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Autism spectrum disorder (ASD) is a heterogeneous neuropsychiatric condition

traditionally defined by core symptoms in social behavior, speech/communication,

repetitive behavior, and restricted interests. Beyond the core symptoms, autism has

strong association with other disorders such as intellectual disability (ID), epilepsy,

schizophrenia among many others. This paper outlines a theory of ASD with capacity

to connect heterogeneous “core” symptoms, medical and psychiatric comorbidities as

well as other etiological theories of autism in a unifying cognitive framework rooted in

neuroscience and genetics. Cognition is embedded into an ever-developing structure

modified by experiences, including the outcomes of environment influencing behaviors.

The key constraint of cognition is that the brain can handle only 7±2 relevant variables

at a time, whereas sensory variables, i.e., the number of sensory neurons is orders of

magnitude larger. As a result, (a) the extraction, (b) the encoding, and (c) the capability for

the efficient cognitive manipulation of the relevant variables, and (d) the compensatory

mechanisms that counteract computational delays of the distributed components are

critical. We outline our theoretical model to describe a Cartesian Factor (CF) forming,

autoencoder-like cognitive mechanism which breaks combinatorial explosion and is

accelerated by internal reinforcing machineries and discuss the neural processes that

support CF formation. Impairments in any of these aspects may disrupt learning,

cognitive manipulation, decisions on interactions, and execution of decisions. We

suggest that social interactions are the most susceptible to combinations of diverse small

impairments and can be spoiled in many ways that pile up. Comorbidity is experienced,

if any of the many potential impairments is relatively strong. We consider component

spoiling impairments as the basic colors of autism, whereas the combinations of

individual impairments make the palette of autism. We put forth arguments on the

possibility of dissociating the different main elements of the impairments that can

appear together. For example, impairments of generalization (domain general learning)

and impairments of dealing with many variable problems, such as social situations

may appear independently and may mutually enhance their impacts. We also consider

mechanisms that may lead to protection.

Keywords: neuropsychiatric disorder, cognition, social behavior, genetics, dimensionality, reward, autoencoder,

component
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INTRODUCTION

Individuals with ASD have considerable symptom heterogeneity,
but only a few core symptoms: impairments in social interaction
and communication as well as restricted and repetitive behaviors.
While many of the ASD symptoms appear in the non-social
domain, those are not core symptoms. In addition, variability of
IQ is remarkable. Although ID (IQ < 70) is a common comorbid
condition in ASD and the mean IQ of autistic individuals is
below 100, many individuals have normal or above average IQ
(1). Moreover, only a proportion of people with ID are diagnosed
with ASD. In turn, core ASD symptoms are not the strict
consequence of low IQ. This high variability in general cognitive
ability is central to our unifying neurocognitive theory of ASD.
In addition, we ask what makes emotion recognition and social
interaction hard for high IQ individuals?

Specifically, we propose that ASD results from a combination
of (i) impairments that corrupt the solution of cognitive problems
having hidden variables1 (the higher the number and complexity
of the hidden variables the larger the corruption) and (ii)
emotional conditioning together. In our theory, social cognitive
processes are viewed as a particularly vulnerable cognitive
mechanism due to the high complexity of social interactions,
since such interactions inherently have a large number of hidden
variables. Furthermore, in order to estimate the intentions that
will guide future actions, social cognitive processes need to
deal with internal emotions, the emotions of the partner(s)
and information that is emerging from shared experiences of
the individuals.

Sensory processing is the key in our considerations. A plethora
of sensory neurons give rise to huge space where sensed episodes
happen, since the dimension of the space equals the number
of sensors and the size of the space is scales with that number
in the exponent. From the computational aspect the space
is overwhelming, and the general task is at odds with any
computational power, not to mention our cognitive capacity
that can only deal with 7 ± 2 items at a time (2). If the
dimensionality of the space cannot be reduced adequately, then
searching for solutions to problems and executive functions
become troublesome, or sometimes impossible. We propose that
reduction of the dimensionality happens to some extent in ASD
in various ways.

Concerning the reduction of information flow, the number of
variables required for success deserves special attention in a goal-
oriented task. Problem solving tasks related to the social domain
are more dynamic, complex, and abstract. Human behavior
changes quickly due to our own actions, the actions of the
partner(s), and the assumptions about the intentions of others
toward us and vice versa, or toward third parties, or objects.
These “parameters” are typically well-hidden from direct sensory
observations, e.g., at the level of cones and rods. In addition,
social interactions become more efficient when signals are
provided, including utterances and gestures, tactile information

1From the point of view of computations, variables not directly sensed are hidden.
For example, variables, such as the outputs of light sensors or auditory sensors form
the input variables, whereas edges, faces, phonemes, or words are hidden variables.

that may also serve as means of deception (Figures 1A–G).
Changes in these information sources typically need highly
adaptive and very quick responses. The fast synchronization of
actions in the distributed and relatively slow neural system is not
trivial and may be corrupted in many ways and can be asserted
further by errors of the internal reinforcing machineries.

By contrast, traditional tests measuring cognition in ASD
are considerably limited to relatively simple multi-dimensional
cognitive processes compensated by specific items related to
social behaviors. In IQ tests, the dimensionality of the tasks is very
small: mental manipulation of geometrical objects in matrix or
verbal categorization tasks require the consideration of variables
such as simple shapes, a few orientations, or colors, and only
a few at a time. These tests are also easy in the sense that the
objects of IQ tests do not interact or change in time which further
simplifies the complexity of the cognitive tasks (Figure 1H). In
addition, social interaction related factors have no influence on
the performance.

The paper is organized as follows. In the next section, we
review relevant information theoretical concepts and introduce
our model built on autoencoding principles aiming at the
learning of components. InMarr’s terminology (3) these concepts
are on the algorithmic level, but we also show “what” is
computed and “why.” In the next section, we consider local
and global neuronal features (implementation level) of autistic
individuals that can (a) counteract the reduction of dimensions
by means of component separation with (b) special emphasis
on components relevant in the social context, (c) the encoding
of the found components, and (d) their exploitation. Armed
by these concepts and the experimental findings, we describe
the autism palette, i.e., the different causes, or “colors” that are
relatively small corruptions of processes in (a) to (d) but can
lead to an ASD phenotype when combined. Impairments (section
Impairments) lists examples of damaged implementation, while
section Comparing Our Autism Palette Proposal With Other
Theories of Autism helps to place the Autism Palette framework
among previous unifiable theories of autism. Genetics (section
Genetics) supports our hypothesis and suggests experiments
for the dissociability of specific impairments. We review and
combine our arguments in the last section.

PARTS OF THE FRAMEWORK

This section reviews concepts concerning deep artificial neural
networks, which serve us for modeling cognition. These concepts
are selected with the aim to be used for the construction of
a cognition-based unifying framework of autism, The Autism
Palette. We start with autoencoders since we consider it as the
core concept in modeling cognition. Autoencoders can develop
compressed predictive models of the world serving the making
sense process of internal and external sensory observations.
During this process components are formed, stored, adapted,
manipulated, and used. In the second part of this section the
concept of components will be introduced and we elaborate on
component types by means of Cartesian Factors (CFs). Later in
this section specific parts of the framework will be discussed:
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FIGURE 1 | The difference between the complexities of social interactions and IQ tests. (A) The variables: we see a scenario of four people, their individual roles in the

scenario, their relative positions in three dimensions to be estimated from a two-dimensional projection, occlusions of diverse objects and body parts for each person,

the role of gaze directions (looking away, looking into the cards, looking at somebody), attention (seemingly no card-related attention, attention to own cards, attention

to a person), objects in the hands (nothing, card or cards, glass of wine, bottle of wine), role of the hand (context restricted role of the hands within the context of the

card game (showing the cards, hiding cards, covered pointing), the role of different cards in the game (ace vs. other cards), role of people (players, maid), the general

posture and motion of the people (sitting, walking), and the related potential observations (unobservable and observable objects for different partners), hypotheses

about past observation (has seen something), uncertain observations on facial expressions that the context can modify [compare (A) and (B–G) and the presumed

goals (winning, making others to believe something, draw somebody’s attention to something, asking somebody in case of uncertainty) as well as the irrelevant

variables related to clothes, hair styles, jewelry, light intensities, amount of money on the table, including the varieties of forms, colors, shapes, and so on].

