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Purpose: To incorporate the bilateral filtering into the Deformable Vector Field (DVF)
based 4D-CBCT reconstruction for realizing a fully automatic sliding motion compensated
4D-CBCT.

Materials and Methods: Initially, a motion compensated simultaneous algebraic
reconstruction technique (mSART) is used to generate a high quality reference phase
(e.g. 0% phase) by using all phase projections together with the initial 4D-DVFs. The initial
4D-DVF were generated via Demons registration between 0% phase and each other
phase image. The 4D-DVF will then kept updating by matching the forward projection of
the deformed high quality 0% phase with the measured projection of the target phase. The
loss function during this optimization contains an projection intensity difference matching
criterion plus a DVF smoothing constrain term. We introduce a bilateral filtering kernel into
the DVF constrain term to estimate the sliding motion automatically. The bilateral filtering
kernel contains three sub-kernels: 1) an spatial domain Guassian kernel; 2) an image
intensity domain Guassian kernel; and 3) a DVF domain Guassian kernel. By choosing
suitable kernel variances, the sliding motion can be extracted. A non-linear conjugate
gradient optimizer was used. We validated the algorithm on a non-uniform rotational B-
spline based cardiac-torso (NCAT) phantom and four anonymous patient data. For
quantification, we used: 1) the Root-Mean-Square-Error (RMSE) together with the
Maximum-Error (MaxE); 2) the Dice coefficient of the extracted lung contour from the
final reconstructed images and 3) the relative reconstruction error (RE) to evaluate
the algorithm's performance.

Results: For NCAT phantom, the motion trajectory's RMSE/MaxE are 0.796/1.02 mm for
bilateral filtering reconstruction; and 2.704/4.08 mm for original reconstruction. For patient
pilot study, the 4D-Dice coefficient obtained with bilateral filtering are consistently higher
than that without bilateral filtering. Meantime several image content such as the rib
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position, the heart edge definition, the fibrous structures all has been better corrected with
bilateral filtering.

Conclusion: We developed a bilateral filtering based fully automatic sliding motion
compensated 4D-CBCT scheme. Both digital phantom and initial patient pilot studies
confirmed the improved motion estimation and image reconstruction ability. It can be used
as a 4D-CBCT image guidance tool for lung SBRT treatment.
Keywords: sliding motion, bilateral filtering, 4D-CBCT, deformable vector fields, simultaneous reconstruction
INTRODUCTION

In image-guided radiation therapy (IGRT), 3D Cone Beam CT
(CBCT) is extensively applied to check patient positioning before a
radiation beam is delivered. However 3D-CBCT is not capable to
capture a dynamicmoving target and reflect the respirationmotion
during radiation therapy. Nowadays SBRT (Stereotactic Body
Radiotherapy) has been applied widely for lung cancer treatment
due to its better treatment effect compared with conventional
IMRT (Intensity Modulated Radiation Therapy). At the SBRT
treatment stage for lung cancer cases, the patient usually will be
performed with a 3D-CBCT to check positioning before SBRT
beam on. However in this process, the physician cannot check
again if the patient respiration matches with that of the 4D-CT,
especially for the GTV region. To compensate for the deficiency,
4D-CBCT was proposed for accurate on board motion tracking.
There are different categories of existed 4D-CBCT reconstruction
schemes. The first category is employed to increase the acquired
projectionnumberunder eachgantry angle byperformingmultiple
gantry rotation or reducing the gantry rotation speed (1, 2). But it
prolongs the imaging time and increases the imaging dose. The
second 4D-CBCT category is the non-local mean/Total Variation
(TV)-based algorithms (3–5). The TVmethod supplies a qualified
noise suppressed image but it over-smoothed tiny structures and
further deteriorate the imagequality of the lowcontrast region.The
third category is the full data initialization-based reconstruction
such as theMcKinnon-Bates (MKB) algorithm (6, 7) and the prior
image constrained compressed sensing (PICCS)-based algorithm
(7, 8).However, the residualmotionwill transmit artifacts from the
initial reconstruction to thefinal images. And the fourth category is
the low-rank models (9) and the framelet (5, 10) based
reconstruction. However, the low rank method cannot fully
realize the time differentiation, and both of these two methods
are lack of clinical supporting results feasibility check. In recent
years, the Deformable Vector Field (DVF)-based 4D-CBCT image
reconstruction algorithm has shown an advantage for high-quality
4D-CBCT reconstruction (11–14). However, most of those
methods assume the lung moves along an uniform path and
ignored the lung's non-average local motion (e.g. sliding
motion). This assumption is not true since sliding motion exists
widely at the interfaces between moving organs such as the lung
and the chest wall's interface. A few studies have tried tomodel the
slidingmotionvia lungboundary segmentation (12). But its clinical
translation is hindered due to its ineluctable requirement of lung
boundary half automatic segmentation.
2

