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Abstract: To develop a severe acute pancreatitis (SAP) model transited from mild symptoms, we in-
vestigated a “two-hit” strategy with L-arginine in mice. The mice were intraperitoneally injected with
ice-cold L-arginine (4 g/kg) twice at an interval of 1 h on the first day and subjected to the repeated
operation 72 h afterwards. The results showed the “two-hit” strategy resulted in the destructive
damage and extensive necrosis of acinar cells in the pancreas compared with the “one-hit” model.
Meanwhile, excessive levels of pro-inflammatory mediators, namely IL-6 and TNF-α, were released
in the serum. Remarkably, additional deleterious effects on multiple organs were observed, including
high intestinal permeability, kidney injury, and severe acute lung injury. Therefore, we confirmed that
the SAP animal model triggered by a “two-hit” strategy with L-arginine was successfully established,
providing a solid foundation for a deeper understanding of SAP initiation and therapy research to
prevent worsening of the disease.

Keywords: L-arginine; severe acute pancreatitis; two-hit; multi-organ failure; mouse model

1. Introduction

The annual incidence of acute pancreatitis (AP) is estimated at 0.005–0.08% of the
total population [1,2]. The majority of cases are mild and self-limiting, with an associated
mortality rate of no more than 1% [3]. However, in some cases, the patients who survive the
initial AP die following “second hit”-induced severe acute pancreatitis (SAP), which results
in a cascade of inflammatory reactions and multiple organ dysfunction. In particular, fatal
acute lung injuries eventually result in a mortality rate of up to 10–24% [3,4].

Currently, the primary cause of these symptoms is attributed to the interstitial leakage
of pancreatic lipase, resulting in adipose lipolysis and increased levels of unsaturated fatty
acids. These toxic fatty acids stimulate the excessive release of inflammatory markers and an
inflammatory storm that can drive disease progression with eventual multi-organ failure [5].
Accumulating evidence has revealed that an array of innate immune components, including
neutrophils and monocytes/macrophages, participate in the pathogenesis and contribute
to disease development [4].

However, the understanding of SAP initiation and development is still very far from
complete, and the factors that determine the severity of the disease are unknown due to the
complexity of the innate immunity networks [6]. Therefore, treatment methods are limited
to conservative supportive care.

During the past few decades, animal models using mice and rats have remained
the main approach to deeply understand the pathogenesis of AP. Several models, such
as caerulein [7], the intraductal infusion of sodium taurocholate [8,9], L-arginine [10],
pancreatic duct obstruction-induced AP [11] and AP evoked by pancreatic ischemia with
reperfusion [12], have been developed to meet the various requirements of the research.
Indeed, substantial advancements have been made for several types of AP, especially for
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the diseases of a mild-to-moderate degree, and have yielded several available therapeutic
options [13–15].

However, these models lack the transition from mild symptoms to the advanced
development phase when cytokine storms and multiple organ failure occur. As a result, it is
difficult to provide an in-depth elaboration of each of the specific roles of the innate immune
components that are involved in the exacerbation of the disease with the current strategies.

L-arginine is a promising choice to induce SAP from mild AP. On the one hand, it
selectively damages pancreatic acinar cells and directly leads to necrotizing pancreatitis [16].
On the other hand, it seems that L-arginine has the ability to induce a controllable, dose-
and time-dependent pancreatic injury; a higher dose of L-arginine induces AP, whereas
low and repeated injections induce chronic pancreatitis [17].

Currently, AP models are induced under the “one-hit” strategy by intraperitoneally
injecting L-arginine (4 g/kg each) twice, with each injection administered 1 h apart. With
this model, the mice undergo inflammatory peaks 24 h after the L-arginine injection. Mild
pancreatic damage is associated with mild pulmonary inflammation that begins to resolve
72 h after L-arginine administration [18]. The mice then undergo the tissue repair and
regeneration process, without transitioning to the SAP phase accompanied by cytokine
storms and multi-organ failure [19]. Therefore, the model was still limited to the mild or
moderate degree of the disease.

Herein, we present a “two-hit” strategy with L-arginine to set up a standardized
protocol for an SAP mouse model with multi-organ failure. We intraperitoneally injected
the mice with ice-cold L-arginine (4 g/kg) twice at an interval of 1 h on the first day and
repeated the operation 72 h afterwards. Then, we confirmed the model was established by
systematically comparing the histological and the biomarker changes of AP. The associated
intestinal injury, acute lung injury and kidney injury were also investigated. Through these
investigations, we found an option for a reproducible SAP model with multi-organ failure.

