values are given by: (a) N=4;K0=20;w1=0.1;w2=0. (b) N=4;K0=20;w1=0;
w2=0.02.
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rates. At time = 1 sec, a visual signal of a red dot appears
briefly, which activates the corresponding position-
related Memory Unit (second panel in Figure 5). The ac-
tivation is due to the sensory input current of K0=20
(shown as green arrows in Figure 2a). This Memory Unit
keeps oscillating so that the memory is retained. At time = 2
sec, another visual signal of an arrow sign appears briefly,
which activates the corresponding motion-related Memory
Units (third panel in Figure 5), again by the sensory input
current of K0=20 (shown as green arrows in Figure 2a). Im-
mediately after that, this motion-related Memory Unit sends
a “go” signal to activate the Central Unit (top panel in
Figure 5) by a current of Kc=5 (shown as pink arrows
in Figure 2a). Now, the Central Unit tries to synchronize
the Memory Units (shown as red arrows in Figure 2a)
while the Memory Units try to de-synchronize each other
(shown as blue arrows in Figure 2a). In this case, since
the synchronizing influence is larger than the de-
synchronizing influence (w1≫ w2), the position-related
and motion-related Memory Units are synchronized.
Also, the Central Unit forms theta-alpha cross-frequency
synchronization with the relevant Memory Units. After
that, manipulation is carried out through another network
as shown in Figure 2b. The current position-related and
motion-related Memory Units connect to a coincidence
detection unit with a threshold of 160. When the sum of
their activity rates is higher than this threshold, the coinci-
dence unit would deliver a current to the output position-
related Memory Unit. We assume that this current
increases from 0 to 20 at the rate of 0.1/msec. As a result,
the output unit is activated and oscillates at alpha fre-
quency after time = 3 sec (bottom panel in Figure 5).

Finally, after manipulation is completed, previous memor-
ies are suppressed. The exact mechanism of how the brain
decides to forget some memories is beyond the scope of
this study. Here we simply assume that at time = 3 sec,
the currents Kc for Central Unit and K0 for the previous
two Memory Units drop back to zero.
We wish to remark that, without the network struc-

ture as shown in Figure 2a, the position-related and
motion-related Memory Units activated by sensory
inputs may have different initial phases, and therefore
the sum of their activity rates may not pass the threshold
of the coincidence unit so as to generate the output.
Therefore, this network structure is necessary to provide
the theta-alpha cross-frequency synchronization for the
processing of information.

Simulation of multi-task working memory operation
Let us consider a multi-task operation as described in
Figurer 1b. This time, the model needs to perform the
same move-a-dot task while in addition, it needs to
memorize an extra object during the operation. We use
one Central Unit and N=4 Memory Units. In the simula-
tion, the values of connection strength are w1=0.2;
w2=0.02. The resulting activity rates of the units are
plotted in Figure 6. In order to see their relative phases
more clearly, magnifications of the plot are also provided
below the main figure.
At time = 0.5 sec, a visual signal of a red dot arrives,

which activates a position-related Memory Unit (second
bottom panel in Figure 6) by a current of K0=20 (shown
as green arrows in Figure 2a). The model needs to
memorize this extra object until the end of task. Apart

Figure 5 Simulation of move-a-dot task. On the top of the figure, it shows the appearance of sensory inputs (visual signals) during the task.
The main figure shows the activity rates of the Central Unit (top panel) and 3 Memory Units respectively. The Memory Units represent different
visual objects which are shown on the left side.
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from that, the subject also needs to do another task. At
time = 1 sec, another visual signal appears briefly and
activates another position-related Memory Unit (second
panel in Figure 6). At time = 2 sec, a visual signal of an
arrow appears briefly, which activates a motion-related
Memory Unit (third panel in Figure 6). This motion-
related unit sends a “go” signal to the Central Unit (top
panel in Figure 6) by a current of Kc=5 (shown as pink
arrows in Figure 2a). The Central Unit tries to synchronize
the Memory Units while the Memory Units try to de-
synchronize each other. By choosing w1=0.2;w2=0.02, the
two influences compete with each other. The dynamics
settles to a situation where the position-related Memory
Unit of the second visual signal synchronizes with the
motion-related Memory Unit, while the unit representing
the first visual signal is anti-phase compared to the other
two Memory Units (pink magnification in Figure 6). As a
result, manipulation of working memory occurs. The syn-
chronized position-related and motion-related units con-
verge to a coincidence detection unit (see the network
structure in Figure 2b). Again, the coincidence unit has a

threshold of 160, and it delivers a current to the output
when the sum of the two inputs is higher than this thresh-
old. The output unit is therefore activated (bottom panel
of Figure 6). After manipulation is completed (at time = 3
sec), the Central Unit and the previous Memory Units are
suppressed. Now, the unit representing the first visual
signal and the output unit of the move-a-dot task de-
synchronize each other (shown as blue arrows in the
network structure in Figure 2a). Hence they become
anti-phase (blue magnification in Figure 6). The system
successfully performs a multi-task operation by utiliz-
ing “phase coding” and “partial synchronization” as a
way to distinguish relevant and irrelevant working
memories.