In this study, we develop a fully automatic sliding motion
compensated 4D-CBCT reconstruction algorithm in a
fundamentally different way by using bilateral filtering. This
algorithm performs bilateral filtering on the DVF during the
motion optimization process. Bilateral filtering has been
previously utilized for estimating sliding motion for 4D-CT (15).
But here we adapt this technique to 4D-CBCT, which is a more
challenging scenario. Accurate 4D-DVF estimation from 4D-
CBCT imaging geometry, especially for sliding motion
extraction, is more difficult than that of 4D-CT. This is not only
because the acquired CBCT projections are contaminated with
serious scatters but also because the available projection number
per phase are quite limited due to conventional 1 min clinical
scanning protocol. We estimate the 4D-DVF by matching the
measured projection of each target phase with the deformed phase
0%'s Digital Reconstructed Radiography (DRR). Meantime we
incorporate bilateral filtering into the 4D-DVF estimation process
for sliding motion modeling. A non-linear conjugate gradient
optimizer is used for this optimization process.

Our results indicate that the bilateral filtering-based motion
modeling and reconstruction is capable of better sliding motion
modeling. For algorithm validation, we applied a non-uniform
rotational B-spline that is based on a cardiac-torso (NCAT)
phantom. Subsequently, four patient data with IRB approval
were used to perform an initial pilot clinical validation.
METHODS AND MATERIALS

The Bilateral Filtering Based Simultaneous
4D-CBCT Image Reconstruction Algorithm
We first make a short review of the original simultaneous motion
compensated reconstruction algorithm. There are two steps in
the algorithm: 1) reconstruct a high quality phase 0% image
using all acquired projections with motion compensated SART
(Simultaneous Algebraic Reconstruction Technique, mSART).
The motion compensated SART is mathematically described in
equation (1). Then step 2): estimate the 4D-DVF by matching
each phase's measured projection with the DRR (Digitally
Reconstructed Radiography) of the deformed phase 0%. These
two steps are performed in an interleaved fashion to allow a
converged energy function curve. The loss function was designed
into a symmetrical form to ensure an inverse consistent DVF
solution, see equation (2). Once the 4D-DVF optimized solution
were obtained it will be used to deform the final iterative
January 2021 | Volume 10 | Article 568627
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reconstructed high quality phase 0% image to get the final high
quality 4D-CBCT[see equation (6)]. Mathematically, the above
mentioned steps can be expressed as follow:

Let pt = (pt1, p
t
2,…ptI) denote the log-transformed 4D-CBCT

projection (i.e., line integral) from phase t, and mt = (mt
1,mt

2,…mt
J )

denote the attenuation coefficients of phase t image, the modified
mSART is given by (1):

 m0,(k+1)
j = m0,(k)

j +
Sjnd

t!0
jn Si ain

pt1−Snainm
t,(k)
n

SJ
n=1ain

h i
Siain

(1)

where k is the iteration step, j is the voxel index of phase 0%, n is
the voxel index of phase t. ain is the intersection length of
projection ray i with voxel n, which is obtained by a ray-
tracing technique (16). dt!0

jn denotes the element of the inverse
DVF that deforms phase t to phase 0. The initial image m0,(0)

j is
first reconstructed by the TV minimization (17) reconstruction
to achieve a noise suppressed initial 0% phase 0%. For projection
matching, an inverse consistent DVF estimation is applied by
designing a symmetric energy function:

f 1(v
0!t) = ‖ pt − Am0 x + v0!t� �

‖2l2 +bj v0!t� �

f 2(v
t!0) = ‖ p0 − Amt x + vt!0� �

‖2l2 +bj vt!0� �

s:t: v0!t x + vt!0� �
+ vt!0 = vt!0 x + v0!t� �

+ v0!t = 0 (2)

f1 and f2 denote the symmetric energy function. 0 stands for
phase 0%, t stands for any other phase t. A is the projection
matrix. x stands for the voxel of image m0 or mt.v0!t denotes the
forward DVF element for each voxel, and vt!0 denotes the
inverse DVF element for each voxel. ‖ pt − Am0(x + v0!t) ‖2l2
and ‖ p0 − Amt(x + vt!0) ‖2l2 are the data fidelity terms of the
inverse consistent loss function. j(v0!t) and j(vt!0) are the
corresponding regularization terms. b controls the trade-off
between the data fidelity term and smoothing regularization
term j(v). If the lung is supposed to have an isotropic motion
mode, j(v) will be designed by:

j vð Þ =ov∈R3o3
i=1o3

j=1
∂ vi
∂ xj

 !2

(3)

where (∂vi)/(∂xj) denotes the difference between neighboring
voxels for each DVF component along three directions. Index “i”
stands for theDVF component along x, y, and z direction. Index “j”
stands for one of three Cartesian coordinates; “vi” stands for the
DVFelement alongeachCartesiancoordinatedirection; “xj” stands
for each image voxel along each Cartesian coordinate direction.