Reproduced from https://www.wikiart.org/en/georges-de-la-tour/the-cheat-with-the-ace-of-diamonds under Public Domain license (See also the cover page of Uta

Frith’s book: Autism: Explaining the Enigma, Blackwell Publishing, 1989). (H) A sample IQ test. The variables: (i) shape of the object (square and circle) is irrelevant, (ii)

position of the black subfigure (clockwise rotation) is relevant. The subject is supposed to find the variables, to select the relevant one(s) and find the rule(s) between

them. Reproduced from https://en.wikipedia.org/wiki/Intelligence_quotient under CC BY-SA 3.0 license. The search space for solving the problem and to come to the

decision scales exponentially for both (A,H). Searches may become exponentially more difficult as the number of variables increases, since the combination of the

variables counts. Beyond that the number of variables is much larger for (A) then for (H), probabilities, hypotheses are also involved in (A).

emotional signals are treated as specific CFs that serve social
communication, the complex nature of social interactions is
considered, and we review the reinforcing means that help to
solve social tasks, too.

The Approach
We illustrate our concepts with the help of a few figures, bymeans
of references to relevant computational results in the literature
and via complexity considerations. We are constrained to follow
this route for the following reasons:

1. Deep learning architectures that solve e.g., object
recognition problems, video tracking tasks, performing
pattern completion and alike require huge memories
(on the order of 10 Gigabytes) as well as considerable
training time. Beyond the training time requirements,
the listed tasks are relatively simple and they need
enormous databases. A complex architecture that could
demonstrate autism related phenomena is beyond
reach from the point of view of architectural, database,
and training time requirements. We are restricted
to computational principles and to certain relatively
simple features.
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2. A complex architecture has a large number of hyper
parameters that are hard to justify one-by-one and the
architecture can show colorful behaviors, while not being a
faithful model for autism.

In turn, concepts in the paper will be presented by verbal
descriptions and these verbal descriptions will be accompanied
by references to the relevant and illuminating computational
experiments in the literature, including some efforts of one of the
authors (AL) and his group. These papers and the computational
experiments may help the interested reader to find more details
about the mathematical formalisms and the state-of-the-art
results. Detailed thoughts and references to theoretical works can
be found in the Supplementary Materials, and to some extent in
the Figures of this section.

Autoencoder
Brains can imagine and dream. They can generate experience
like vivid imaginations by manipulating their internal neuronal
codes. The process is called generative process, or decoding
process, which forms the decoding (also called confusingly
top-down in AI, or downstream in neuroscience) arm of an
autoencoder. The autoencoder (Figure 2A) is a computational
architecture that has another mapping called bottom-up
(encoding, upstream) arm.

Encoding maps the input to the so-called internal
representation: encoding converts sensory neuronal responses
to deep neuronal responses. Decoding uses those deep neuronal
responses, the internal representation, and produces an
estimation of the input. Encoding, decoding and in turn, the
internal representation itself is learned. The guiding principle is
compression as dictated by the need for component formation.
Compression may come in a dense form and as sparse coding
that will be described later.

The learning trick of the autoencoder is the matching of its
input to its generated input, while compressing its representation.
It follows from the considerable upstream and downstream
processing delays that prediction is involved in order to match
the actual input to the decoding of the old encoded one
(Figure 2B). Delays, however, call for predictive autoencoders, to
be treated later.

Compressions have two distinct forms. One type is the so-
called dense code. This case is like the zip code: components are
interlinked, and no individual element of the code may make
sense (Figure 2C). The other version is called sparse code. In
case of this type of compression individual elements of the code
may represent individual higher than second order correlations
in the input, such as the edges of images (7), the higher order
correlation of pixels. Sparse encoding produces a few indices of
the representation, whereas decoding estimates the whole input
as the (non-)linear sum of the individual elements. For example,
the sparse code of a face contains a nose, a mouth, two eyes
and other parts of the face, see e.g., Figure 8 in Makhzani and
Frey (8). If the input is the close-up, then components related
to eyes, noses, and mouths become activated, and components
unrelated to face, such as arm, hand, leg, torso, objects in
general are not activated; only a few of the indices represent

any input and, in turn, the representation is “sparse” (Figure 2A
right hand side). Furthermore, representations related to objects,
such as houses, cars, cups, even paper clips (9), or geographical
locations (10) may take negligible contribution if any in the
decoding if the input is a face. In this case, encoding selects a
few units of the decoding network, producing a very compact
representation of the input. Alternatively, if the input is a
landscape, then, e.g., the components of the face are not activated.
Compression, i.e., the number of the active units that represent
the input can be smaller in the sparse case than in the dense
without losing more information. This is due to the much larger
number of computational units in the former enabling different
combinations to play a role for different inputs and bringing
about some level of explainability as well as symbiotic holistic and
component-wise recognition (see later).

Components
In this subsection, we elaborate on the concept of components in
order to introduce our concept of Cartesian Factors in learning.
Components in machine learning are distinct, sometimes
autonomous parts of a larger system that can be hidden, may
belong to an agent, or to its environment. As an example,
the agent is a component of the environment and both the
agent and its social partners are made of components that all
undergo temporal changes. Components can be connected, may
interact, and their coupling may give rise to reversible and
irreversible changes in components. A typical component can be
decomposed into smaller ones. An example is the eye, a part of
the face, a part of the body that is made of components, such as
the iris, the retina and so on. Components reduce combinatorial
explosions and lower the complexity of cognitive tasks. For a
short review on concepts of sparse coding, e.g., the concepts of
“dictionary” and its “words,” and on component-wise and holistic
recognition, see the Supplementary Materials.

Components can be formed in diverse ways and psychologists
suggested the Gestalt principles for learning the important ones
a century ago (11). Children’s drawings support the theory
of sparse coding. Figure 3A shows a few examples from the
“Draw-a-Child” test representing components of the body and
components of body components, such as hand and fingers, eyes,
and irises, among others. Similar principles have been used in
computer vision [see e.g., (12)]. For a speech related example, see
Figure 4A.

Our notion of CFs to be described below is, however, more
general. Components, like nose, mouth and eyes, make the face
when summed up. In many cases CFs do not sum up but
restrict space and time: they can be product-like. The joint set
of summable and product-like components (that together we
call CFs) seem to provide explanations for a number of ASD
impairments and for social interactions, in particular.

Cartesian Factors (CFs)
There are many different formulations for “factors” and
“components” in the literature, such as (1) non-negative
components, (2) principal components, (3) independent
components, among others, including their sparse multi-
level (18), and (4) non-linear extensions (19). In order
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FIGURE 2 | Dense, sparse, predictive dense autoencoders, and the putative autoencoding structure of the entorhinal-hippocampal complex. (A) Dense autoencoder.

x: input, z: compressed hidden representation, or code, x-to-z mapping is the encoding process, x′: estimated input, z-to-x′ mapping is the decoding process, (B)
predictive dense coding: h: compressed predictive hidden representation. (C) Sparse autoencoder. Same as (A), but not all units are active at a time. (D)

Hippocampal-entorhinal complex: FD, fascia dentate; H, hilus; DG, dentate gyrus; CA1 and CA3, CA1 and CA3 subfields; SUB, subiculum; EC II-III and EC V-VI,

superficial and deep layers of the entorhinal cortex, respectively. EC II, putative error layer (e = x–x′); EC III, putative layer for input estimation (x′); EC V-VI, putative

predictive model layers (h); Putative role of DG, detecting delays and learning to compensate delays; PC, pyramidal cell. Recurrent connections make a

spatio-temporal model from the spatial one, propagate the representation forward in time for upstream estimation of the downstream signal and to compare them to

produce errors for correction and for learning. See also Lorincz and Buzsáki (4), Chrobak et al. (5), and Lorincz (6).

to distinguish our concept from these, we introduce the
concept of CFs that come in two different forms. First,
general CFs will be treated. Then, we turn to social behavior
specific CFs.

