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For bone purposes, surface modifications are a common trend in biomaterials research
aiming to reduce the time necessary for osteointegration, culminating in faster recovery
of patients. In this scenario, analysis of intracellular signaling pathways have emerged
as an important and reliable strategy to predict biological responses from in vitro
approaches. We have combined global analysis of intracellular protein phosphorylation,
systems biology and bioinformatics into an early biomaterial analysis routine called
OsteoBLAST. We employed the routine as follows: the PamChip tyrosine kinase assay
was applied to mesenchymal stem cells grown on three distinct titanium surfaces:
machined, dual acid-etched and nanoHA. Then, OsteoBLAST was able to identify
the most reliable spots to further obtain the differential kinome profile and finally to
allow a comparison among the different surfaces. Thereafter, NetworKIN, STRING, and
Cytoscape were used to build and analyze a supramolecular protein-protein interaction
network, and DAVID tools identified biological signatures in the differential kinome for
each surface.

Keywords: biomaterials, bone healing, bioinformatics, alternative methods, analysis

INTRODUCTION

Osseous injuries are one of the most common problems in the dental and medical fields. Titanium
implants are widely used in bone regeneration as a bone substitute material (Henkel et al., 2013;
Ko et al., 2017); preliminarily based on their physical and chemical properties. Unquestionably, a
decisive factor for the success of these implants is their surface (Bertazzo et al., 2009, 2010; Ribeiro
et al., 2015; Fernandes et al., 2018; Feltran et al., 2019), which will be first in contact with the
host’s blood. It is known that physicochemical modifications in implant surfaces affect cellular
behavior and directly impact osteointegration (Gemini-Piperni et al., 2014a,b; Zambuzzi et al.,
2014; Bezerra et al., 2017; Fernandes et al., 2018; Machado et al., 2019). Despite the medical, social
and economic relevance of such biomaterials, there have been few advances in tools to classify and
rank them, which results in universities and companies using traditional testing, often with animal
experimentation as a model.
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Regardless, the 3Rs concept introduced by Russel and
Burch in 1959 has ethically guided research involving animal
experimentation over the world (Eder et al., 2006). In different
areas, researchers are urged to develop alternatives under
3Rs guidance and some methodologies deserve attention
such as 3D cultures, in vitro cell cultures, mimetic tissues,
computational tools among others (Cook et al., 2015; Gordon,
2015; Zhu, 2016). In bone tissue engineering some steps are
being taken in the direction of the 3Rs (Richards et al.,
2007; Henkel et al., 2013), but in regard to the production
of dental, and medical biomaterials, there is still a dearth
of procedures that minimize animal experimentation. In this
sense, the study of cellular adhesion on the implant surface
by alternative methods comes up as a promising possibility
(Zambuzzi et al., 2011a, 2014).

Adequate adhesion of osteoblasts on the surface of the implant
is within the first stage for osteointegration and is controlled
by signal transduction mechanisms responding to various
stimuli, such as the chemical properties of material surfaces
(Bertazzo et al., 2009, 2010; Zambuzzi et al., 2011b, 2014).
These mechanisms are finely regulated by cascades of protein
phosphorylation leading to a cell response. Phosphorylation is
a post-translational and covalent modification of proteins,
which concludes with significant regulations of various
cellular processes such as migration, adhesion, proliferation,
differentiation, among others (Milani et al., 2010; Marumoto
et al., 2017; da Costa Fernandes et al., 2018; Kang et al., 2018;
Baroncelli et al., 2019). In this context, it is important to note
that kinases catalyze phosphorylation in a specific site-dependent
manner, and are responsible, together with phosphatases, for
controlling signal transduction pathways. The human genome
contains 518 putative kinase-encoding genes, the set of which
is known as the kinome (Manning, 2002). Massive studies of
this set of enzymes have been performed over the last years and
recent advances in Bioinformatics and Molecular Biology have
allowed for a broader and more efficient analysis of cellular
metabolism and signaling pathways. However, biologically,
it is more important to focus on enzymatic activity rather
than metabolite concentration or gene expression, which
during the cell adhesion process on biomaterials appears as
a promising alternative to predict the success of an implant
(Zambuzzi et al., 2014).

A valuable tool in this type of analysis is a microarray
of peptides. Using a single chip it is possible to probe the
phosphorylation status of hundreds of enzymes. The Tyrosine
Kinase PamChip R© array is a 144 peptide chip, with each
representing sites of known phosphorylation (Dussaq and
Anderson, 2016; Baharani et al., 2017; Baroncelli et al., 2019),
Hence, it is a key in the search for the differential kinome activity
of cell-biomaterial interactions.

We were, therefore, prompted to develop an algorithm that,
based on a peptide microarray assay, was able to distinguish the
kinome activity of mesenchymal stem cells response to surfaces
with different topographies and to compare this response to
commonly used materials. Thus, this routine will serve as the
basis for a database capable of assisting in the production of
biomedical and medical devices.