We take sliding motion into account and re-designed the
bilateral filtering based regularization term:

j vð Þ = o
v∈R3

o3
i=1o3

j=1,yk=1,…N∈N xjð Þ

Gx xj, yk,s
2
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(4)
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Gx is the Gaussian kernel on the spatial domain with the
variance s 2

x ; Gm is another image domain-based Gaussian kernel
with the variance s 2

m ; and Gv is the DVF domain Gaussian kernel
with the variance s 2

x . The index “i”, “j”, “vi”, and “xj” have the
same meaning that mentioned in equation (3). Meantime “xj” is
also the central voxel in each bilateral filter kernel. “yj” represents
the neighborhood voxel surround xj, with a max number of N. k
is the surround voxel index of “yj”. For implementation, the
gradient ∇j(v)|v is calculated within the 3x3x3 neighborhood
that surrounds each voxel of interest. A nonlinear conjugate
gradient optimizer was used to estimate the final DVF solution.
We also give the gradient of j(v):
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i=1o3
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(5)

When high quality phase 0% m2,(k)
j is finally obtained, each

other 4D phase image mt,(k)
n can be obtained by deforming m0,(k)

j
with the final optimized 4D-DVFs. See equation below:

mt,(k)
n =ojd

0!t
jn m0,(k)

j (6)

To accelerate the energy function's convergence, we need to
generate the initial 4D-DVF to start the optimization process. The
measured CBCT projections are initially sorted into 4D for an
initial 4D-CBCT TV reconstruction (3). A Demons registration
algorithm (18) was then employed to obtain the 4D-DVF initials
between each phase and the 0% phase.

The pseudo code of the algorithm is given as follows:

1. initial input data preparation: TV image reconstruction (3)
for phase 0% to 90%; use the TV images generated in (a) to
generate the initial 4D-DVFs between phase 0% and each
other phase via Demons registration

2. projection domain registration for 4D-DVF optimization: use
all measured CBCT projections and the initial 4D-DVF to
generate the initial phase 0% motion compensated image
reconstruction via mSART algorithm, see eq. (1) register the
measured CBCT projection with the forward projection (e.g.,
DRR) of the deformed high-quality phase 0% image obtained
in (c) generate the image domain DVF for each phase via
nonlinear conjugate gradient optimizer.
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The loss function curve was draw with the DVF optimization
iteration. And the optimization stops if the curve converges. For
calculation acceleration, the code is run on a GPU card (Geforce
GTX 980, NVIDA, Santa Clara, CA) for parallel computation.
The data processing time will be discussed in the discussion part.

The algorithm work flow chart is given below (Figure 1):

Algorithm Validation Experiments Design
The Digital NCAT Phantom Experiment
The NCAT phantomwas first used to evaluate the performance of
the bilateralfiltering based slidingmotion estimation algorithm. 10
breathing phase of 4D NCAT were simulated with respiration
period of 4 s. The maximum diaphragm motion along Superior-
Interior (SI) is 20mm and themaximum chest Anterior-Posterior
(AP) motion is 12mm. The projections of 10 phases with 20 views
per phase were used for the DVF estimation and 4D-CBCT
reconstruction. The phantom image size is 256 x 256 x 150 with
a voxel size of 1x1x1mm3. Theprojection size is 300x 240x 20view
per phasewith projection voxel size of 1x1mm2.We compared the
bilateralfiltering reconstruction resultswith the lung segmentation
based (12) algorithm, the original simultaneous reconstruction
algorithm (11) and the ground truth reference for quantitative
evaluation. For motion tracking comparison, the 4D NCAT
motion trajectory along z-direction are extracted from the heart
edge in the coronal view slice for quantitative evaluation.

Pilot Patient Data Evaluation
Four sets of lung cancer patient data were used to perform an
initial pilot clinical validation of the bilateral filtering-based 4D-
Frontiers in Oncology | www.frontiersin.org 4
CBCT reconstruction algorithm. Using an IRB approved
protocol (MD Anderson with IRB# 00-202), the patients were
scanned in full fan mode for 4–6 min to acquire approximately
2000 projections. The acquired projections were then sorted by
phase binning into 10 phases. In this manner, the number of
average projections per phase was approximately 200, and TV
minimization reconstruction was applied to reconstruct the
high-quality 4D-CBCT that can serve as the patient reference
for clinical results quantification. To simulate an approximate 1-
min CBCT data we down-sampled the acquired 4D full
projections until the average projection number per phase
decreased to ~40. We performed the original simultaneous
reconstruction and the bilateral filtering-based sliding
constrained reconstruction for quantitative comparisons with
the ground truth. Here we need to clarify that although the
down-sampling helps to mimic a 1-min CBCT, one still cannot
getting a real 1-min CBCT data. Even with the same number of
projection per phase, 6-min CBCT scan is still better than 1-min
case because the projections are further spread out in 6-min case.
Down-sampling only helps to mimic an approximate 1-min
CBCT case for algorithm testing.