2. Materials and Methods
2.1. Materials

L-Arginine (Art. No. JA2774) was purchased from Bomei Biotechnology Co., Ltd.
(Hefei, China). The mouse interleukin-6 (IL-6) enzyme-linked immunosorbent assay
(ELISA) kit (Art. No. KE10007, sensitivity 3.8 pg/mL, antibody specific for mouse IL-
6) and the mouse tumor necrosis factor-α (TNF-α) ELISA kit (Art. No. KE10002, sensitivity
1.0 pg/mL, antibody specific for mouse TNF-α) were from ProteinTech (Wuhan, China).
FITC-labeled dextran (Art. No. R-FD-006, Mr 100,000) was purchased from Xi’an Ruixi
Biological Technology Co., Ltd. (Xi’an, China). Mouse high mobility group protein 1
(HMGB-1, Art. No. D721089-0096) ELISA kits were purchased from Sangon Biotech
(Shanghai, China).The hematoxylin and eosin (H&E) staining kit (Art. No. ab245880) was
purchased from Abcam (Cambridge, UK). The anti-HMGB-1 rabbit polyclonal anti-body
(Art. No. D160488-0025, reactive to human, mouse and rabbit) was purchased from Sangon
Biotech (Shanghai, China).The Alexa Fluor 488-labeled donkey anti-rabbit IgG (Art. No.
A423) was purchased from Beyotime (Nanjing, China). Lipase activity assay kits (Art.
No. A054-2-1) and α-amylase activity assay kits (Art. No. 100000060) were obtained from
Jiancheng Biotech (Nanjing, China).

2.2. Animals and Treatment

The Animal Research Committee of Jiangnan University approved all the animal
experiments (No. 20210315i0400630 (035)). The issue date was 15 March 2021, and the
expiry date is 15 March 2023. In total, fifty-five male mice (8 weeks old) outbred from
the Institute of Cancer Research (ICR, 25–30 g) were purchased from Cavens Laboratory
Animal Co., Ltd. (Changzhou, China). The mice were divided into the following three
groups: the control group (n = 5), the “one-hit” model group (n = 13) and the “two-hit”
model group (n = 16). The animals were restricted from eating overnight before the L-
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arginine injection. Otherwise, they had free access to standard rodent chow and sterilized
water during the whole project.

The L-arginine buffer (with a concentration of 8% in PBS buffer, pH = 7.4) was incu-
bated in ice-cold or 37 ◦C PBS buffer (pH = 7.4). As a pre-experiment, the 37 ◦C solution
was injected intraperitoneally into the mice twice at an interval of one hour, each with a
4 g/kg dose (the final volume was about 1.3 mL, dependent on the weight of each mouse).
Meanwhile, the ice-cold solution was used to prepare for the “one-hit” model with the
same procedure.

For the “two-hit” model, the mice who underwent the “one-hit” procedures were
allowed to recover for 72 h and were then re-administered L-arginine (4 g/kg, pH 7.4) twice
at a 1 h interval. The group received identical PBS injections to the “two-hit” model group,
which were used as vehicles.

The mice in the “one-hit” and “two-hit” groups were treated with 0.05 mg/kg
buprenorphine (0.05 mg/mL) every 12 h for pain control [20]. The final volume of the drug
was calculated according to the weight of the mouse and was about 25 µL during each
injection. For the survival rate calculation, the mice (n = 8) were monitored (the observation
lasted for 150 h) immediately after L-arginine was given for the first time, and the survival
rate changes were recorded every 2 h. During this period, two mice were subjected to early
euthanasia at 105 h and 115 h because of severe emaciation, lack of response to stimuli, no
activity, and poor respiration quality with only gasping.

The animals were euthanized before the scheduled time to avoid suffering according
to the published standards, including the following: the appearance of the mice, such
as piloerection or emaciation; level of consciousness; activity; response to stimulus; eyes
being open or closed; respiration rate; and respiration quality [21]. The other mice were
sacrificed 24 h after being subjected to the “one-hit” or “two-hit” L-arginine injury. The mice
underwent anesthesia by isoflurane inhalation followed by retro-orbital blood collection.
About 300 µL blood was extracted from each mouse. Then, they were euthanized by
CO2 inhalation.

2.3. Methods
2.3.1. H&E Staining

The fresh tissues were fixed in 4% paraformaldehyde, embedded with paraffin for
hematoxylin and eosin (H&E) staining, and examined using light microscopy. Two inves-
tigators who were blind to the experimental treatment scored the degree of tissue injury
according to the previously described scoring standards (Tables 1–3).

Table 1. The criteria for the evaluation of pancreatic injury [22].