MATERIALS AND METHODS

Materials and Characterization
Three different surfaces were used in this study: machined
(Maq), dual acid-etched (DAA) and nanoHA. The surface
microstructure of the samples was evaluated by secondary
electron micrographs collected in a JEOL JSM 6010LA
microscope. The micrographs were acquired with 3 kV
acceleration potential, Spot Size (SS) of 30 and 2500 X
amplification. To avoid surface charging during inspections,
a thin conductive layer was deposited on the surfaces by the
sputtering of an Au-Pd alloy. The micrographs were acquired
from the most representative region of each sample.

The elemental composition of the surfaces was determined
by Dispersive Energy Spectroscopy using an X-ray detector
(Dry SD Hyper EX-94410T1L11) coupled to a scanning electron
microscope with a resolution of 129 to 133 eV for the Mn Kα

line at 3000. For the analysis of elemental composition, beam
acceleration voltage of 5 kV, Spot Size of 70 and magnification of
500 X were used. Area spectra as well as maps of the distribution
of the elements on the surface of the samples were recorded.

Wettability of the samples was determined by the sessile drop
method on a Ramé-Hart 100-00 goniometer. Droplets with 2 µL
deionized water and diiodomethane were used as test liquids. The
contact angle between the drop and the surface was measured ten
times on each side of the drop. As three drops were deposited
on the surface of each sample, 60 values of contact angle per
sample were obtained. Surface energy was determined using the
measured contact angle values for water and diiodomethane with
the software provided by the equipment manufacturer.

Cell Culture
Human bone marrow-derived MSCs were used in this
study. Briefly, MSCs (5128 viable cells/cm1; PT-2501, Lonza,
Walkersville, MD, United States) from a single donor at passage
7 were cultured in growth medium for 2 days (alpha-Mem
phenol-red free (GIBCO, Paisley, United Kingdom), 10%
fetal bovine serum).

Tyrosine Kinase Activity Profiling Using
PamChip Peptide Microarray
The experiment was performed according to previously described
procedures in Sikkema et al. (2009). To check the effect of
the titanium surfaces on MSC behavior, MSCs (28300 viable
cells/cm2) were cultured on these surfaces in growth medium.
After 4 h, cells were scraped in M-PER Mammalian protein
extraction buffer (Thermo Scientific, Rockford, IL, United States)
containing Halt phosphatase and protease inhibitors (Thermo
Scientific), allowed to lyse at 4◦C for 10 min and lysates
were cleared by centrifugation at 14,000 g for 10 min.
Supernatants were stored at –80◦C until use. Cell lysates (5 µg
of protein for all samples) were loaded on a PamChip tyrosine
kinase microarray (PamGene International BV., Hertogenbosch,
Netherlands). PamChip R© is a high-throughput and cost-effective

1https://david.ncifcrf.gov/
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peptide array that allows the study of kinome profile changes
without a priori assumptions (Peppelenbosch, 2012). In the
PamChip platform, cell lysates are continuously pumped past
144 consensus peptide-sequences spotted on a 3D porous
microarray, and the phosphorylation of their specific target
substrates by kinases present in the whole cell lysate is
fluorescently detected, describing the entire tyrosine kinase
activity profile within a single experiment (Diks et al., 2004;
Lemeer et al., 2007; Sikkema et al., 2009). Phosphorylation
of the 144 kinase substrates on the array was detected using
FITC-labeled secondary antibody. After array washing, images
were taken every 5 min to create real-time kinetics data. Signal
intensities of the three technical replicates for each substrate
were quantified using Bionavigator software (version 6.1.42.1,
PamGene International BV). A complete list of phosphopeptides
on PamChip is depicted in Supplementary Table S5. The internal
positive control peptide ART_003_EAI(pY)AAPFAKKKXC was
not considered for further analysis. Kinase reactions start at
t = 640 s. Subsequently, kinase reactions for different peptides
show markedly different kinetics. Most peptides act according
to classical biochemical theory, with the derivative of the initial
reaction speed approximating maximal velocity (Vmax) for
phosphorylation of these peptides.

OsteoBLAST Platform Analysis
OsteoBLAST algorithm were built in the programming
environment R2. Spots with negative values were manually
set to zero. Reliable spots were selected using two parameters,
P1 = sd/A and P2 = A/M (sd = standard deviation; A = average;
M = median). These two parameters were defined with three
levels: High, Medium, and Low. The range of these two
parameters are defined as: P1 < 20% and 80% < P2 < 120% –
High. P1 < 50% and 70% < P2 < 140% – Medium. Values out of
those ranges were considered Low. In order to obtain the highest
possible number of spots with high reliability, parameters P1
and P2 have been combined in a new parameter here named SR,
with minimum 1 and maximum 6 (Table 1). Selected spots were
normalized using R package preprocessCore (Bolstad, 2018), and
then differential phosphorylation was evaluated with Student’s
t-test (p < 0.05). Finally, the different surfaces were compared
to find the degree of similarity between them using the equation

χ2
=

1
N

N∑
i=1

(
I0[i]−It[i]

1−|σ0[i]−σt[i]|

)2
, where χ is the degree of similarity,

N is the total of spots selected, I0 and σ0 are the mean of signal
intensity and standard deviation, respectively, of a group that
is being compared as a model, It and σt are the mean of signal
intensity and standard deviation of the test group, respectively.