Selection of sx, sm, and sv
The selection criteria of sx, sm, and sv will dramatically influence
the final DVF solution. It's relatively easy to determine sx, sm.
Excessively large or small sx (spatial smoothness) will either
over-smooth the image content or prevent it from sufficiently
capturing the local sparse features. The voxel size is 1 mm3 for
the NCAT phantom data and 2 mm3 for the patient data. Hence
FIGURE 1 | Overflow chart of the bilateral filtering based sliding motion compensated 4D-CBCT reconstruction scheme.
January 2021 | Volume 10 | Article 568627
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the reasonable spatial variance sx should not be smaller than 2
mm. With several round testing, we determined sx = 3 mm gives
the best results for the reconstructed images both for the NCAT
phantom and the patient data. The image will be over-smoothed
if sx is larger than 3 mm. sm controls the image intensity domain
smoothness between the interface of the lung part and the chest
wall. We set it equal to the difference between the lung tissue and
the surrounding chest cavity tissue to retain the nature intensity
transit from the chest cavity boundary to the lung inner part. For
the NCAT phantom data, sm = 0.03 mm-1 gives the best results,
and for the patient pilot data, sm = 0.02 mm-1 gives the best
results. The most difficult part is to determine sv for extracting
the sliding motion. Theoretically, sv should be larger than the
DVF difference between two points at a distance smaller than sx.
However at the pleural cavity region sv should be smaller than
the DVF intensity difference (15) between the two points. To
avoid motion over-segmentation, we set that only sharp
discontinuities (e.g., large sliding motion) can be captured. In
our former work (12), we compared the results obtained from the
original simultaneous reconstruction method and the ground
truth and discovered that the sliding motion estimation error at
the heart edge site is approximately 7.5 mm. Hence, we suggest
that 10 mm is a relatively large amount of sliding motion. With
this assumption, we tested several sv values and determined that
sv = 2.5 mm gives reasonable results for NCAT data.

For the patient pilot study, we also compared the original
simultaneous reconstruction results with the high-quality patient
reference. We discovered that the rib position has a maximum
motion error of approximately 5~6 mm at the pleural cavity site.
Hence, we suggest that 6 mm is a relatively large sliding motion
amount. With this assumption, we establish 2 mm of sv for the
patient pilot test and obtain the desired results.
Evaluation Criteria
Tumor Motion Accuracy
The tumor motion trajectory was extracted from the
reconstructed images and the ground truth. The root mean
square error (RMSE) of the estimated tumor position is
analyzed to quantify motion estimation accuracy with sliding
motion constraint.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3
�o9

ph=1 PosRph − PosTph
� �2r

(7)

where PosRph denotes the estimated image feature point position
for the phth phase and PosTph denotes the corresponding position
from the ground truth. MaxE is defined as the maximum error of
the tumor position extracted from all 9 phases.

Dice Coefficient
After the final 4D reconstruction is finished, we used the dice
coefficient to measure the segmented lung boundary contours to
see whether sliding motion compensated result have more
contour similarity compared with the truth reference. The
segmentation is performed via ITK snap software tool. Let A
Frontiers in Oncology | www.frontiersin.org 5
be the contour area obtained from result with or without sliding
motion compensation, and B is the contour from the truth
reference. The dice coefficient s given by:

S =
2 A ∩ Bj j
Aj j + Bj j (8)

In our study, we use the voxel number within the organ
contour as a surrogate of the exact area.

Relative Reconstruction Error
The relative error (RE) between the reconstructed 4D-CBCT
with sliding modeling and the ground truth/reference was used
to quantify the image reconstruction accuracy by defining

RE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o uR xð Þ − mT xð Þð Þ2

o uT xð Þð Þ2
s

� 100% (9)

where uT(x) stands for the phantom ground truth, uR(x) is the
reconstructed image.