Score Edema Acinar Necrosis Inflammation

0 Absent Absent 0–5 leukocytes/HPF
1 Diffuse expansion of the interlobar septae 1–4 necrotic cells/(High power field, HPF) 6–15 leukocytes/HPF
2 Diffuse expansion of the interlobubar septae 5–10 necrotic cells/HPF 16–25 leukocytes/HPF
3 Diffuse expansion of the interacinar septae 11–16 necrotic cells/HPF (foci of confluent necrosis) 26–35 leukocytes/HPF
4 Diffuse expansion of the intercellular spaces >16 necrotic cells/HPF (extensive confluent necrosis) >36 leukocytes/HPF

Table 2. The criteria for the evaluation of intestinal injury [23].

Score

0 Normal mucosal villi.
1 Development of subepithelial Gruenhagen’s space, usually at the apex of the villus; often with capillary congestion.
2 Extension of the subepithelial space with moderate lifting of the epithelial layer from the lamina propria.
3 Massive epithelial lifting down the sides of villi. A few tips may be denuded.
4 Denuded villi with lamina propria and dilated capillaries exposed. Increased cellularity of the lamina propria may be noted.
5 Digestion and disintegration of the lamina propria; hemorrhage and ulceration.
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Table 3. The criteria for the evaluation of lung injury [22].

Score Thickness of the Alveolar Infiltration of the Neutrophils Alveolar Congestion

0 Absent Absent Absent
1 Discrete Discrete Small foci
2 Moderate Moderate Large foci
3 Severe Severe Diffuse

2.3.2. Measurement of Serum Lipase and α-Amylase Activity

The blood from the mice was collected, kept at 4 ◦C overnight, and centrifuged
(4000 rpm, 10 min, 4 ◦C). The supernatant was collected for further assays. The serum
activity of the lipase and α-amylase was detected using the assay kits according to the
manufacturer’s instructions. During the lipase activity assay, the lipase catalyzes the
hydrolysis of oil esters into fatty acids. The formation rate of fatty acids is then determined
by the copper soap method, which is based on the absorbance of a fatty acid–copper
complex at 715 nm. During the α-amylase activity assay, the enzyme will cleave the
substrate to produce smaller fragments with the ability to form chromophore after I2 is
added. The product can then be measured based on the absorption at 660 nm.

2.3.3. ELISA of IL-6 and TNF-α

The serum levels of IL-6 and TNF-α were measured with ELISA kits (ProteinTech,
Wuhan, China) according to the manufacturer’s protocols.

2.3.4. The Organ Index Measurement

The lungs and pancreas were taken out immediately after the mice were sacrificed.
The weight of the organs was recorded. The organ index was calculated as (wet organ
weight/body weight) × 100%.

2.3.5. Permeability of the Intestinal Tissue

After the mice were sacrificed, 5 cm of intestinal tissue near the duodenum was
removed [24]. The intestinal lumen was gently washed with a PBS buffer. One side of the
intestine was ligated. Then, the intestinal lumen was filled with 200 µL of FITC-dextran
and the other side was ligated. The intestinal pouch was gently shaken in the PBS buffer
at room temperature for 60 min. The permeability of the intestinal wall was evaluated by
measuring the leaked amount of FITC-dextran.

2.3.6. Statistical Analysis

The data were expressed as mean ± SEM. The difference among multiple groups was
assessed using one-way variance followed by Bonferroni’s multiple comparison test. The
results were considered statistically significant at p < 0.05. All analyses were conducted
using GraphPad Prism 8 software (GraphPad Software Inc., San Diego, CA, USA). The
rationale of the animal number was confirmed by a running power analysis using the
G *power 3.1.9.7 software (Dusseldorf, North Rhine-Westphalia, Germany).

3. Results

First, we performed primary research to compare the degree of severity between the
“one-hit” and “two-hit” model. In the “two-hit” model, 100% of the mice suffered from
pancreas damage 24 h after the last dose. The death of the mice happened continually
and reached over 30% within a follow-up period of 150 h (Figure 1a). By contrast, the
L-arginine solution did not cause any mortality with the “one-hit” model, and 20% of
the mice did not show any histological changes in AP. In parallel with this, body weight
reduced significantly in the model groups, with no difference between the “one-hit” and
“two-hit” operations (Figure 1b).
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Figure 1. The comparison of the severity of AP between the “one-hit” model and the “two-hit” model
in mice. (a) Time course survival rate. (b) Body weight of the mice after the L-arginine challenge.
(c) The total histological score of the analysis of the degree of pancreatic damage. (d) The representative
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H&E images of the pancreas with the “one-hit” model (24 h, 72 h, and 96 h after L-arginine injury) and
the “two-hit” model (24 h after the second hit). (e–g) The histological score analysis of the degree of
pancreatic damage with regard to (e) edema, (f) acinar necrosis, and (g) inflammation of the pancreas.
(* represents the control group vs. the model group, ** p < 0.01, *** p < 0.001; # represents the “one-hit”
group vs. the “two-hit” group, ### p < 0.001).