The Concept of Cartesian Factors
Type 1 CFs, or CF1s for short are akin to traditional (summable)
components. Themain feature is that CF1s are decomposed from
larger systems. For example, the nose, the eyes belong to the face
and the face is a component of the body. CF1s are like Lego
elements; they can be combined.

Type 2 CF (CF2) differ. A few examples for CF2 are
colors, three-dimensional space, one-dimensional time, one-
dimensional space of numbers and few-dimensional space of
letters, or faces, as shapes.

Type 2 CFs are special in the sense that they do not exist
by themselves. They can be modified but cannot be separated.
They concern the type of the components under consideration.
For example, any color is always bound to something. This is
not the case for objects or episodes, since they occupy a local
region in space and time, i.e., they exist somewhere and only for a
while being parts of concurrent processes. By contrast, CF2s (e.g.,
color) are not limited either by space or in time. A somewhat
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FIGURE 3 | (A) Draw-a-Child test. Note the quality of the drawings and that many of the components of the body as well as components of the face are depicted in

these drawings. Reproduced with permission from King’s College London. Their work was supported by the following grants: MRC grant G0901245 & NIH HD044454

& HD059215. (B) Examples for component related illusion: Kanizsa triangle illusion. White color is identical everywhere. Edges—in our framework—are Lego-like, i.e.,

summable (CF1) components being inserted into the representation via a pattern completion machinery that eventually gives rise to apparent differences in color.

Reproduced from https://en.wikipedia.org/wiki/Gaetano_Kanizsa#/media/File:Kanizsa_triangle.svg under CC BY 3.0 license. (C) Example for qualia related illusion:

Neon color spreading illusion (lines are black and blue). There are only three colors—white, black and light blue—in the figure. Small rotation of the disk region that

looks light blue removes the illusion, leaving only light blue lines against a white background (see at https://michaelbach.de/ot/col-neon/index.html). A pixel wise

examination of the image reveals the true colors. The interpretation of the illusion is that color, a CF2, is separated from shape during processing and regions are

refilled during the decoding process that may modify the input at certain levels of the processing hierarchy alike to the case of binocular rivalry (see text). Reproduced

from https://commons.wikimedia.org/w/index.php?curid=29960445 under CC BY-SA 3.0 license. Original source: http://www.blelb.com/spot005/spot005_de.html.

similar concept in philosophy is called qualia [see e.g., (20) and
the Stanford Encyclopedia of Philosophy]. Typical examples for
qualia are the blueness of the sky and the scent of a flower (21),
and (22), respectively. See the Supplementary Materials (a) for
further characterization of CF2s and their relation to illusions
and (b) for the AI approaches toward Type 2 CFs. Two examples
on illusions are depicted on Figures 3B,C.

As a specific example that may take the reader closer
to our concept of CF2, consider mazes in different rat
experiments (Figure 5). The constrained bottom region in a
vertical running wheel (Figure 5A) is “point-like.” The radial
arm maze (Figure 5B) is composed of a set of straight one-
dimensional (1D) line segments, whereas the Morris water maze
(Figure 5C) represents a two-dimensional (2D) space. On the
other hand, bats live in a three-dimensional (3D) space (23).
Place cells in the hippocampus are in the CA1 and CA3 subfields

(Figure 2D) and signal in different local regions of the 1D-
3D spaces of these animals (10). In turn, the set of place
cells represent space independently from other details of the
environment, so these sets are Type 2 CFs. At the same time,
individual place cells divide space into elements of Type 1 CFs
and each space region can be occupied or freed by obstacles.

In spite of the large differences between mammalian species,
some of the CFs, like 2D or 3D spaces and the belonging metric
develop similarly in rats, bats, non-human primates, and humans
[see e.g., (23)]. Although the algorithmic and representational
details of CF1 and CF2 formation remain unclear, many, if not
all of them fall under the category of declarative memory, where
the entorhinal-hippocampal complex plays a critical role during
learning. We shall return to this point later. We finally note
that CF2s may depend on culture and on scientific advances as
demonstrated by (24).
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FIGURE 4 | Components and synchronization problems at the multi-modal sensory level and at the sensory-motor level. (A) Delays exist between the visual and

auditory modalities. Utterance: “I could get away with that.” Intense parts and more quiet regions follow each other In the acoustic domain, some of which are longer,

others, like phoneme “t” in that, are so short (on the order of tenths of milliseconds) that they can’t be seen in the enlarged part of the 15 s utterance. Separation of

components concern, e.g., the separation of “get” and “away” that for a continuum. Components also include eye and gaze, hands, lip, head pose, hand pose,

prosody, words of speech. Visual information is contained by the eyes (e.g., looking sideways at words “get away,” by the hand (e.g., pointing to the self and to

sideways at words “I” and “that,” respectively). Visual and auditory delays are on the order of 100ms (13). One hundred milliseconds shifts between auditory and

visual modalities can be compensated well (14). Figures show our analysis using OpenFace (15) and Audacity2 software tools. Data is from the Chalearn database;

code of movie: YJ5CINQ8v_E.005. (B) sensory-motor synchronization requires timed responses on the order of 10ms or shorter. Illustration shows a deep

learning-based estimation of a 3D body model from 2D camera input (16) in a video showing ball throwing from the Panoptic studio (17) database.

FIGURE 5 | Point like, 1D-like and 2D-like mazes for rodent experiments. Hippocampal place cells follow the point like, 1D-like and 2D structure of the available

space. (A) Running wheel. Reproduced from https://peerj.com/articles/2976/ under CC BY-SA 4.0 license. (B) Radial arm maze. Reproduced from https://en.

wikipedia.org/wiki/Radial_arm_maze#/media/File:Simple_Radial_Maze under CC BY-SA 3.0 license. (C) Morris water maze. Reproduced from https://en.wikipedia.

org/wiki/File:MorrisWaterMaze.svg under CC BY-SA 3.0 license.

Emotion as a Cartesian Factor
There are many components that need to be considered in
social tasks; social tasks are complex (Figure 1A). Components
include CF1s, like the individuals, who are present, absent,
or occluded and may change quickly in social situations.

2https://www.audacityteam.org

Individuals can have complex interactions depending on
their motivations, goals, and moods and these variables
belong to the CF2 category. Such behavior-related factors
are analogous to color, shape, and dimensions, but they are
well-hidden. Emotion-related observations and interpretations
can differ from individual to individual and may depend
on culture.
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The visible signs of emotions are multifaceted and include
eye movements, blinking, hand gestures, body language, verbal
expressions and alike, and the range of any given emotion
can vary from person to person. The duration of emotions
can span over shorter and longer time periods, with some
emotion cues occurring in a flash. Combinations of visible
gestures may change from time to time and may be the subject
to self-control.

The “emotional space” of an individual may be approximated
in two dimensions, see the “emotion wheel” of Plutchik
(25) that, however, does not cover the related dynamics.
There are many such deeply hidden factors and they
may mix making social interaction dependent tasks hard
to accomplish.

Complexity of Behavior and Social
Learning
Figure 1 depicts the differences between factor searches in IQ
tests and factors that influence social learning, including the
time constraints.

We recall the arguments that

a) Cartesian Factor formation is crucial for social interactions,
b) the quality of social interactions can be influenced by

many internal behavioral facets, including motivations, fear,
efficiency of reinforcements, among others,

c) the number of factors in social interactions can be very high
(Figure 1A).

In addition,

d) learning of social interactions relies on social and non-social
reinforcements as mentioned before.

In turn, learning is hard due to the large number of the
involved factors and the additional burden of the temporal credit
assignment problem that determines the relevant components
that led to failure or success (26). For more on this
subject, see the section on reinforcement learning in the
Supplementary Materials. Note that (a) reinforcers can be either
external or internal, including the social domain and (b) their
nature can be direct e.g., food or money and indirect or social,
such as the smile or the anger of another person.