Bioinformatics Analysis
The connection between phosphorylated spots selected with
OsteoBLAST algorithm and kinases was obtained using
NetworKIN version 3.0 (Linding et al., 2007; Horn et al., 2014).
The minimum score was set to 2.00, max. difference was set to
4.00 and the domains KIN, SH2, PTP and PTB were selected.
Then a protein-protein interaction network (PPIN) was obtained

2https://cran.r-project.org/

TABLE 1 | SR values for spots depending on the level of the parameters P1 and
P2.

P1 P2 SR

High High 6

High Medium 5

Medium High 5

High Low 4

Low High 4

Medium Medium 3

Medium Low 2

Low Medium 2

Low Low 1

using STRING (Szklarczyk et al., 2017) with active interaction
sources as Experiments and Databases, considering minimum
required interaction score as 0.400 (medium confidence). The
input was proteins detected with OsteoBLAST and NetworKIN.
The PPIN was analyzed using the Cytoscape (Shannon, 2003)
tool NetworkAnalyzer and MCODE (Bader and Hogue,
2003) was used to screen clusters contained in the PPIN with
degree cutoff = 2, node score cutoff = 0.2, k-core = 2, and
max. depth = 100. Clusters with score >10 were selected for
further analysis. The Database for Annotation, Visualization
and Integrated Discovery (DAVID2) was chosen to perform
Gene Ontology (Ashburner et al., 2000) and KEGG Pathways
(Kanehisa et al., 2017) functional analysis.

RESULTS

Surfaces Characterization
Firstly, the three different surfaces were physiochemically
characterized. Supplementary Figures S4–S6 show, respectively,
the secondary electron micrographs of the samples. For the Maq
group, there are irregularities in the form of concentric circles
related to the cutting process of the material (Supplementary
Figure S5). For the DAA group (Supplementary Figure S5),
the morphology is substantially altered with the appearance
of craters and pores revealing removal of material. Finally,
in the nanoHA group (Supplementary Figure S6) there are
agglomerates that resemble the structure of corals, indicating that
a coating was deposited on the surface. This structure is similar to
that obtained by Bezerra et al. (2017).

The elemental composition of the surfaces, derived from EDS
spectra, shows that the Maq group (Supplementary Figure S1)
presents essentially Ti with low proportions of C, N, O and Fe,
very possibly due to contaminations originating from the sample
preparation process. Oxygen can also be due to surface oxide,
spontaneously grown on metal surfaces. A very similar result
is observed for the DAA group (Supplementary Figure S2),
together with detection of Al (<1%). Finally, in the nanoHA
group (Supplementary Figure S3), Ca and P, characteristic of
hydroxyapatite, appear in addition to the already mentioned
elements. The ideal Ca/P ratio in hydroxyapatite is 1.67. In
the present result it was 1.71, indicating a stoichiometry very
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FIGURE 1 | OsteoBLAST results. (A) SR per group summary. (B) Venn diagram of SR6 proteins in different groups. (C,D) contain the volcano-plot of DAA and
nanoHA against Maq, respectively. Finally, the heat map representation of the χ parameter for pairwise comparison of all groups. The χ parameter was evaluated for
SR = 6 (E), SR = 4 (F) and SR = 2 (G).

close to the HA. Supplementary Tables S1–S3 contain the
concentration of elements presented in sample obtained by the
analysis of EDS maps.

The geometric and harmonic surface energies of the samples
are shown in Supplementary Figures S7, S8 as a function of
the considered sample. Supplementary Table S4 displays the
Wettablity results. Maq and DAA surfaces present practically the
same surface energy value, indicating that DAA activation did
not affect this property. On the other hand, the sample with
nanoHA coating shows greater receptivity to other compounds
and media. One interpretation for this result is proposed in terms
of the presence of very receptive/reactive polar groups (OH, CO,
CaCO3, CaO, etc.) in the HA structure.