Parameter Sensitivity sv for NCAT
Phantom Experiment
Since the bilateral filtering kernels have multiple parameters (e.g.,
sx, sm, and sv), a sensitivity analysis is necessary to clarify how
these parameters influence the 4D-DVF estimation. The spatial
domain parameter sx and the voxel intensity domain parameter
sm's selection criteria are simple and clearly decided. However,
the most challenging parameter is sv. We performed a NCAT
phantom test of the 4D-CBCT reconstruction algorithm with
different sv values, which range from 1.0 to 5.0 per 0.5 step
increase. The sx was set to 3 mm, and sm was set to 0.03 mm-1.
Since digital phantom data already eliminate contamination
resources such as scattering and noise, the obtained
reconstruction error is mainly caused by sv.
RESULTS

NCAT Phantom Results
Figure 2 shows the 40% phase reconstructed images obtained from
the original reconstruction (e.g. without sliding motion modeling),
the segmentation based reconstruction, and the bilateral filtering
based reconstruction. Figure 2A shows the sagittal view of the
reconstructed 40% phase obtained from the original reconstruction;
Figure 2B shows the same sagittal slice reconstructed from the
segmentation based reconstruction; Figure 2C shows the sagittal
slice reconstructed from the bilateral filtering reconstruction; Figure
2D shows the phantom ground truth; the white arrow labels the rib,
which can be seen clearly in the bilateral filtering based
reconstructed image and the ground truth. The rib is also
partially visible in the segmentation based reconstructed image.
But it is hardly visible in the original reconstructed image (e.g.
without sliding motion modeling). The white arrows clearly labeled
the rib comparison. Figures 2E–H are the regions of interest (ROI),
where sliding motion exists at the heart edge and the vein site.
January 2021 | Volume 10 | Article 568627

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Dang et al. Bilateral Filtering 4D-CBCT for Sliding Compensation
The vein (indicated by a yellow dotted line) is more accurately
reconstructed (e.g., vein length has been better reconstructed, see the
white arrows) with bilateral filtering and the segmentation based
reconstruction. Figures 2I–L show the rib position reconstruction
differences between the original reconstruction, the segmentation
based reconstruction, the bilateral filtering reconstruction and the
ground truth. In Figures 2J, K, rib top edges 1 and 2 match the
ground truth with Figure 2L compared with that of the original
reconstruction in Figure 2I.

NCAT Phantom Motion Trajectory Result
The 4D NCAT motion trajectory along the z-direction are
extracted from the heart edge in the coronal view slice [refer to
the dotted line position in Figure 2F]. The dotted line position is
detected from a ROI binary image by establishing a uniform
threshold for each phase. The detected dotted line positions are
used to plot the motion trajectory. Figure 3 shows the 4D motion
trajectory extracted from the original reconstruction without
sliding motion modeling, the segmentation based sliding motion
modeling, the bilateral filtering based sliding motion modeling,
and the motion ground truth. The figure indicates that the
Frontiers in Oncology | www.frontiersin.org 6
trajectory extracted both with bilateral filtering and segmentation-
based sliding motion modeling matches better with the ground
truth.We consider each of the trajectory's motion amplitude for the
RMSE calculation and determine that the trajectory's RMSE and
MaxE are 0.796 mm and 1.02 mm for the bilateral filtering-based
results. Meantime the segmentation based RMSE/MaxE are quite
close to that of the bilateral filtering based results. The original
reconstruction result’s RMSE and MaxE are 2.704 mm and 4.08
mm, respectively.

Dice Coefficient
We extract the 4D lung boundaries (by ITK-SNAP software)
from the original simultaneous reconstruction, the segmentation
based and the bilateral filtering reconstruction. The 4D Dice
coefficients extracted from the NCAT phantom experiment with
each different motion modeling scheme are summarized in
Table 1. Both of the segmentation based and the bilateral
filtering-based Dice coefficients are consistently larger than that
from the original simultaneous reconstruction. The results
indicate that the lung boundary can be more accurately
segmented with segmentation based and bilateral filtering
FIGURE 2 | NCAT phantom results comparison: (A) Sagittal view without sliding motion modeling; (B) Sagittal view with segmentation based motion modeling;
(C) Sagittal view with bilateral filtering motion modeling (D) Sagittal view ground truth; (E) Coronal view without sliding motion modeling; (F) Coronal view with
segmentation based motion modeling; (G) Coronal view with bilateral filtering motion modeling; (H) Coronal view ground truth; (I) rib position without sliding motion
modeling; (J) rib position with segmentation based motion modeling; (K) rib position with bilateral filtering motion modeling; (L) rib position ground truth.
January 2021 | Volume 10 | Article 568627
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based motion estimation compared with that of the
original reconstruction.

Parameter Sensitivity sv for NCAT Phantom
Experiment Analysis
The correspondence between the relative reconstruction error and
sv is plotted in Figure 4. This figure indicates that the minimum
relative reconstruction error can be obtained with sv = 2.5 mm.