Components are useful for (a) pattern completion by adding
missing CF1s and similarly, one can consider prediction as
pattern completion in time, (b) generalization via eliminating
many details, including some of the CF2s, and (c) selecting only
a few of the many CFs for decision making.

In the brain, many details of CF formation have been
uncovered at least for the representation of space (10) and there
are many theories on how CFs are formed, see the next section.

Predictive Autoencoders
Learning of spatio-temporal components is sometimes supported
by evolutionary means, especially if they are both complex and
relevant, take the examples of treadmill stepping in infants (27),
or the production of basic facial expressions of emotions (28):
partial genetic basis seems to exist for these.

Learning of such components is hard due to processing
delays that should be counteracted in such a way that sensory
observations and conscious perception are to be synchronized
for timely decision making. Synchronization with ongoing
internal computations concerns concurrent episodic components
including (a) decision making, which launches actions that may
occur with a 100–200ms delays and (b) the sensory signals
about the launched actions that can be delayed by an additional
100–200 ms.

An illustrative architecture having the key elements for
compensating delays (29, 30) is depicted in Figure 6. It features
a modular structure, a model of the minicolumnar organization
that may play a role in autism (31, 32). For more details, see the
Supplementary Materials.

Summary of Section Parts of the
Framework
In this section we introduced CFs, a special form of components.
We argued that emotions can be CFs, too. We also described
the concept of the autoencoder and its specific form, the
predictive autoencoder. Social learning also requires high quality
recognition of the social rewards and the proper evaluation of
the reinforcers. Corruption in any of these elements should
slow down learning and the individual may quickly accumulate
negative rewards due to inappropriate behavior.

The main limitation of our approach is its verbal nature. Each
of the concepts from this section have strong computational
ground even the most complex ones, as shown on Figure 6.
However, the Autism Palette itself is a verbal framework, which
is not a “quantitative brain simulation.” In the following sections
we will look at findings coming from neuroscience (sections
Vulnerabilities and Impairments), from previous cognitive
models (section Comparing Our Autism Palette Proposal With
Other Theories of Autism), and from genetics (section Genetics)
that support our framework.

VULNERABILITIES

In this section, we discuss some local and global features of the
neuronal system that can contribute to our framework. They
show many facets that serve dimension reduction of diverse
kinds. Corruptions in the formation and manipulations of these
features form potential vulnerabilities and make the colors that
can be combined on The Autism Palette.

Cartesian Factors in Different Brain Areas
and Mammalian Species
The two types of CFs can develop in different ways as shown
by computational models. Summable, i.e., Lego-like CFs (CF1s)
seem to be present already in the primary visual cortex and
they form a low-level dictionary (section Components, in the
Supplementary Materials).

Sparse representation occurs at different sparsity levels
in the brain. Consider the so-called grandmother cell (33).
This theoretical cell that responds vigorously for any sensory
information concerning the grandmother of someone combines
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FIGURE 6 | Illustrative predictive structured sparse architecture that models columnar organization. Schematic diagram of a neural network architecture with (i) many

layers, (ii) recurrent extension of (iii) structured sparsity for modeling columnar organization. The architecture that reaches state-of-the-art performance (29, 30)

illustrates architectural complexity for modeling a few of the autoencoding aspects of autism. Unmodeled features include, e.g., (iv) delay compensation, (v) different

modalities, (vi) information fusion, (vii) synchronization between modalities, and (viii) the selection of a single percept. The number of parameters is still very large and

offers too much freedom for modeling, while real data is uncertain. For example, autism-like features could be produced when modeling the contradictory findings on

the distance and thus the speed and strength of interaction between minicolumns (31, 32). “Spatial group sparsity” sparsifies representation. “Lifetime group sparsity”

keeps all units to play a role during the learning phases. Notation: subscripts E, A, SG, and LG denote encoding, activation, spatial group sparsity, and lifetime group

sparsity, respectively. For more details, see legend. Details of the architecture: (A) The overall architecture is a deep convolutional neural network that takes N videos

of T-1 frames as input and generates the video frame approximations forward in time in unsupervised pre-training phase. (B) In supervised fine-tuning phase, the

videos are mapped to the video labels. (C) The encoder e is a deep, recurrent convolutional neural network that takes the input and produces the encoding, i.e., the

hidden representation. (D) The classifier c is a dense neural network that takes the encoded hidden representations as input and computes the video class label

approximation. (E) The decoder d is a single linear deconvolutional layer that takes the group sparse hidden representation as input and returns the video frame

approximation. (F) The lifetime group sparsity activation function takes the spatial group sparse hidden representations as input and yields the lifetime group sparse

hidden representations by keeping the feature map groups across sample indices and replacing the rest with zero. (G) The spatial group sparsity activation function

takes the encoded hidden representation as input and calculates the spatial group sparse hidden representation by keeping the feature map groups across pixel

indices and replacing the rest with zero.

a number of CFs (cloth, shape, motion dynamics, name, prosody,
etc.) and thus the response to the input is extremely sparse
(compressed). Similarly, neurons like the ones representing
celebrities, e.g., Halle Berry neurons—that respond to her photos
from different views, with or without sunglasses, dressed typically
or in the Catwoman-dress, shown in line drawing, and by
the letters of her name, while having negligible responses to
anything else—also belong to the grandmother cell category
(34). Grandmother cell like representations seem to form
the words of a dictionary while they are still sparse and
thus, summable.

In the primary visual cortex, the so-called simple cells respond
optimally to moving rectangular bars of specific orientation,

i.e., to the specific higher order correlations (35) of natural
scenes (36). Such correlations, unlike random noise, are relatively
frequent in natural scenes and thus responses are not too sparse,
but they add up to segment objects and are like the words of
a dictionary.

Learning of modifiable CFs (CF2s) seem to occur e.g., in
the loop of the entorhinal-hippocampal complex (EHC loop)
for representing space and the related metric that appear to be
encoded in the medial entorhinal cortex [see the book of (37)].
The space related code has place cells firing in local regions of
2D in rodents (38) and 3D in bats (39), whereas metric related
neurons fire along triangular grids in rodents (10). Both grid
cell and place cell firings correspond to sparse population coding
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(40)3. Separation of the representation of space from everything
else makes a CF2 system. Place cells themselves seem to form the
words of a dictionary, i.e., they are CF1 components of the CF2
representation. This is similar to the separation of colors from
other features and the division of the color space itself.

We summarize the properties of the sparse representation:

a) Cells respond sparsely.
b) They respond to higher order correlations and resemble to the

words of dictionaries.
c) The level of sparsity differs in different areas
d) Responses are strong for diverse representations of the entity.
e) Type 2 CFs can be divided into CF1 subsets

In turn, simple cells, “grandmother cell-like neurons,” and place
cells respond to different non-linear subspaces of the sensory
input space and (a) the subspace has many details about the
entity represented by the cell, (b) a small portion of the subspace
is sufficient for the cell to provide considerable output and
this response is highly specific to that entity. The same input
is enough for the subject to recall other parts embraced by
the subspace (33) suggesting that pattern completion ability is
another specific feature of these cells.

“Mirror Neurons”
Certain neurons in primate brains respond, e.g., to hands no
matter if the hand belongs to the observer or not (41, 42). Such
neurons have been termed “mirror neurons.”

“Mirror neurons” may emerge in a component extracting
and learning system, since hands, alike to other body parts are
decomposable, so they are Type 1 CFs. In particular, compression
is better if a specific manipulation can be remembered and
recalled independently from who, where and when did it and
can be associated to the person if needed. In our view, “mirror
neurons” are not mirroring anything. Instead these neurons
represent components of the body and generalize over the
owner. Component extraction, learning, and manipulation offers
a reasonable explanation for the neurons that seem to be “mirror
neurons.” Impaired component formation may give rise to
impairments in this apparent behavior. Such impairments have
been found (43), see more details later.