OsteoBLAST Explores Differential
Kinome and Surface Similarity
OsteoBLAST was able to determine the kinome profile of
MSC during the adhesion process to different biomaterials for

up to 4 h. The OsteoBLAST routine begins with an analysis
of statistical parameters for the selection of reliable results.
Spots were classified using the SR system, which groups them
into six different levels (one is the worst and six the best).
Supplementary files contain a summary of the statistical
parameters of each spot for each group (Supplementary
Tables S6–S8). Maq group presents 32 spots with SR 6;
DAA presents 40 spots and nanoHA, 17 spots with the
best SR level. Figure 1A summarizes the distribution of
different SR levels in the groups. Then, spots with equal
SR levels were used to perform pairwise analysis between
treated and control surfaces. DAA and Maq have 25 SR 6
spots in common, while nanoHA and Maq have 15 shared
SR 6 spots (Figure 1B). After the data were normalized,
differential phosphorylation from the spots was evaluated using
Student’s t-test. The DAA surface presents two spots with
up-regulation of phosphorylation status and 23 with down-
regulation (Figure 1C), while the nanoHA surface presents
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TABLE 2 | Differential phosphorylation spots of the DAA group.

Spot Protein Symbol p Uniprot accession Sequence p-value FC

41_654_666 Protein 4.1 EPB41 [660] P11171 LDGENIYIRHSNL 0.019426 0.568151

CD79A_181_193 B-cell antigen receptor
complex-associated protein
alpha chain

CD79A [182, 188] P11912 EYEDENLYEGLNL 0.036615 0.618438

CDK2_8_20 Cyclin-dependent kinase 2 CDK2 [15, 19] P24941 EKIGEGTYGVVYK 0.002566 0.60936

EFS_246_258 Embryonal Fyn-associated
substrate

EFS [253] O43281 GGTDEGIYDVPLL 0.047373 0.560947

ENOG_37_49 Gamma-enolase ENO2 [44] P09104 SGASTGIYEALEL 0.031402 0.565473

EPHA2_765_777 Ephrin type-A receptor 2 EPHA2 [772] P29317 EDDPEATYTTSGG 0.027551 0.54944

EPHA7_607_619 Ephrin type-A receptor 7 EPHA7 [608, 614] Q15375 TYIDPETYEDPNR 0.023388 0.589247

FAK2_572_584 Protein-tyrosine kinase
2-beta

PTK2B [573, 579, 580] Q14289 RYIEDEDYYKASV 0.025998 0.551566

FES_706_718 Tyrosine-protein kinase
Fes/Fps

FES [713] P07332 REEADGVYAASGG 0.034676 0.561935

FRK_380_392 Tyrosine-protein kinase FRK FRK [387] P42685 KVDNEDIYESRHE 0.031269 0.621248

JAK1_1015_1027 Tyrosine-protein kinase
JAK1

JAK1 [1022, 1023] P23458 AIETDKEYYTVKD 0.015949 0.544719

LAT_249_261 Linker for activation of
T-cells family member 1

LAT [255] O43561 EEGAPDYENLQEL 0.018596 0.519961

MK10_216_228 Mitogen-activated protein
kinase 10

MAPK10 [223, 228] P53779 TSFMMTPYVVTRY 0.029102 1.819011

NCF1_313_325 Neutrophil cytosol factor 1 NCF1 [324] P14598 QRSRKRLSQDAYR 0.034867 1.565641

P85A_600_612 Phosphatidylinositol
3-kinase regulatory subunit
alpha

PIK3R1 [607] P27986 NENTEDQYSLVED 0.045912 0.526937

PAXI_24_36 Paxillin PXN [31, 33] P49023 FLSEETPYSYPTG 0.002413 0.633381

PDPK1_2_14 3-phosphoinositide-
dependent protein kinase
1

PDPK1 [9] O15530 ARTTSQLYDAVPI 0.042172 0.620032

PDPK1_369_381 3-phosphoinositide-
dependent protein kinase
1

PDPK1 [373, 376] O15530 DEDCYGNYDNLLS 0.040171 0.431449

PECA1_706_718 Platelet endothelial cell
adhesion molecule

PECAM1 [713] P16284 KKDTETVYSEVRK 0.002395 0.489083

PLCG1_764_776 1-phosphatidylinositol
4,5-bisphosphate
phosphodiesterase
gamma-1

PLCG1 [771, 775] P19174 IGTAEPDYGALYE 0.048389 0.661964

SRC8_CHICK_476_488 Src substrate protein p85 CTTN1 [477, 483] Q01406 EYEPETVYEVAGA 0.02371 0.599289

SRC8_CHICK_492_504 Src substrate protein p85 CTTN1 [492, 499, 502] Q01406 YQAEENTYDEYEN 0.039529 0.621993

VGFR2_989_1001 Vascular endothelial growth
factor receptor 2

KDR [996] P35968 EEAPEDLYKDFLT 0.001153 0.513102

ZAP70_485_497 Tyrosine-protein kinase
ZAP-70

ZAP70 [492, 493] P43403 ALGADDSYYTARS 0.01639 0.61186

12 spots with down-regulation of phosphorylation status
(Figure 1D). The Tables 2, 3 provide additional information
on the analyzed spots, such as protein, residue sequence,
and phosphorylation site (p) in addition to p-value and
fold change (FC).