The histological images of the “one-hit” model were compared with those of the “two-
hit” model (Figures 1c,d and S1). The changes were relatively moderate in the “one-hit”
model, with cellular swelling, the disruption of the histoarchitecture, neutrophil infiltration,
and acinar cell vacuolization and necrosis. In addition, the degree of cellular swelling and
the signs of inflammation were reduced at 72 h and 96 h, respectively, compared with
24 h, indicating that the mice recovered from the L-arginine injury. By contrast, 90% of the
acinar cells were destructively damaged, and extensive necrosis occurred in the “two-hit”
model. Moreover, the interlobular space (Figures 1e and S1), acinar necrosis (Figure 1f),
and inflammatory cell infiltration (Figure 1g) were significantly higher according to the
histological score analysis [22]

The serum lipase and α-amylase released in the serum increased significantly with
the “one-hit” model but decreased significantly after the second hit (Figure 2a,b). A hyper-
inflammatory state was also marked by the significant elevation of IL-6 (Figure 2c) and
TNF-α with the “two-hit” model (Figure 2d). Meanwhile, the pancreas index (Figure 2e)
slightly increased in the “one-hit” model, whereas it decreased dramatically after the second
hit. Moreover, the lung index was substantially elevated, demonstrating a pronounced
edema formation in the lung tissue (Figure 2e).
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Figure 2. The determination of the biochemical parameters in response to the attack of L-arginine,
including (a) lipase activity, (b) α-amylase activity, (c) IL-6 concentration, and (d) TNF-α concentration
in the serum, as well as the changes in the (e) organ index. (* represents the control group vs. the
model group, * p < 0.05, ** p < 0.01, *** p < 0.001).

We further compared the histological changes of the jejunum, which is closely linked
to the pancreas (Figure 3a). The results showed that the epithelium barrier was relatively
complete, and the basement membrane became thick with the “one-hit” model; how-
ever, the epithelium was completely separated and the basement membrane collapsed
with the “two-hit” model. Consequently, the total intestine score increased by two-fold
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(Figure 3b) [23]. Consistent with this, the amount of FITC-dextran that passed the intestinal
wall was significantly greater than that of the control group, indicating that gut permeability
had increased substantially (Figure 3c).
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Figure 3. The second hit of L-arginine induced severe intestine and lung injury in the mice. (a) The
representative H&E images of the intestine and lung with the “one-hit” and “two-hit” models. (b) The
histological score analysis of the degree of intestinal damage. (c) The permeability assay of intestinal
tissue in SAP. (d) The histological score analysis of the degree of damage to the lung. (* represents
the control group vs. the model group, * p < 0.05, ** p < 0.01, *** p < 0.001; # represents the “one-hit”
group vs. the “two-hit” group, ## p < 0.01, ### p < 0.001).

We also evaluated the degree of lung damage by a visual observation of the lung
tissue histology (Figure 3a,d). Moderate lung injury was induced in some of the mice
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after the first-round attack, as demonstrated by the histological observations of alveolar
wall thickening and collapsing and the whole-lung permeability of inflammatory cells
and red blood cells. However, the second hit initiated more serious acute lung injury
symptoms in all of the mice. The alveolar thickness increased significantly (Figure S2a),
and considerably more inflammatory cells accumulated in the lung (Figure S2b) with high
alveolar congestion (Figure S2c). Consistent with these observations, we found a near-
normal kidney architecture with the “one-hit” group, whereas there was obvious tubular
dilatation and cast formation in part of the kidney tissue in the “two-hit” group, indicating
a more serious tissue injury (Figure S3). These results indicated that the organ injury
developed to a very high level, confirming that the modified model induced homogeneous
SAP in mice.

4. Discussion

SAP is the most frequent digestive disease leading to death in clinics, and it is related
to a second hit of AP [25]. Currently, the understanding of SAP etiology is still limited due
to the lack of proper disease models developed from AP. For example, caerulein-induced
pancreatitis is the most widely used AP animal model. However, after a first-time injury,
each subsequent infusion of caerulein causes significantly less pronounced destruction
of the pancreatic tissue [26]. After a few days, the exocrine pancreas is regenerated and
restored to normal. On the other hand, the administration of capsaicin after caerulein results
in calcitonin gene-related peptide (CGRP) being released from unmyelinated, activating,
capsaicin-sensitive sensory nerves. This event may produce neurogenic inflammation,
eventually leading to the aggravation of pancreatic damage and chronic pancreatitis,
without SAP development [27,28].