Brainwaves
As mentioned before, the EHC loop is a key component of
learning of episodic and semantic memories. Brainwaves play
an important role in these processes. Buzsáki (44) suggested
that during exploration, i.e., during the theta waves, neocortical
information enters the hippocampus and induces weak and
transient heterosynaptic potentiation in the CA3 subfield. Later,
these weakly potentiated neurons and neuronal chains cause
sharp waves (SPW) during consummatory behaviors that give
rise to long-term synaptic modifications in the hippocampus.
Long-term encoding of these memories involves complex
patterns of brainwaves.

3The mechanism seems very general: triangular neuronal firing emerges in the
neocortex during the learning of a cognitive task with a hidden 2-dimensional
structure.

According to the experiments, SPW and slow-wave sleep
(SWS) play roles in the consolidation and synchronization
processes. SWS seems to be more involved than REM sleep in the
consolidation process, but both types of sleep contribute (45, 46).
Different brainwave frequencies can couple, and slow waves seem
to restrict the time interval for coupling when faster oscillation
occurs within slower ones, a phenomenon called phase biasing
(47). In turn, slow oscillations can coordinate local processes
globally, making SPW ripples a highly synchronous wave pattern
in the brain. Boyce et al. (48) showed causal evidence that
contextual memory consolidation depends also on theta rhythms
during REM sleep.

Brainwave machinery is highly specific over about four orders
of magnitude in the frequency domain from 0.05Hz to about
500Hz (Figure 1A in Buzsáki et al., 2003). The linear progression
of the different frequencies on the logarithmic scale is robust
against brain size frommice to elephants. Errors of the brainwave
machinery may have strong effects on the forming and the
synchronization of the component-based memory system.

We turn to the autoencoder model inspired by the features of
space encoding and the related metric in the EHC loop.

Autoencoders in the Brain
The predictive generative nature of neuronal encoding, i.e., that
encoding is accompanied by predictive decoding forming an
autoencoder has gained considerable support over the years
[see e.g., (49)]. It is customary to say that an autoencoder
is “dreaming” when decoding is driven by the freely running
predictive networks (Figure 2B) without any input.

It has been suggested that the EHC loop forms a predictive
autoencoder (4, 5) that (i) can learn from errors of the estimations
via the two-stage operation, (ii) can learn and compensate
for delays, and (iii) can develop independent components.
This line of research has been progressing; metric learning,
learning of episodic representations (50), and semi-supervised
learning of sparse Cartesian Factors (51) have been included.
The architecture of the EHC loop is depicted and detailed in
Figure 2D. Findings on learning to compensate for delays in the
hippocampus (52) reinforced the model.

Consolidation of Emotional Components
Emotional conditioning has been dissociated from declarative
memory by Bechara et al. (53). Based on their results the
amygdala is necessary for emotional conditioning, while the
hippocampus is required for forming declarative memories.

The amygdala theory of autism appeared early (54): the
amygdala was proposed to be one of several neural regions that
are abnormal in autism. The theory is based on the general
agreement that emotions are processed by the amygdala and it
is supported by the anatomy:

The ventral hippocampus projects directly to the basolateral
amygdala and the central amygdala, and connections are
reciprocal (55),

a) fear can be switched on and off in distinct circuits between the
amygdala, hippocampus, and the medial prefrontal cortex by
selective activation of specific neuronal circuits (56), and
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b) multiple parallel pathways exist between the amygdala
and the hippocampus. One pathway encodes the context-
dependent retrieval of cued fear memories. Another pathway
is concerned with fear behavior in a context dependent
manner (57).

In turn, fear is an internal component that may modulate both
episodic and semantic memories. Experimental studies on the
consolidation of emotional components have been published
(58). They found that reactivations of memory traces in the
basolateral amygdala peaked during hippocampal SPW ripples,
being in line with other consolidation patterns.

Neurotransmitters in Social Behavior and
Reward
Component formation requires reinforcement learning based
selection to find the relevant components, i.e., to solve the credit
assignment problem in time (section Complexity of Behavior and
Social Learning).

Dopaminergic Pathway
It has been known for almost 30 years that the dopaminergic
pathway plays a role in reinforcement learning (59–61): the
brain seems to perform temporal difference learning (TD-
learning) depicted in Figure 7A. TD learning fires for unexpected
rewards. As soon as the reward is well-predicted, it fires at the
appearance of the predictor, but does not fire for the reward itself.
Model based prediction and predictive autoencoders seem to be
involved here. Pathway impairments will spoil the optimization
of behavior and, in particular, social learning. Recent work
indicates that reward processing is atypical in autistic individuals
(63).

Beyond impairments in social learning, this pathway
influences the learning of motor control. For a theoretical
description and the review of the neuronal findings [see
e.g., (6, 66)] and the references therein. Experimental results
also show the complexity of potential genetic influences:
polymorphism in the DARPP-32 gene play a role in probabilistic
reward learning, C957T polymorphism of the DRD2 gene
associated with avoiding choices that give rise to negative
outcomes stochastically, whereas the Val/Met polymorphism of
the COMT gene is involved in the ability of rapid adoption from
trial to trial (67). The contribution of this pathway in autism has
been demonstrated in the literature [see e.g., (68, 69)], and the
cited references.

Oxytocin
Oxytocin (OXT) can affect a network of circuits and can
coordinate complex brain functions to form specific behavioral
phenotypes (Figure 7B, right side). Function of OXT is
intensively studied in social behavior and autism. From recent
works a specific network of neural circuits can be concluded.
OXT release from the hypothalamic paraventricular nucleus
promotes prosocial behavior by increasing the excitability of the
dopaminergic neurons in ventral tegmental area (VTA), which
are projecting to the nucleus accumbens. This circuit is a positive,
rewarding loop for social interactions (70). These projections

are part of the mesocorticolimbic dopamine (DA) pathway, a
network of circuits, which was shown to be impaired in ASD in
multiple studies (71, 72). In contrast to the positive effect of OXT
on DA neurons of VTA, OXT indirectly inhibits DA neurons
in substantia nigra, hence suppressing exploratory locomotion
(73, 74). Impairments in the substantia nigra were implicated as
cause of repetitive behavior in ASD (75, 76). These results connect
the above mentioned OXT and DA circuits to two of the core
behavioral symptoms of ASD.

IMPAIRMENTS

In this section, we list examples of ASD related causative findings
and how they are connected to vulnerabilities and impairments
in our unifying framework. We list these impairments and—in
certain cases—mention certain possibilities that may promote
therapeutic procedures. We also consider ASD comorbidities
as a special mixture of impairments. Following our analogy,
comorbidities are the mixed colors on the palette.

Disturbed Neuronal Growth and
Morphology
Piven et al. (77) studied high-risk siblings early in their first
year and performed neuroimaging studies beyond their first year.
Some of them were diagnosed with autism later. They found
cortical area hyperexpansion in the first year. In the second year,
brain volume overgrowth followed and seemed to be associated
with the emergence of social deficits. The relevance of these
findings is shown in (78): within high-risk siblings, information
about brain surface area can predict a positive diagnosis
of autism with predictive and sensitivity values of 81 and
88%, respectively.

Larger surface areas of the same volume involve different
gyrification patterns, as have been reported in the literature for
the left pre- and post-central gyrus (79). Increased gyrification
seems to enable an increase in the number of short-distance
connections reviewed by Courchesne and Pierce (80) and that
may corrupt the separation of encoded components.

According to Buzsáki et al. (81), axon size and myelination
seem to be the most important factors for the scaling of network
oscillations because they determine the conduction velocity of
neurons. The slower the conduction velocity, the larger the delay
to be compensated by predictive models to be learned and, in
turn, the slower (harder) the learning may become.

Ecker et al. (79) found that increased gyrification is
accompanied by atypical neural axial sprouting, which is most
pronounced in axons traveling close to the cortical sheet. They
report that enhanced gyrification correlates with increased axial
diffusivity in general, and the relationship may be causal in either
direction. Increased axonal sprouting may give rise to erroneous
associations and that may also increase irrelevant incoming
information, i.e., the noise level and spoil the precise timing of
brainwaves and thus predictive encoding, too.