The comparison provides a rate of similarity between two
groups, the χ parameter. For groups Maq and DAA, OsteoBLAST
computed χ = 56.3 and χ = 41.5 for Maq and nanoHA groups.
When comparing DAA and nanoHA, OsteoBLAST returned
χ = 7.6 (Figure 1E). The χ parameter was also computed
for SR = 4 and SR = 2 to exemplify the influence of the
quality of spots on this comparison test. For SR = 4, Maq

and DAA present χ = 36.9, Maq and nanoHA, χ = 279.0
and χ = 2.3 for DAA and nanoHA (Figure 1F). Finally,
for SR = 2, Maq and DAA present χ = 20.5, Maq and
nanoHA, χ = 40.3 and χ = 2.5 for DAA and nanoHA
(Figure 1G).

Network Analysis From Differential
Kinome
For a better understanding of the role of differentially
phosphorylated sites, a systems approach was adopted. First,
the obtained sites were analyzed with NetworKIN, searching
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TABLE 3 | Differential phosphorylation spots of the nanoHA group.

Spot Protein Symbol p Uniprot accession Sequence p-value FC

CD79A_181_193 B-cell antigen receptor
complex-associated protein
alpha chain

CD79A [182, 188] P11912 EYEDENLYEGLNL 0.0445 0.662215

CDK2_8_20 Cyclin-dependent kinase 2 CDK2 [15, 19] P24941 EKIGEGTYGVVYK 0.02145 0.686795

ENOG_37_49 Gamma-enolase ENO2 [44] P09104 SGASTGIYEALEL 0.029175 0.610258

FAK2_572_584 Protein-tyrosine kinase
2-beta

PTK2B [573, 579, 580] Q14289 RYIEDEDYYKASV 0.03564 0.544021

FER_707_719 Tyrosine-protein kinase Fer FER [714] P16591 RQEDGGVYSSSGL 0.005412 0.480022

FRK_380_392 Tyrosine-protein kinase FRK FRK [387] P42685 KVDNEDIYESRHE 0.045045 0.69016

LAT_249_261 Linker for activation of
T-cells family member 1

LAT [255] O43561 EEGAPDYENLQEL 0.009656 0.360841

PAXI_24_36 Paxillin PXN [31, 33] P49023 FLSEETPYSYPTG 0.015329 0.617219

PECA1_706_718 Platelet endothelial cell
adhesion molecule

PECAM1 [713] P16284 KKDTETVYSEVRK 0.019137 0.498563

SRC8_CHICK_476_488 Src substrate protein p85 CTTN1 [477, 483] Q01406 EYEPETVYEVAGA 0.02235 0.617239

SRC8_CHICK_492_504 Src substrate protein p85 CTTN1 [492, 499, 502] Q01406 YQAEENTYDEYEN 0.041423 0.667946

VGFR2_989_1001 Vascular endothelial growth
factor receptor 2

KDR [996] P35968 EEAPEDLYKDFLT 0.001543 0.440066

for different protein domains that interact with them. The
DAA group presented 158 different proteins totaling 1641
interactions with their residues. EPHA2, EPHA7, FES, FRK,
KDR, and ZAP70 were proteins that had residues with differential
phosphorylation that were found as capable of interacting
with other domains. The NanoHA group has 156 different
proteins totaling 742 interactions with their residues. FES, FRK,
and KDR were proteins that had residues with differential
phosphorylation that were found as capable of interacting with
other domains. Table 4 contains the interactions predicted
for the spots detected with OsteoBLAST for the DAA and
nanoHA groups. NetworKIN output files are in Supplementary
Material.

Proteins presenting differential phosphorylation and
their supramolecular interactors were used as input in
STRING to build PPINs for each group (Figures 2A,B).
The NetworkAnalyzer tool from Cytoscape analyzed both
PPINs considering then as undirected networks. The DAA
PPIN contains 148 proteins with 1566 interactions, while the
nanoHA PPIN contains 137 proteins with 1354 interactions.
NetworkAnalyzer also computed values for important network
metrics as Betweenness Centrality, Closeness Centrality
and Degree of Connectivity (for NetworkAnalyzer results,
see Supplementary Material “MAQDAA_node.csv” and
“MAQNANOHA_node.csv”). To compare the PPIN, Venn
diagrams were elaborated for all proteins in the network
(Figure 2C), for the upper 10th percentile of Betweenness
Centrality (Figure 2D), for the upper 10th percentile of
Closeness Centrality (Figure 2E) and for the upper 10th
percentile of Degree of Connectivity (Figure 2F). Both PPI
networks share 137 proteins, while 11 are unique for the
DAA group and none are unique for nanoHA. 12 proteins
are shared in the top 10% Betweenness Centrality, 3 are
unique for the DAA group and 2 are unique for the nanoHA
group. For top 10% Closeness Centrality, 13 proteins are

shared, 2 are unique for the DAA group and none are
unique for the nanoHA group. Finally, the top 10% of
Degree of Connectivity presents 13 proteins in common,
while 2 are unique for the DAA group and 1 is unique for
the nanoHA group.