Error correction
The result shown in Figure 6 is sensitive to initial phases
of the units and timings of stimulus onset. It is possible
that the system makes a mistake by synchronizing the
wrong groups of units. In real life, wrong binding of infor-
mation can happen when people are not paying attention.

Figure 6 Simulation of multi-task. On the top of the figure, it shows the appearance of visual signals during the task. The main figure shows
the activity rates of the Central Unit (top panel) and 4 Memory Units respectively. The Memory Units represent different visual objects which are
shown on the left side. The pink and blue portions of the main figure are magnified and shown at the bottom.
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For example, a busy housewife may bring the clothes to
the rubbish bin while taking the rubbish to the laundry.
Usually the person would realize the error when the out-
come is not right. In our model, there is an error correc-
tion mechanism, as shown in Figure 7. In the simulation,
we use N=3 Memory Units. The values of connection
strength are w1=0.2;w2=0.02.
At first, there is synchronization between a position-

related and a motion-related Memory Units, while there
is another position-related Memory Unit which is anti-
phase (blue magnification in Figure 7). Assume this
binding is wrong. The exact mechanism of error detec-
tion by the brain is beyond the scope of this study. Here,
our goal is to show that the dynamics of partial
synchronization can be adjusted by the Central Unit. At
time = 3 sec, the Central Unit is shut down by setting
Kc=0. As a result, the only force remained in the net-
work is the de-synchronizing influence among the 3
Memory Units. Then at time = 4 sec, the Central Unit is
reactivated again by setting Kc=5. The system is reconfi-
gured and this time, the motion-related Memory Unit
synchronizes with another position-related Memory Unit
(pink magnification in Figure 7).

The decision of which units would be synchronized
and which would not is based on the timing of the re-
activation of the Central Unit. Suppose the Central Unit
does not know which units should be bound, the recon-
figuration can be considered as totally random. It is pos-
sible that the new binding is wrong again (e.g. the two
position-related units become synchronized leaving the
motion-related unit to be anti-phase). However, since
the number of stored objects is limited, there is a high
probability of making a correct binding after the reset.

Three states of memory
As shown in Figures 6 and 7, we can see that in this
model, a Memory Unit has 3 different states:

1. Quiet state (zero activity rate), which corresponds to
“forgotten” of memory;

2. Active plus synchronized state, which corresponds to
the situation when the information is being
processed;

3. Active but de-synchronized state, which corresponds
to the situation when the information is stored but
not processed (“standby” for later use).

Figure 7 Error correction. The main figure shows the activity rates of the Central Unit (top panel) and 3 Memory Units respectively. The
Memory Units represent different visual objects which are shown on the left side. The blue and pink portions of the main figure are magnified
and shown at the bottom.
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Speed of synchronization
According to Figures 5 and 6, the network takes less than
one second to establish the partial synchronization be-
tween units from different initial phases to the situation
where the error of their relative phase becomes smaller
than 0.01 alpha cycles. However, Figure 7 shows that after
the reactivation of Central Unit at time = 4 sec, the net-
work takes around 2 seconds to re-establish the partial
synchronization. Therefore the synchronization time can
range from less than one second to perhaps more than 2
seconds.

Working memory capacity
In psychology, there is a capacity limit in working mem-
ory. Early studies suggested that a maximum of 7 items
can be maintained in working memory without causing
confusion Miller, (1956), but later studies argued for a
smaller capacity of about 4 chunks in young adults, and
fewer in children and elderly Cowan, (2001). In our
model, it seems that an unlimited number of objects can
be stored as standby (de-synchronized state). However,
the reliability of information processing would become
poor with increasing memory load. This is because the
error correction mechanism (Section 3.4) is just a ran-
dom binding of Memory Units. When more objects are
stored, the probability of getting a correct binding would
decrease exponentially.

Discussion
Working memory plays a pivotal role in intelligence, be-
cause it involves selection, temporary storage, processing
and update of information according to a task. There-
fore, understanding the neural mechanism of working
memory is very important for us to understand the gen-
eration of intelligence and higher cognitive functions. In
this paper, we demonstrated the principle of partial,
cross-frequency synchronization as one possible mech-
anism to facilitate working memory control.