There are shared genetic factors behind anatomical changes
of the cortex and general cognition (see section mTOR Pathway
in the Supplementary Materials). Also these factors are parts
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FIGURE 7 | Dopamine responses and ASD stratification possibilities. (A) Dopamine responses. Dopamine signal emerges for reward, first. If the reward predicting

feature is learned, then dopamine signals only for the predictive feature upon learning. If a predictive signal is present, but the reward is missing, then a negative

dopamine signal appears at the time of the reward (60, 62). Mechanism in the striatal region is the same for processing either social or non-social rewards being

aberrant in ASD individuals (63). (B) Examples of ASD stratification possibilities. Causes of ASD can be separated on different levels of biology (genetics, cell biology,

neuroscience, cognitive science). These levels are built on each other and form causative pathways. Two examples are shown: (left hand side): the component

formation related Phelan-McDermid syndrome (64), which is defined by a de novo 22q13 deletion as the genetic cause and synaptic disorganization, E/I imbalance

and decreased IQ as consequences; (right hand side): the reinforced social learning related oxytocin system, where common, inherited SNVs in the OXTR gene could

be a genetic cause and altered oxytocin sensing, impairments of the oxytocin pathway and asocial behavior as the consequences. Inset is from Sokolowski and

Corbin (65) under a CC license. Color notation in the inset is as follows: amygdala is green, bed nucleus of stria terminalis (BNST) is light blue, hypothalamus (Hypo) is

yellow, hippocampus (Hipp) is pink, mammillary bodies are orange, olfactory bulbs (MOB) is purple, amygdala is green, gray smaller regions are nucleus accumbens

(NuAc), periaqueductal (PAG), and ventral tegmental area (VTA).

of key regulatory pathways, hence their therapeutic potential is
limited (82).

Noisy Brain and Excitation/Inhibition Ratio
Imbalance
Synaptogenesis is an additional vital matter. Changes in
spine morphology can be critical in forming large networks,
and troubled synaptic connections are considered the main
underlying reason for autism by many researchers (83, 84).
According to the data, increased spine density gives rise to
decreases in cognitive functioning in ASD, supporting the view
that ASD can be characterized by denser connectivities locally
and hypoconnectivity globally (85). Both connectivity changes
can corrupt global and specific local information processing in
the brain. We note that synaptic genes are among the major ASD
candidate genes, see section Synaptic Impairments Can Disrupt
ASD Related Circuits in the Supplementary Materials.

Learning is harder in noise since either the noise has
to be filtered out that slows down the learning process, or
the noise will also be learned that limits the generalization
capabilities. Filtering, however, is to be learned and part
of the relevant information may be eliminated if filtering
is imprecise. At the level of cognition, noise may affect
attention, may cause hyperactivity, may restrict behavioral
repertoire to avoid corrupted behavior, may give rise to
a high variability of responses and so on. The emerging
behavior also depends on the environment and the internal
reward system.

Rubenstein and Merzenich (86) suggested that ASD is
the result of noise in the brain. Markram et al. (87)
proposed that hyper-functionalities in reactivity, plasticity,
perception, attention, and memory become debilitating in ASD,
causing social and environmental withdrawal, and locking
the individual into a small repertoire of proven routines. In
other words, the brain is not noisy, but highly responsive,
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and strong influences are dampened by restricted behaviors.
The investigators studied the valproic acid rat model; valproic
acid is an anticonvulsant and mood stabilizing drug that has
been used for epilepsy and schizophrenia. Based on their
studies, they propose that the high excitation/inhibition ratio has
behavioral consequences.

Davis and Plaisted-Grant (88) argue that ASD symptoms
reflect too little instead of too much neural noise. They argue that
(i) the stochastic resonance observed in single unit recordings
is influenced by additive noise that may give rise to improved
detection and discrimination thresholds; (ii) noise facilitates
transitions between observations, but such transitions can be
slow or even missing in binocular rivalry, as reported for ASD
(89), a potential corruption of observation. Furthermore, (iii)
for similar inputs belonging to the same category, generalization
between the inputs may become easier if the noise level is
higher, a well-known strategy used in non-linear denoising
autoencoders (90). The oppositemay also occur if irrelevant noise
is learned: generalization processes seem inefficient in autism
(91, 92).

David et al. (93) consider not the strengths but the
variability of cortical oscillation patterns. They note that searches
for abnormal power spectra provide inconsistent results in
autism. They emphasize that trial-to-trial variability in cortical
oscillations form operational noise in neuronal networks that
should consistently communicate between remote areas, and
such variations have been found in ASD.

Dickinson et al. (94) reviewed the literature on excitation-
inhibition balance in ASD and found that imbalances are
essential and there is supporting evidence for such changes.
Individual variability seems relevant, since the evidence justifies
neither a net increase in excitation nor a net increase in inhibition
in autism on the average.

Recent studies of infants with ASD led to intriguing novel
findings on cascades of network efficiencies (95). Network
inefficiencies were found in infants at high risk of later ASD
before symptom consolidation. Inefficiencies—detected by MRI
seed-based tractography measures of connection length and
strength—were first apparent in low-level sensory processing as
early as the age of 6 months, but only in short-range cortico-
cortical connectivity. Inefficiency then spread to higher-level
processing, and ASD symptoms appeared. Symptom severity
can be predicted by the inefficiencies measured much earlier
in low-level processing. Lewis et al. suggest that children with
ASD may suffer from diminished synaptic pruning during
early development.

In sum, endogenous noise, and excitation-inhibition
imbalance in the context of ASD are controversial, but seem to
be present in different cohorts measured in different ways and
with different extents of ASD symptoms (94).

Brainwave abnormalities should affect component forming as
well as the cognitive manipulation of components. Consistently,
there are EEG abnormalities in autism and the abnormalities
correlate with associated phenotypic features (96).

There are promising therapeutic methods to alleviate the E/I
imbalance and related impairments (97), hence their dissociation
from impairments with limited therapeutic potential would
be beneficial.

Impairments of the Amygdala and the
Oxytocin Pathway Are Leading to Altered
Social Behavior
Recent studies show that in comparison with controls, amygdala
volume is greater in ASD (98). It was also found that higher
endogenous oxytocin levels correlate with weaker functional
coupling between amygdala and hippocampal regions and with
higher attachment scores in adults with ASD (99).

Impairments of oxytocin pathways were noted in multiple
studies in mice. For example, abnormal social interaction can be
triggered by VTA DA neuron specific deletion of OXT receptor
(70) or neuroligin-3 (100), an ASD-related synaptic adhesion
molecule. Moreover, mimicking an ASD related loss-of-function
mutation of neuroligin-3 in rodents increased repetitive behavior
and aggression, which could be reversed by Risperidone, a D2
DA antagonist (101). These receptors and adhesion proteins
are coded by genes, affected by genetic variants: they are
factors of molecular pathways and their deregulation can disrupt
neuronal circuits that have importance in ASD related behavioral
phenotypes. In turn, certain genetic variants can strengthen
vulnerabilities related to oxytocin mediated social reward that
can lead to specific behavioral changes (Figure 7B, right side).

Oxytocin treatment may have therapeutic value for patients
with cognitive impairments in the social domain (102). In turn,
uncovering that impairments are connected to the oxytocin
pathway gene networks (103) may shed light on both the need
and the possibility of specific treatment, underlying our approach
toward the dissociation of impairments.

Clinical Consequences: Comorbidities
Below, we consider a few comorbidities found in individuals
having ASD. We propose that these comorbidities are
combinations of certain impairments, hence they could be
used for the dissociation of the colors of The Autism Palette.

Epilepsy
Epilepsy is a neurological condition. It is often comorbid
with other neurologic and psychiatric disorders. Epilepsy shows
clinical overlap with ASD and has many other comorbid profiles.
The prevalences of epilepsy in autistic males and females are
∼18% and 34%, respectively (104).

Epilepsy is considered a network problem (105). As such, it is
fragile in many ways, including network centrality (106). Seizures
may be due to high excitation/inhibition ratios, one of the main
theoretical routes proposed in autism models (86). ASD and
epileptic encephalopathy seem to have many common genetic
causes (107).