To identify clusters on both PPI networks, MCODE analysis
was employed. For the DAA network, 3 clusters with a
score over ten were obtained. Cluster 1 with 27 proteins and
score = 13.538 is composed by SYK, EPHB3, CBL, KIT, PTPN11,
FYN, GRAP2, TXK, VAV3, FLT1, DAPP1, LYN, NCK1, LCK,
HCK, EPHA8, PIK3R1, CSK, EPHB4, CRKL, CBLB, ERBB2,
CRK, LAT, PXN, PTK2B, EPHB6 (Figure 3A). Cluster 2 has
20 proteins, score = 11.895 and is composed by PLCG1,
EPHA3, ZAP70, VAV2, BLNK, BTK, EPHA5, EPHA1, LCP2,
EPHA2, ABL1, EPHA6, EPHA4, ITK, FGR, VAV1, EPHB2,
EPHA7, EPHB1, BLK (Figure 3C). Cluster 3 has 22 proteins,
score = 10.762 and is composed by SHC3, TYK2, IGF1R,
PTPN13, MAP2K2, MAP2K1, CD79A, SRC, YES1, GRB2,
KDR, SHC1, EGFR, ERBB4, MET, JAK1, ERBB3, TEC, PTPN6,
SHC2, CBLC, JAK2 (Figure 3E). The nanoHA network has 2
clusters with a score over 10. Cluster 1 with 26 proteins and
score = 15.2 is composed by LCP2, GRAP2, CRKL, DAPP1,
VAV3, CBLB, EPHA8, CRK, HCK, BTK, VAV1, PXN, BLNK,
LCK, CBL, ZAP70, LAT, VAV2, SRC, ITK, EPHB3, FYN,
EPHB4, YES1, EPHB6, PTPN11 (Figure 4A), while cluster
2 contains 13 proteins, score = 11.333 and is composed by
EPHB2, ABL1, EPHA5, EPHA7, SYK, EPHA4, FGR, EPHA3,
EPHB1, EPHA1, EPHA2, EPHA6, BLK (Figure 4C). MCODE
output files are in Supplementary Material. For a better
understanding of the participation of the clusters in biological
processes, DAVID tools were used to perform enrichment
analysis of Gene Ontology (Biological Process and Molecular
Function) and KEGG Pathway analysis. The top 10 DAVID
IDs are represented in Figures 3B,D,F for DAA network
clusters and Figures 4B,D for nanoHA network clusters. Full
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TABLE 4 | Interactions predicted with NetworKIN for the spots detected
with OsteoBLAST.

DAA pred Interacts with nanoHA pred Interacts with

EPHA2 EPHA7 (614)
FRK (387)
PDPK1 (373)
PDPK1 (376)
ZAP70 (492)
LAT (255)
ENO2 (44)
KDR (996)
CD79A (182)
CD79A (188)

FES FRK (387)
LAT (255)
ENO2 (44)
CD79A (188)

EPHA7 EPHA7 (614)
FRK (387)
PDPK1 (373)
PDPK1 (376)
ZAP70 (492)
LAT (255)
ENO2 (44)
KDR (996)
CD79A (182)
CD79A (188)

FRK FRK (387)
PTK2B (573)
PTK2B (580)
CDK2 (15)
FER (714)
LAT (255)
ENO2 (44)
KDR (996)
CD79A (182)
CD79A (188)

FES EPHA7 (614)
FRK (387)
PLCG1 (775)
LAT (255)
ENO2 (44)
CD79A (188)

KDR FRK (387)
PTK2B (580)
CDK2 (19)
LAT (255)
KDR (996)
CD79A (188)

FRK EPHA7 (614)
EFS (253)
EPHA2 (772)
PTK2B (573)
PTK2B (580)
FRK (387)
PLCG1 (775)
PLCG1 (771)
PDPK1 (9)
PDPK1 (373)
PDPK1 (376)
PIK3R1 (607)
JAK1 (1034)
JAK1 (1035)
LAT (255)
FES (713)
ENO2 (44)
CDK2 (15)
KDR (996)
CD79A (182)
CD79A (188)

KDR EPHA7 (608)
EPHA2 (772)
PTK2B (580)
FRK (387)
PLCG1 (775)
PLCG1 (771)
PDPK1 (9)
PDPK1 (373)
PDPK1 (376)
MAPK10 (228)
PIK3R1 (607)
JAK1 (1034)

(Continued)

TABLE 4 | Continued

DAA pred Interacts with nanoHA pred Interacts with

LAT (255)
CDK2 (19)
KDR (996)
CD79A (188)

ZAP70 EPHA7 (614)
PLCG1 (771)
ZAP70 (492)
LAT (255)
CD79A (182)
CD79A (188)

DAVID results for each cluster are in Supplementary Material
(“DAVIDS_Clusters.xlsx”).