Novelty of this model
Regarding the dynamics of partial synchronization, a
model of winner-less competition has been proposed
Rabinovich et al., (2008); Ashwin & Lavric, (2010). How-
ever, the current model is different from the winner-less
competition system. In winner-less system, all groups
will have times of synchronization and times of de-
synchronization, one after one. In our model, however,
synchronization is determined by sensory inputs and
controlled by the Central Unit.
Some models of working memory have been proposed

before. For example, Brunel and Wang (2001) proposed
a cortical network model that can provide stable persist-
ent activity to maintain one item in working memory.
Lundqvist et al. (2010) described an attractor neural

networks that can generate beta to gamma oscillations.
Other models considered a mixture of working memory
and long term memory system, and they studied how in-
formation is learned and then recalled through modifica-
tion of connection strengths e.g. O’Reilly et al., (1999);
Szatmary & Izhikevich, (2010); Pascanu & Jaeger, (2011).
In comparison, our model complements the previous
ones by offering the following new insights:

1.Multi-task. This model allows dynamical control of
multiple memories which may or may not be
relevant to a particular task.

2.Agreement with EEG. This model allows an
association to EEG observations. Alpha
synchronization concerns with maintenance of
working memory while theta-alpha cross-frequency
synchronization concerns with manipulation, which
is in agreement with Kawasaki et al. (2010).

3. Cross-frequency coupling. The control from Central
Unit to Memory Units is not a simple 1:1
synchronization, but a more difficult, cross-frequency
coupling. This kind of dynamical control is not
common.

4. Real-time operation. Synchronization between units
is very fast as reported in Section 3.6, so real-time
operation of working memory can be achieved.

5.Agreement with temporal correlation hypothesis.
This is an extension of the traditional temporal
correlation hypothesis. The function of partial
synchronization is to bind relevant Memory Units
according to the task, and resetting the Central Unit
can control which group of Memory Units to be
synchronized.

6.Agreement with the psychological theory of memory
availability. Psychological experiments suggest the
existence of limited amount of information which is
not manipulated but in a “readily accessible state”
Peters et al., (2008). In our model this can be
represented as “active but de-synchronized state” of a
Memory Unit. Besides, our model also agrees with
Cowan’s model of working memory Cowan, (1999).
In his model, there are 3 states of memory: dummy
long term memory, a subset of working long term
memory that is currently activated, and the subset of
activated memory that is in the focus of attention.
These may correspond to the 3 states of memory in
our model: quiet, active plus synchronized, active but
de-synchronized (see Section 3.5).

Prediction of this model
Our model provides the following testable prediction: In
real life, a person usually needs to process many pieces
of information in working memory. During this multi-
task situation, neurons corresponding to different tasks
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should keep being activated. Controlling the phases may
be a way to avoid confusion among activated neurons.
Siegel (2009) reported that when a subject memorized
two visual objects in short term memory, the neural ac-
tivities fell into two phase values above the background
3 Hz rhythm. Of course his experimental setup was dif-
ferent from the one described in this paper. Hence it will
be interesting to see if a future experiment can confirm
the following: if a subject needs to do two working
memory tasks sequentially (e.g. one is visual and one is
verbal), this model predicts that synchronization and re-
setting of phase values of neural oscillations will be
switched between task-relevant brain regions (e.g. switch-
ing from a visual task to a verbal task may be reflected
from a switch of synchronization from between visual and
prefrontal cortices to a different synchronization between
auditory and prefrontal cortices.). This experiment can be
done by advanced local field potential recordings and tet-
rode recordings Kucewicz et al., (2011).

Future works
Future developments of this model include: First, we
need to incorporate long term memory. At present, we
only consider external stimuli from the environment.
The influence from long term memory is not yet consid-
ered. In future, this can be implemented by inserting a
long term memory module, and introducing a learning
mechanism such that some psychological behavior can
be reproduced (e.g. neural units representing a similar
topic will be easier to synchronize).
Next, we need to revise the error correction system.

At present, there is a naïve error correction system
which randomly tries out different combinations of syn-
chronized units. This is like a baby uses trial-and-error
method to work out the correct answer. However, previ-
ous experience (recall of long term memory) should play
a role in making the error correction system more
efficient.
In addition, we need to consider the complex factors

affecting the reliability of working memory. For example,
memories of a similar topic may interfere with each
other Oberauer & Kliegl, (2006), attention demand may
speed up the decay of previously stored working mem-
ory Barrouillet et al., (2004), and so on. A detailed, quan-
titative comparison between the model and these
complex psychological evidences on working memory
capacity will be the target for future study.
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