Cognitive impairment is the most common outcome
of epilepsy; epilepsy can cause considerable harm to the
developing brain (108): epilepsy gives rise to morphological
and physiological changes, modified synaptogenesis and altered
excitatory and/or inhibitory balance, which destroy both
network structure and dynamics and increase the severity of the
component formation impairment.

Mesial temporal lobe is the cornerstone of component-
formation and memory consolidation. In turn, it is a falsifying
issue what happens in case of mesial temporal lobe epilepsy that
corrupts this key structure. According to (109), such epilepsy
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gives rise to social cognitive deficits, including significant
mentalizing deficits, supporting our theory. Furthermore,
Gelinas et al. (110) found that spontaneous hippocampal
interictal epileptiform discharges correlate with impaired
memory consolidation offering a straightforward connection
between epilepsy and the impairment of component formation
and thus the comorbidity of ASD and epilepsy.

Schizophrenia
Definitions of ASD and schizophrenia have changed over time.
ASD, which was first described by Kanner (105) and Asperger
(111) used to be considered as an early version of schizophrenia
(112) or a central feature of schizophrenia (113). The opinion
that they are different disorders started later (114), since ASD
starts during childhood and is characterized by deficits in social
interaction and communication, whereas schizophrenia typically
has a later onset and is characterized by psychotic symptoms.

In addition to behavioral phenotypes, there are genetic
links between ASD and schizophrenia [see e.g., (115); and the
references therein]. We list a few similarities and dissimilarities
in binding and low complexity component formation in epilepsy,
schizophrenia and in ASD since these may influence the learning
of Cartesian Factors.

Binding of sensory information between different modalities
helps the fusion of information and helps pattern completion
when part of the fused information is missing. Problems with
bindings have been observed both in schizophrenia andASD, e.g.,
in pairing audio and visual signals and in binding interoceptive
signals (116). Binding requires precise temporal windows, but
experiments with ASD patients show expanded audiovisual
temporal binding windows and completely diminished temporal
acuity for perceiving cardiovisual (interoceptive to exteroceptive)
information (116). However, it has been questioned, if corruption
of binding information sources has the same causes in ASD and
in schizophrenia (117).

Errors in binding give rise to errors in predictive model
learning. Take self-tickling as an example. Insensitivity to
self-tickling should not be surprising given a precise model
of the self, and indeed, typical individuals cannot tickle
themselves. This remains the case even if bodies are swapped
in the body transfer illusion (118). However, self-produced
touch results in more ticklish perceptions in individuals
with Asperger’s syndrome than in normal subjects (119),
and self-tickling is particularly successful for individuals with
pronounced schizotypal traits (120). Precise temporal binding
may require predictive synchronization on the order of
milliseconds in the presence of information time mismatches
of a few hundred milliseconds due to different propagation
times. Sensory-motor synchronization is crucial and motor-
sensory communication can be troubled in schizophrenia (121).
Two illustrative examples, one on auditory-visual and one on
sensory-motor binding are shown in Figures 4A,B, respectively.
Synchronization errorsmay cause problems in the separation and
learning of the components, the putative task of the entorhinal-
hippocampal complex. Furthermore, the temporally adjusted
encoding of the information into diverse areas of the neocortex
for the sake of future recalls is also demanding. In turn, both

component encoding and component recall may be impaired
in schizophrenia with the possibility of comorbidities with
autism by impairing the complex, multimodal requirements of
social tasks.

A more complex pattern appears for the so-called “rubber
hand illusion” [see e.g., (122) and the references cited] and the
fast malleability of body representations into the environment,
see, e.g., Tsakiris et al. (123). Experimenting with such fast
malleability, as in the rubber hand illusion, Noel et al. (117)
found that patients with schizophrenia and ASD behave very
differently. Schizophrenia patients had a weak or variable bodily
boundary between the self and the environment, whereas ASD
patients had a sharp boundary. In our framework the difference
can originate from the low complexity of the separation of the
self from the environment that corresponds to the separation
of self-controlled components from the rest of the world and
seems relatively simple among the problems of component
learning, unless synchronization impairments counteract it. In
turn, as mentioned before for the case of IQ tests, much
less impairment is expected in low-complexity tasks compared
with higher-complexity tasks for ASD patients. Furthermore,
since learning is more focused on the self than on partners
in ASD, learned boundaries may be more rigid for individuals
with ASD.

Synesthesia
Baron-Cohen et al. (124) report that the incidence of synesthesia,
in which a sensation in one modality involves perception
in another one, is approximately three times higher in
autistic adults than in normal subjects (125) and found that
synesthesia in autism is linked to savant skills. These results
are further supported by Ward et al. (126), who showed
that synesthetes have enhanced perception and attention and
exhibit autistic-like impairments, too. It has been found that
axonal connections between V4, which is involved in color
processing, and the so-called “grapheme area” are denser in
synesthetes than in controls (127). Both of these areas are
in the fusiform gyrus, and some portions can be adjacent.
Other findings support a cross-activation model (128) between
these areas, and some of these cross-activations seem to be
preconscious. Cross activation due to denser axonal connections
may be able to corrupt component encoding into distinct
neocortical areas. In turn, the comorbidity of autism and
synesthesia seems to arise from network effects, e.g., from
increased axial diffusivity, which can be fostered by enhanced
perception and attention to either colors or graphemes, among
other similar phenomena that restrict the separation and the
cognitive manipulation of components, the central assumption
of our model.

COMPARING OUR AUTISM PALETTE
PROPOSAL WITH OTHER THEORIES OF
AUTISM

There are many cognition-based models of autism supported by
both information theory and experiments. There are also social
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oriented theories. In this section, we consider their merits from
the point of view of our framework. We focus on the limitations
of the previous theories and how our model can overcome those.

Cognitive Impairments
Cantio et al. (129) studied cognitive-level symptoms and
searched for a universal pattern of cognitive impairments in
ASD. They found that two such impairments—(i) impaired
theory of mind, i.e., theorizing about the hidden mental states
of other people (130), and (ii) impaired executive function,
manifested as repetitive and stereotyped behaviors, among other
characteristics—predict autism at a rate of up to 75% (50% being
a random association). Tests on embedded figures (131) showed
that local processing bias has non-significant contribution with
close to normal distributions of similar variances. Their results
support the idea that the social behavior impairments in autistic
individuals may arise from potentially different causes, which
strengthens the idea of the dissociable impairments. Cognitive
impairments, however, provide no explanation for the IQ
distribution in ASD and, in particular, for the relatively high
number of autistic individuals with above average IQ. Impaired
social motivation with intact general cognition concerning low
complexity IQ tasks could explain this paradox to some extent.

Weak Central Coherence Theory
Weak Central Coherence (WCC) theory is an early insightful
model for autism. Frith and Happé (132) put forth the idea
that autistic behavior is the result of impairments in extracting
global form and meaning. Later, the model was modified (133)
to say that problems might arise from the superiority of local
processing, which is a bias in the processing strategy, and weak
coherence may not be the cause but a symptom of autistic
behavior. Robertson and Baron-Cohen (134) object to the theory
on the grounds that WCC is a top-down mechanism and
that bias in the cognitive strategy can hardly explain low-level
sensory processing features. However, our component-based
model may resolve this contradiction: If top-down mechanisms
are supported by distributed sparse representations in an
autoencoder and if elements of the two types of Cartesian Factors
are not well-formed, then central coherence can be weak due
to the lack of the relevant CFs since not-yet-separated CFs
corrupt rigorous inference. In addition, making sense in higher
dimensions is exponentially harder.

Bayesian Prior Theory
Pellicano and Burr (135) suggested the use of Bayesian models
to understand autistic information processing. According
to them, differences lie in the perceptual mechanisms;
namely, people with ASD have “hypo-priors” that give
rise to unique, highly precise perceptual experiences.
Based on this assumption, Pellicano and Burr claim that
many autistic characteristics, from sensory processing to
non-social impairments stem from differences in Bayesian
prediction processes.

A recent work by Palmer et al. (136) summarizes the proposal
that in autism, sensory information has larger weighting than in
normal people. They argue that the balance between perception

and action may be the characteristic difference between people
with autism and normal people—in both social and non-
social behaviors.

