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Abstract

Intrauterine growth restriction (IUGR) is a fetal pathology which leads to increased risk for certain neonatal
complications. Furthermore, clinical and experimental studies revealed that IUGR is associated with a significantly
higher incidence of metabolic, renal and cardiovascular diseases (CVD) later in life. One hypothesis for the higher risk of
CVD after IUGR postulates that IUGR induces metabolic alterations that then lead to CVD.
This minireview focuses on recent studies which demonstrate that IUGR is followed by early primary cardiovascular
alterations which may directly progress to CVD later in life.
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Background
Intrauterine growth restriction (IUGR) affects 3–7% of
all newborns. As a consequence of maternal, placental
or fetal pathology the fetus cannot fully exploit its
growth potential [1]. While the term “small for gesta-
tional age” (SGA) describes a newborn with a birth
weight less than the 10th percentile, IUGR requires a
pathological retardation of intrauterine growth velocity
clearly highlighted by a characteristic kink in the curve
of intrauterine growth [2].
Newborns with IUGR exhibit significantly increased

morbidity immediately after birth (e.g. hypoglycaemia,
hypothermia, infant respiratory distress syndrome). Later
in life former IUGR-patients were found to have a
significantly higher incidence of renal, cardiovascular
and metabolic diseases, the same ailments that are also
the most frequent causes of morbidity and mortality in
the western world [3–5].
The underlying mechanisms leading from fetal under-

supply to the development of diseases in adulthood are
not fully understood. In this context Barker et al.
hypothesize that intrauterine undernutrition compro-
mises growth and differentiation of organs during the
vulnerable phase of fetal development that results in per-
sistent alterations of the organism and leads to the
development of secondary diseases later in life [6–8].

The shortage of nutrients during fetal development
observed in IUGR is commonly replaced by an adequate
nutrient supply after birth. The hypothesis of the “thrifty
phenotype” considers the mismatch between intrauterine
and postnatal supply with nutrients in IUGR individuals
to be the underlying cause of secondary pathologies. In a
fetus adapted to shortage of nutrients during intrauter-
ine development postnatal hyperalimentation leads
initially to excessive catch up growth and later to meta-
bolic, cardiovascular and renal diseases [9].
As IUGR is associated with a higher incidence of

metabolic syndrome, it appears conceivable that cardio-
vascular dysfunction observed after IUGR is secondary
to diabetes, dyslipidemia or hypertension [10]. However,
growing evidence suggests that IUGR directly causes
cardiovascular alterations independent of pre-existing
metabolic disease. Recent clinical and animal studies
identified candidate mechanisms that may mediate the
development of cardiovascular alterations in the setting
of IUGR consistent with the hypothesis of perinatal
programming [11, 12].

Myocardial function and structure after IUGR
In the heart, a number of studies revealed myocardial
alterations induced by IUGR, that can be detected long
before the onset of metabolic disease and arterial hyper-
tension. IUGR affected cardiac development and signifi-
cantly reduced the number of cardiomyocytes at the
time of birth [13, 14]. Studies in humans revealed early
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and persistent alterations of myocardial structure and
decreased cardiac function detected by echocardiog-
raphy in fetal, neonatal and juvenile patients with IUGR
[15–17]. These results were supported by findings in an
animal model of IUGR exhibiting echocardiographic
signs of cardiac dysfunction accompanied by a more
distensible myocardium in the absence of arterial hyper-
tension [18]. As a possible underlying mechanism,
changes in the expression pattern of Titin (Ttn) after
IUGR was observed: The passive elasticity of cardiomyo-
cytes is modulated by alternative splicing of titin, a
structural protein of the myocardial sarcomere, resulting
in the two isoforms N2BA and N2B. Corresponding to
the echocardiographic signs of a more distensible myo-
cardium, relative overexpression of the less rigid isoform
N2BA was observed in IUGR animals [18].
Moreover, assessment of inflammatory and profibrotic

markers revealed an early induction of the expression of
transforming growth factor beta (TGF-ß), connective tis-
sue growth factor (CTGF) and microfibrillar matrix mol-
ecules in the myocardium of juvenile IUGR animals
without evidence of metabolic syndrome [19]. This sup-
ports the notion of early and direct molecular changes
in the cardiovascular system (Fig. 1).

Atherosclerosis, vascular remodeling and fibrosis after IUGR
IUGR-induced metabolic disease (including dyslipidemia
and insulin resistance) may likewise indirectly lead to

atherosclerosis [10]. In addition, several studies provided
evidence that IUGR is accompanied by early structural
alterations in blood vessels [20–23]. Vascular remodeling
favors the development of atherosclerosis [24]. In an
animal model of vascular remodeling induced by unilat-
eral ligation of the A. carotis communis significantly
increased neointima formation and media thickness was
observed in juvenile IUGR rats in the absence of meta-
bolic disease [25]. Moreover, dedifferentiation of vascu-
lar smooth muscle cells (VSMC) was more prominent
and collagen deposition in the media was increased after
IUGR [25].
But even in the absence of experimental vascular dis-

ease, primary vascular alterations were detected in
normotensive IUGR animals: A significantly increased
expression of connective tissue growth factor (CTGF)
was observed in aortas of neonatal animals after IUGR.
Collagen I and collagen IV deposition in the aorta was
more prominent in juvenile IUGR animals [19]. Recent
studies examined IUGR-induced molecular mechanisms
of endothelial dysfunction that favor the development of
atherosclerosis. Oliveira et al. detected lower NO levels
and increased eNOS phosphorylation in thoracic aortas
of IUGR rats as a sign of endothelial dysfunction [26].
Taken together, these observations indicate that IUGR
renders individuals more susceptible to the development
of atherosclerotic lesions and vascular dysfunction and
thus to cardiovascular-related diseases later in life.

Fig. 1 Direct and indirect pathways leading to cardiovascular disease in IUGR
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Conclusions
IUGR favors the development of secondary cardiovascu-
lar diseases later in life which are among the most fre-
quent causes of morbidity and mortality and constitute a
significant proportion of healthcare-related expenditures
in the western world. Cardiovascular disease appears not
only to be a consequence of metabolic syndrome, but
also caused by direct effects on cardiac and vasculature
structure and function in individuals with IUGR. A more
detailed knowledge of underlying disease mechanisms is
likely to advance prevention and treatment of IUGR and
its complications, and thereby improve long-term out-
comes for patients with IUGR.
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