DISCUSSION

With increasing life expectancy and greater urban concentration,
bone lesions have been gaining greater attention in medical-
dental research. In this context, biomaterials are widely used
in bone regeneration, titanium being the gold standard for
bone (Zambuzzi et al., 2014; Frohbergh et al., 2015; Ebrahimi
et al., 2017). Many efforts have been made to modify
the titanium surface, positively impacting osteoinduction and
osteointegration (Nilen and Richter, 2008; Barkarmo et al., 2014;
Granato et al., 2019). In this paper, we demonstrate a routine
of analysis to compare different biomaterials (or any surfaces)
using the kinome profile of bone marrow mesenchymal stem
cells grown on three different biomaterials in order to reach
the 3 Rs concept and optimize the production of biomaterials.
Maq was used as a control due to its unmodified surface.
DAA, a widely used surface, and nanoHA, a new product
developed by SIN (Bezerra et al., 2017), were considered as
test surfaces. In the last 10 years, our group has been using
the analysis of intracellular signaling pathways to predict the
quality of biomaterials (Zambuzzi et al., 2006, 2011a, 2014).
Bezerra et al. (2017) demonstrated the biocompatibility of the
surfaces using mouse pre-osteoblasts (MC3T3-E1), including its
potential osteoinducer.

As a sequel to these efforts, our group presents in this work
the computational routine OsteoBLAST. Composed of four
steps, OsteoBLAST can provide the differential kinome between
two biomaterials in order to ascribe a comparative value to each
of them. In the first step, high-reliability spots were selected
based on simple statistical parameters. The combination of
these parameters produced a classification rate, called SR, which
ranges from one to six. OsteoBLAST will only perform further
analysis on groups with equal SR to avoid unbalanced data. The
ideal is always to use spots with SR equal to six, which have the
highest reliability, but it is possible to decrease the reliability
of the analysis using spots with lower SR, if necessary. In the
second step, selected spots were normalized using background
correction and quantile normalization, which are frequently
employed to normalize other arrays data, such as RNA-seq.
Afterwards, OsteoBLAST detected spots with differential

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 7 October 2020 | Volume 8 | Article 565901

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-565901 October 6, 2020 Time: 20:57 # 8

Ferreira et al. Bioinformatics to Drive Biomaterials Development

FIGURE 2 | Network analysis of differential phosphorylation PPIN. (A,B) present the PPIN built with String for DAA and nanoHA, respectively. Venn diagrams were
built to compare proteins contained in both groups based in (C) Total proteins, (D) Betweenness centrality, (E) Closeness centrality and (F) Degree of centrality. Blue
represents the DAA group and red represents the nanoHA group.

phosphorylation with fold change and p-value as parameters.
We found 11 common spots between DAA and nanoHA:
CD79A_181_193,CDK2_8_20,ENOG_37_49, FAK2_572_584,
FRK_380_392, LAT_249_261, PAXI_24_36, PECA1_706_718,
SRC8_CHICK_476_488, SRC8_CHICK_492_504, and
VGFR2_989_1001. In a previous study, our group has
demonstrated that Focal adhesion kinase 2 (FAK2) and
Proto-oncogene tyrosine-protein kinase Src (SRC) are important
for cell recognition of surface modifications on the nanometer
scale (Zambuzzi et al., 2014). Finally, OsteoBLAST’s last step
computed a χ parameter regarding the similarity between two
biomaterials. If χ = 1.0, the two biomaterials have the same
biological response. For the highest reliability level, χ indicates
a higher similarity between the two modified surfaces (χ = 7.6)
than when each was compared to the control surface (DAA
χ = 56.3 and nanoHA χ = 41.5). It is also important to highlight
the role of SR for a better evaluation of the χ parameter: SR = 2
and SR = 4 produced more extreme χ values, e.g., the comparison
of DAA to Maq with SR = 4 resulted in χ = 279.0, while the
comparison of DAA to nanoHA resulted in χ = 2.3. With more
biomaterials submitted to OsteoBLAST analysis, the χ parameter
range will be better defined.