Profiles for NCAT Result
We plot the profiles for the NCAT phantom result in Figure 5.
The profile is plotted by the yellow dot line in Figure 2C. Red line
stands for the phantom profile reference (e.g. Truth); blue line
stands for the bilateral filtering based profile, brown line stands
for the profile obtained from the segmentation based
reconstruction, and the green line stands for the original
reconstruction based profile. The sharp peak in red line stands
for the rib that the dot line comes across. The profile shows that
the blue line keeps the same correspondence with the red line
while the green line totally missed the rib.

Patient Pilot Study
Corresponding patient results are shown in Figures 6–9.
Frontiers in Oncology | www.frontiersin.org 7
Figure 6 shows the sagittal view of the reconstruction
comparison of the 1st patient. Figure 6A shows the original
reconstructed result; Figure 6B shows the bilateral filtering based
result; Figure 6C shows the reference image reconstructed by TV
reconstruction (3) using the fully sampled projections. The white
arrow shows a tumor closely attached to the thoracic wall, and a
small cavityexists between the tumorand thewall. Theyellowarrow
shows a side effect of bilateral filtering. And it will be discussed later
in the discussion part. The corresponding reconstruction slice via
TV and FDK are also listed in Figures 6D, E, respectively.

Figure 7 shows the reconstructed coronal view results for the
2nd patient. Figure 7A depicts the original simultaneous
reconstructed image. Figure 7B shows the bilateral filtering
reconstructed results. Figure 7C provides the patient reference.
Figures 7D–F displayed the zoomed ROIs [refer to the ROI box
in Figure 7A] from Figures 7A–C, respectively.

Figure 8 shows the 3rd patient reconstruction results. This
patient case doesn't have visible sliding motion because the
tumor located at the apex of lung. Hence the imaging ROI
(Region of Interest) cannot observe visible sliding motion. The
box ROI shows a bone structure comparison.

Figure 9 shows the 4th patient reconstruction results. The
arrows labeled a fibrous structure comparison.
FIGURE 3 | z-axis heart motion trajectories extracted from the NCAT phantom ROI truth and the corresponding ROI images from the original simultaneous
reconstruction (e.g. without bilateral filtering), the segmentation based sliding motion estimation, and the bilateral filtering based sliding motion estimation.
TABLE 1 | 4D Dice coefficients between NCAT phantom results obtained from the original simultaneous reconstruction vs. the segmentation based reconstruction and
the bilateral filtering reconstruction.

Phase 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% Avg. Dice

Original Recon. 0.989 0.980 0.975 0.960 0.930 0.928 0.925 0.965 0.970 0.975 0.960
Segmentation Recon. 0.998 0.998 0.991 0.990 0.989 0.986 0.979 0.986 0.988 0.986 0.990
Bilateral filtering Recon 0.998 0.998 0.992 0.989 0.985 0.985 0.980 0.988 0.992 0.985 0.990
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We summarized each patient's ROI based RE values for FDK,
TV, the original simultaneous reconstruction, and the bilateral
filtering based reconstruction methods in Table 2.
DISCUSSION AND CONCLUSIONS

Results Discussion on the Clinical Results
In Figure 6, compared with reference Figure 6C the arrow
labeled small cavity in Figure 6A has been blurred more
dramatically than that in Figure 6B. Meantime the image
content structures in Figure 6D have been over-smoothed by
TV reconstruction; and in Figure 6E all the image suffered from
serious noise contamination by FDK reconstruction. The
quantitative comparison in Table 2 indicate that bilateral
filtering achieve the minimum RE value, which further
confirms the above subjective description of the image.
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In Figure 7, the lung-to-heart boundary (indicated by the
arrow) in Figure 7E is more visible than that in Figure 7D
compared with reference Figure 7F. And the quantitative
comparison result in Table 2 also indicates the same trend.

The patient in Figure 8 is a special case. The tumor in this
patient is very close to the apex of the lung. So the imaging region is
set to the apex region. However sliding motion can hardly be seen
in the region. And we didn't find any motion difference between
Figures 8A, B. But as bilateral filtering is capable to smooth the
image while keeping sharp edges, we found in the box region the
bone structures have been better reconstructed with bilateral
filtering with a sharper edge (e.g. see Figure 8B).