To facilitate the investigation of the initial factors that trigger SAP, we developed an
SAP model transited from mild symptoms with L-arginine using the “two-hit” strategy
in mice. Ice-cold L-arginine was repeatedly injected intraperitoneally 72 h after the “one-
hit” operation. Indeed, the H&E images showed destructive damage to the acinar cells
and the presence of extensive necrosis after the second hit, indicating that the model was
successfully established.

The serum lipase and α-amylase released in the serum are two important parameters
regarding pancreas activity [29]. However, their amount increased in the “one-hit” model
and deceased in the “two-hit” model. We speculated that this could be attributed to the
necrotic pancreatic acinar cells losing their enzyme secretory function in the “two-hit”
model. Indeed, the pancreas index increased after the first hit, indicating high tissue edema
in response to the L-arginine, and decreased substantially after the second hit, indicating
the pancreas tissue experienced more serious destruction and a self-digestion process in
the “two-hit” model [30]. These data clearly showed that the “two-hit” model augmented
the injuries of the “one-hit” model.

Further, we found the disease rapidly progressed into a highly inflammatory condition
with multiple complications after the second hit. The serum inflammatory levels increased
significantly. By comparing the “one-hit” model with the “two hit” model, we could study
the exact roles of the innate immune cells and the pro-inflammatory cytokines in the onset
and progression of SAP. For example, significantly elevated serum IL-6 and TNF-α were
found with the “two-hit” model, indicating that they might be the key factors promoting
the aggravation of inflammation. Indeed, they are promising biomarkers to predict the
severity of the disease in clinics, as they are closely related to the rates of mortality and
acute respiratory distress syndrome [31]. The roles of other cells and cytokines in the
transition from mild symptoms to SAP have now been investigated in subsequent studies
with the current models.

Intestinal homeostasis is essential during the management of SAP. Accumulating
studies have confirmed that intestinal barrier dysfunction, increased gut permeability, and
bacterial translocation initiate the subsequent multiple organ dysfunction syndrome [32,33].
Our results confirmed that a higher intestinal permeability was induced by the second injury.
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More seriously, the destruction of the intestinal tissue leads to kidney injury and
severe acute lung injury, which is the leading cause of mortality. As a result, the second
hit exacerbated the “one-hit” inflammatory reactions, leading to multiple organ failures
with over 30% mortality. This “two-hit” model mimics the pathological process of SAP in
humans, where a challenge following a previous stimulation induces an uncontrollable
inflammatory response and death.

During the pre-experiments, we found no pancreas damage when the solution of
L-arginine (4 g/kg, 8%) reached 37 ◦C through histological observation with the “one-hit”
model. In contrast, most of the mice treated with ice-cold L-arginine were induced with
AP successfully. A previous study revealed that L-arginine forms two to three molecule
aggregates at low temperature [34]. Moreover, it is well recognized that poly-L-arginine
induces cell membrane damage among different cell types through the charge effect [35].
We supposed that the aggregate of L-arginine caused a similar cellular damage effect
by substantially increasing positive electrical charges. In the following experiments, we
continually used the ice-cold L-arginine to ensure the establishment of the AP model.

The limitation of the model lies in the difference in pathophysiology compared to
human AP. Different from the natural acinar toxins, such as alcohol and lipopolysaccharide,
L-arginine has a clinically irrelevant initiating mechanism that selectively damages the
pancreatic acinar cells, thereby resulting in a different distribution of parenchymal injury.
Secondly, L-arginine triggered the acinar cell necrotization directly, whereas a series of
earlier cellular events, including premature trypsinogen activation, endoplasmic reticulum
stress, and impaired autophagy, were skipped [2]. Therefore, this “two-hit” model resem-
bles the cytokine storm in the deteriorated phase for humans, which is complementary
with other models for the early phase of the disease.

5. Conclusions

In summary, we presented a “two-hit” strategy with L-arginine to induce an SAP
mouse model. The results showed the disease developed into a new phase after the second
hit of L-arginine, with a high intestinal permeability and severe acute lung injury. Therefore,
this model can successfully link local events to systematic inflammation, and opens the
door for SAP pathology and therapy research along with the study of multi-organ failure.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/life12010126/s1, Figure S1: The H&E images of the pancreatic
tissue after injury; Figure S2: The evaluation criteria of the lung tissue; Figure S3: The H&E images of
the kidney tissue after injury.
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