In order to better understand the biological roles of
the differential kinome, two questions are paramount: (1)
Which residue sites are phosphorylated? (2) Which kinase

phosphorylates a known phosphorylated site? PamChip and
OsteoBLAST solve the first question. For the second, we choose a
systemic approach. NetworKIN analysis predicts the interaction
of different domains on a phosphorylated site (Linding et al.,
2007; Horn et al., 2014). Some proteins used as input in
NeworKIN analysis were found as predicted output (Table 4),
which indicates that they promote autoregulation of the
differential kinome, in some cases through autophosphorylation.
A PPIN was used to define the differential kinome of a
biomaterial using the sites returned by OsteoBLAST and the
proteins predicted by NetworKIN. Gamma-enolase (ENO2)
was the only protein with differential phosphorylation that
is not part of the generated network. ENO2 is related to
the calcium-dependent metabolism, catalyzes the reaction 2-
phospho-D-glycerate = H2O + phosphoenolpyruvate, and
its phosphorylation at Y44 has been detected by mass
spectrometry (Goss et al., 2004). Platelet endothelial cell adhesion
molecule (PECAM1) has shown no NetworKIN predictions for
phosphorylation at the Y713 site. However, it is documented in
Uniprot3 that the Tyrosine-protein kinase Fer phosphorylates
PECAM1 at Y713 (Famiglietti et al., 1997; Paddock et al., 2011;
Dasgupta et al., 2019). Protein 4.1 (EPB41) also does not present
any predictions for phosphorylation at Y660 in NetworKIN

3www.uniprot.org
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FIGURE 3 | Clusters for the DAA PPIN. Letters (A,C,E) show the 3 clusters with MCODE score over 10. Figures (B,D,F) display the top DAVID IDs for each cluster.

results, although Uniprot reports Epidermal growth factor
receptor (EGFR) as the effector kinase (Subrahmanyam et al.,
1991). Some proteins predicted by NetworKIN did not present
network behavior using STRING with the selected parameters.

NetworkAnalyzer returns important metrics for both PPIN.
The first metric we analyzed was the Degree of Connectivity,
which represents the number of interactions any single protein
makes in the network. The higher the degree, the more
connections the protein performs and, consequently, the greater
its role in the network. Betweenness Centrality was the second
metric analyzed and represents how a protein acts as an
intermediate between two other proteins or, in a biological
context, how much of a regulation role a protein exhibits on the
network. The last metric we analyzed was Closeness Centrality,

which indicates the degree each protein is close to the others.
Using the top 10% quantile of these metrics as a classifier, we
observe that both PPIN have more proteins in common than
different ones. In fact, all 137 proteins of the nanoHA PPIN are
contained in the DAA PPIN, which results in high similarity
between the networks. This result corroborates the low χ value
computed by OsteoBLAST for DAA and nanoHA surfaces.

Finally, enrichment analysis revealed ontologies related to
phosphorylation at tyrosine residues (example: GO:0004713
∼protein tyrosine kinase activity, GO:0038083∼peptidyl-
tyrosine autophosphorylation, GO:0018108∼peptidyl-tyrosine
phosphorylation, GO:0007169∼transmembrane receptor
protein tyrosine kinase signaling pathway), autophosphorylation
(example: GO:0046777∼protein autophosphorylation, GO:0038

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 9 October 2020 | Volume 8 | Article 565901

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-565901 October 6, 2020 Time: 20:57 # 10

Ferreira et al. Bioinformatics to Drive Biomaterials Development

FIGURE 4 | Clusters for the nanoHA PPIN. Figures (A,C) show the 2 clusters with MCODE score over 10. Figures (B,D) display the top DAVID IDs for each cluster.

083∼peptidyl-tyrosine autophosphorylation), domains SH2/SH3
(GO:0005070∼SH3/SH2 adaptor activity). These are expected
ontologies since this work is based on a tyrosine kinase chip. The
high amount of ontologies related to transmembrane receptors
(example: GO:0007169∼transmembrane receptor protein
tyrosine kinase signaling pathway, GO:0048010∼vascular
endothelial growth factor receptor signaling pathway,
GO:0007173∼epidermal growth factor receptor signaling
pathway, GO:0048013∼ephrin receptor signaling pathway)
indicates that cell metabolism during the adhesion process
could be more influenced by chemical activation than physical
factors, for example Integrin activation (GO:0007229∼integrin-
mediated signaling pathway was also present in the results).
These receptors usually undergo autophosphorylation at the
beginning of the signaling cascade. Ephrin signaling-related
ontologies (GO:0048013∼ephrin receptor signaling pathway,
GO:0046875∼ephrin receptor binding) reveal the importance
of this pathway for cell adhesion in biomaterials that has not
yet been demonstrated. Ephrin type-A receptor 2 (EPHA2) and
Ephrin type-A receptor 7 (EPHA7) are ephrin receptors with
differential phosphorylation detected on the DAA group which
were predicted by NetworKIN as potential interaction for the
other sites, including the detected sites themselves, indicating
autophosphorylation. Previous studies and databases confirm
this information (Fang et al., 2008).

Altogether, our results demonstrate a new biomaterial
analysis routine based on the differential kinome of the cell
adhesion mechanism.
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