In Figure 9, we found the fibrous structure (labeled by the
arrow) has been reconstructed clearer and sharper with bilateral
filtering (e.g. Figure 9B) than that from the original
reconstruction (e.g. Figure 9A) compared with the patient
reference (e.g. Figure 9C).
FIGURE 5 | NCAT phantom experiment profiles comparison.
FIGURE 4 | Sensitivity analysis of sv for NCAT phantom based experiment.
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sv Sensitivity Analysis for Fibrous Texture
Over-Smoothing
We discovered an over-smoothing side effect for the fibrous
texture in Figure 6, which is labeled by the yellow arrow. We
made a sv sensitivity analysis to check whether this effect is
caused by the DVF domain's filter kernel. We set sv to 2, 3, 4, and
Frontiers in Oncology | www.frontiersin.org 9
5 mm to perform the 4D-CBCT reconstruction. We also
removed the DVF domain sub-kernel (e.g., to set the DVF
domain kernel to 1) from the entire bilateral filtering kernel to
perform the reconstruction and eliminate the influence of sv.
The corresponding reconstructed slices of the target phases are
shown in Figure 10. The results indicate that regardless of how
FIGURE 6 | Patient 1 reconstruction results comparison. (A) reconstructed sagittal view of the original simultaneous reconstruction; (B) reconstructed sagittal view
with bilateral filtering; (C) patient 1 sagittal view reference; (D) corresponding sagittal view via TV reconstruction; (E) corresponding sagittal view via FDK
reconstruction.
FIGURE 7 | Patient 2 reconstruction comparison. (A) Original simultaneous reconstruction; (B) reconstruction with bilateral filtering; (C) patient reference; (D) resized
ROI of (A); (E) resized ROI of (B); (F) resized ROI of (C).
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sv changes, the arrow-labeled fibrous structure is always over-
smoothed. Hence, this over-smoothing effect is not directly
caused by the DVF domain sub-filter kernel. This indicates
that the over-smoothing can be caused by the conventional
bilateral filter's texture smoothing feature. The bilateral filtering
kernel that we employed is a 3D kernel in a cubic 3x3x3 voxel
region. We checked the smoothed texture's adjacent slice region
and found that the adjacent local region contains dense tiny
fibrous textures (refer to Figure 10H). The 3D bilateral filter
smoothed the texture not only in the adjacent slice (Figure 10I)
but also spread it to the current slice (Figures 10A–D). This
over-smoothing effect occurred where the tiny fibrous textures
are located very close to each other. If we want to remove this
excessive smoothing effect, one possible solution is to rely on
more projections within this phase. More projections will supply
additional information for better reconstruction. We can also
increase the image resolution by using a smaller voxel size
for reconstruction.
Frontiers in Oncology | www.frontiersin.org 10
Reconstruction Results Comparison
Between Bilateral Filtering-Based Scheme
vs. Lung Segmentation-Based Scheme
To make a parallel performance comparison between bilateral
filtering-based reconstruction and segmentation-based
reconstruction, we performed an NCAT phantom experiment.
The relative reconstruction error of the bilateral filtering
reconstruction is 7.3% and 7.4% for the segmentation based
reconstruction. However, differences in some image slices
remain. In Figure 2 we already show that the rib can be better
reconstructed with bilateral filtering reconstruction than that of
segmentation result. Figure 11 also shows the coronal views
obtained from bilateral fi ltering-based construction,
segmentation-based reconstruction, and original simultaneous
reconstructions. Both of these two algorithms have corrected the
rib positions to match with the ground truth (rib #1 and #2's top
edges). The vein length (represented by the yellow circles) has
also been corrected by these two algorithms compared with the
FIGURE 8 | Patient 3 40% phase reconstruction results comparison. (A) the original simultaneous reconstruction; (B) the bilateral filtering based reconstruction;
(C) patient reference.
FIGURE 9 | Patient 4 40% phase reconstruction results comparison. (A) the original simultaneous reconstruction; (B) the bilateral filtering based reconstruction;
(C) patient reference.
TABLE 2 | RE comparison for patient data results.

RE FDK TV Original Recon. Bilateral Filtering Recon

Patient 1 29.63% 9.88% 7.05% 6.61%
Patient 2 30.55% 9.01% 7.68% 7.06%
Patient 3 30.45% 8.85% 7.21% 7.10 %
Patient 4 29.45% 9.24% 7.62% 6.98%
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ground truth. The vein has even been reconstructed more clearly
by the bilateral filtering reconstruction. The bilateral filtering-
based scheme obtained better reconstruction results compared
with the segmentation based reconstruction.

Reconstructed Image Super-Positioned
With the Solved DVFs
To illustrate the DVF difference between the bilateral filtering-
based reconstruction and the original simultaneous
reconstruction, we super-positioned their reconstructed images
Frontiers in Oncology | www.frontiersin.org 11
with their corresponding DVFs. As the sliding motion mainly
occurs at the interface between the lung and the chest wall, we
only focus on this zoomed local region of interest to determine
the DVF differences. Figure 12 shows the lung-chest wall ROI.
Figure 12A is the ROI from the bilateral filtering-based result;
Figure 12B is the corresponding ROI from the original
reconstruction. The red dotted line gives the DVF flow trend.
The bilateral filtering-based DVF flow (refer to red line in Figure
12A) drops downward from the rib side to the lung part. For the
original case, the DVF flow slides straight from the rib side to the
FIGURE 11 | Coronal view comparison between bilateral filtering based reconstruction vs. segmentation based reconstruction. (A) the phantom ground truth;
(B) the bilateral filtering based result; (C) the segmentation based result; (D) the original reconstruction result.
FIGURE 10 | sv sensitivity analysis for texture smoothing. (A) Bilateral filtering based reconstruction 543 with to 2 mm; (B) Bilateral filtering based reconstruction with
to 3 mm; (C) Bilateral 544 filtering based reconstruction with to 4 mm; (D) Bilateral filtering based reconstruction with 545 to 5 mm; (E) Bilateral filtering based
reconstruction without DVF domain kernel; (F) Original 546 simultaneous reconstruction; (G) Patient Reference; (H) Adjacent reference slice from patient 547
reference; (I) Adjacent reference slice that has also been smoothed.
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lung side. This DVF flow difference directly causes the rib
position differences in the final reconstructed images. Hence,
this finding reveals that bilateral filtering effectively corrected the
rib position compared with the original reconstruction.

Calculation Time
The convergence of the bilateral filtering reconstruction is similar
to the original reconstructionwhere 200 total iterations in theDVF
estimation are adequate to achieve good convergence. The
computation time for one

DVF optimization iteration is 18 s for the presented algorithm
to reconstruct an image with size of 200 x 200 x 150. Currently,
DVFs for each phase were estimated sequentially and we partially
implemented the algorithm on a GPU card (Geforce GTX 980,
NVIDA, Santa Clara, CA). Only the forward projection for each
view was parallel accelerated on GPU. To further speed up the
calculation, possible strategy includes: 1) full GPU implementation
and 2) running DVF estimation for different phases in a parallel
fashion onmultiple GPU cards. Recently a deep leaning based 4D-
CBCT motion estimation algorithm (19, 20), was developed. In
this paper a CNNmodel is constructed to predict a PCA (Principle
Component Analysis) based DVF motion modeling. The PCA
eigenvectors and the corresponding PCA coefficients are predicted
to obtain the real time updated 4D-DVF. The training dataset is a
pre-built projection based datasets with more than 1 × 106

simulated projections from the patient 4D-CT. Their reported
calculation time cost is around 30~40 min for network training
with a Intel Core i7-5960X CPU, 32 GB memory and NIVIDIA
GTX 1080 Ti GPU. The advantage of this algorithm is that it
realized real-time motion tracking. But one disadvantage is that
the training data (e.g. the simulated projections that contains
respiration motion) comes from 4D-CT but not the on board 4D-
CBCT. Hence once the patient respiration mode changes between
the 4D-CT scanning stage and the 4D-CBCT scanning stage the
predicted real time 4D-CBCTwill not reflect the true respiration at
the treatment stage. As the 4D-DVF estimation principle of this
algorithm is fundamentally different compared with our method.
So it is not fair to make a parallel comparison between our results
and their algorithms. Obviously deep learning based real-time 4D-
CBCT is very promising for supplying quality 4D-CBCT. Once the
patient on-board respiration projection dataset were built, the
deep learning network will possibly be able to predict accurate on-
board 4D-CBCT. This will be our next step research focus.
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Limitation of the Patient Number for
Statistical Testing
Another limitation of the current study is that the evaluation
studies were performed on a limited number of patients. The
CBCT scans with long acquisition times were performed under a
previous institutional review board protocol. The limited
number of study participants does not allow statistical testing.
More patient data and statistical analysis are needed to further
validate the clinical value of this method.

How the Proposed Method Supports
Clinical Translation in IGRT
Our proposed method does not need any hardware modification
and employs the conventional 1 min clinical scanning protocol
for imaging data acquisition. The algorithm offers physicians
with high quality 4D-CBCT and it helps checking whether: 1) a
patient’s respiration retains the same mode compared with his/
her 4D-CT; and 2) if the tumor shape/motion mode changes
obviously. This further helps the physician decide if it is safe to
trigger on the SBRT beam for treatment.
CONCLUSION

In this work, we proposed a bilateral filtering-based fully automatic
sliding motion compensated 4D-CBCT reconstruction scheme. Both
thedigitalNCATphantomexperimentandthepilot clinicalvalidation
demonstrated that this scheme is an effective simultaneous high-
quality 4D-CBCT image reconstruction algorithm. The experiment
also showed that the bilateral filtering-based algorithm outperforms
the segmentation-based sliding motion modeling algorithm for
4D-CBCT reconstruction. The algorithm is a prospective 4D-CBCT
tool for clinical translation in image-guided radiation therapy.
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