There is little doubt that Bayesian inference is difficult
to discount, and it seems that this strategy is applied by
the brain [see e.g., (134, 137, 138) and the cited references
therein]. On the other hand, the world—apart e.g., from
partial observations—is close to deterministic and actions
with deterministic outcomes are both possible and desired
and the Bayesian account may be limited in this respect:
Experimental findings on endogenously and exogenously
modulated binocular rivalry (139) seem to contradict simple
Bayesian principles, since a Bayesian observer would always
pick the higher-probability interpretation. The switching
phenomenon, i.e., that perception switches from one potential
interpretation to the other, however, indicates that simple
Bayesian models are incomplete. Still, the fact that binocular
rivalry is slowed down in autism seems consistent with the
Bayesian observer assumption.

The assumption of hypo-priors can be justified by specific
genetic differences concerning e.g., the oxytocin pathway
or the dopaminergic projections. Comorbidities, however,
are hard to explain on the basis of the Bayesian model,
while they are straightforward outcomes of the Autism
Palette model.

The Empathizing–Systemizing (E-S) Theory
According to the E-S theory (140) individuals can be
characterized on an empathizing and systemizing axis based
on their social and non-social capabilities. Both empathy
and systemizing can be the means for searching and finding
hidden CFs. Affective empathy assumes proper emotional
reactions (141) that could be corrupted. According to the
E-S theory limitations in the social domain stem from the
orientation being strongly directed to non-social tasks. This
theory offers an explanation to ASD cases with superior
non-social skills and above average IQ. The theory needs
to be extended with complexity considerations, since social
and non-social tasks differ, and the former ones are more
complex as depicted in Figure 8. In turn, impairments
in learning CFs may also lead to impairments in social
interactions. On the other hand, extreme interest in non-social
tasks leads to limited practicing in social ones supporting
the idea that E-S theory is part of the Autism Palette. E-S
theory is closely related to social motivation theory that
follows below.

Social Motivation Theory
Chevallier et al. (142) suggested that impaired social cognition
originates from impaired social motivation. In their model,
social motivation integrates three forms of social behavior:
social orienting, seeking-liking, and social maintaining. Due
to the relevance and the evolutionary advantages of social
interactions, and to the higher complexity of such interactions,
we believe that social motivation is an evolutionarily emerging
characteristic supported by genetic features promoting learning
in the social domain. The following section on genetics provides
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FIGURE 8 | Time constraints and components needed for solving (A) IQ tests and (B) goal-oriented tasks in social interactions. Solid lines: main components,

dashed lines: dependencies from the point of view of factor formation. Components of typical IQ tests are limited to Type 1 Cartesian Factors (CF1), including e.g.,

matrix tasks like in Figure 1H, or pattern completion task related to language. The number of components of social interactions is much larger and concerns both

CF1s and CF2, involving a much larger search space of problem solving. Temporal constraints differ, too; time for an IQ test is prescribed and is on the scale of

minutes, whereas social interaction may be much shorter (ms domain), but can be considerably longer as well. Differences are (a) in the complexity of the two problem

types and (b) in their static (IQ) vs. dynamic (social) nature, too.

further support about the connection between impaired social
motivation and autism including the biological mechanisms that
promote social motivation.

Summary of This Section
In this section, we proposed ways using our framework that show
the merits of previous theories and help to overcome some of
their limitations and weaknesses mentioned in the literature. We
gave a possible explanation for the IQ distribution in autism.
We also proposed a solution to overcome the contradiction
between the top-down nature of WCC (133) and the low-level
sensory processing features of autism described by Robertson
and Baron-Cohen (134). The lack of explanation of the presence
of comorbidities in the Bayesian Prior Theory (135) can be
resolved in our framework. The possibility of an inner orientation
to empathizing (140) and the Social Motivation Theory
(142) support the social specific reinforcement component
of our framework. In section Vulnerabilities we considered
“Mirror Neurons” and that CF1s offer a natural explanation
to their apparent behavior. We elaborate on the explanatory
power of our proposal regarding the controversies of the
Mirror Neuron Theory (43, 143, 144) arising from neuronal
responses to self-motion and to the motions of others in the
Supplementary Materials.

GENETICS

Every living system has access to vast amounts of sensory
information. The selection of some useful features—i.e.,
higher order spatio-temporal correlations—can be vital for
reacting to environmental changes. We call these spatial,

or temporal, or spatio-temporal features CFs. In a given
situation, some of them are relevant for the individual,
whereas others are to be neglected. Extraction of the CFs
are supported by neuronal sub-architectures and specific
mechanisms, such as the procedures of the entorhinal-
hippocampal complex, being responsible for episodic
memory in mammals. Relevant CFs are supported by
success and failures, that is, by means of internal and external
reinforcing signals.

Dupre and Yuste (145) showed that even hydras, a genus
of cnidarians, are capable of reducing the inputs from the
outside world to four components. The manipulation and
combination of these components enable them to carry out
some basic behaviors. Neuronal circuitries and their building
blocks, i.e., the molecules and genes have great similarities
from hydras to humans. In the neural network of the
hydra, the four components work as four distinct clusters
of co-activated neurons. These clusters are anatomically non-
overlapping functional circuits and the neurons interact with
each other by sodium, potassium, and calcium channels
and receptors for glutamate, GABA, dopamine, and other
conserved peptides. The dissection of behaviors and the
underlying circuits is also a relevant issue in humans.
In this section, we review some ASD related molecular
findings and connect genetic variants with neuronal circuits
and behavior.

Based on findings in the literature, we consider whether the
effect of genetic impairments on general cognition and on social
specific reinforcements can be dissociated in autism. If such
separation is possible then it may help in developing patient
specific therapies.
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Polygenic Model of ASD
Recent results show that the development of ASD on the
molecular level is mostly determined by genetics and partially
by epigenetics. Twin studies estimate ASD heritability to be
∼80–90% with additional small, but impactful environmental
influence (146–148). Genetics also supports our view about the
heterogeneous sources of ASD; autism is a complex disease
(149). In contrast to Mendelian diseases, where a single causative
variant in a single gene can be pinpointed, complex diseases
are the outcome of a plethora of variants with variant effect
sizes. Based on genetic linkage and genome-wide association
studies (GWAS) the number of ASD candidate genes is
around 1,000 (150). These genes have various functions and
expressional patterns dependent both on tissue type, condition,
and developmental phase. Furthermore, genetic variants found
in GWAS are mostly non-coding variants (151) with small
influences on autism pathogenesis. Genetic variants have variable
penetrance, most of them being low or unknown (152). In
about 90–95% of the ASD population the causative variants are
unknown or predicted to be common, inherited variants.

These findings support the polygenic risk model, where the
development of the disease is the result of the combination of
genes with small individual effects on ASD pathogenesis. In
these cases, there are thousands of causative genetic variants and
several hundreds of affected genes (153).

Approximately 5% of the cases are monogenic forms of
ASD (82), where a single genetic source causes the disorder.
However, such genetic variants are rarely inherited, mostly de
novo and occur on the chromosomal level, thus affecting several
genes at the same time. A large portion of the monogenic
cases are among the syndromic forms of ASD, where the
number of candidate genes can range from a single gene to
hundreds of genes (154). Among these genes pleiotropic genes—
i.e., genes that can influence multiple traits or diseases (155)—are
frequently involved.

Thus, the heterogeneity of ASD can be explained by
polygenicity and the pleiotropic nature of ASD candidate
genes (156). Polygenicity and pleiotropy support frequent
comorbidities with other psychiatric and neurological diseases.

Genetics Could Help to Dissociate
Domain-general and Social Specific
Impairments
Integration of the genetic findings to our framework can explain
some of the important features of our model (Figure 7B).
First, we discuss the type-dependent effect of genetic variants
on comorbidities, especially on ID as they can shed light
on some domain-general impairments. In the second part,
we consider the domain-specificity of social reward and
propose that it could serve as an explanation for the female
protective model.

Comorbidities With Domain-general Impact

Associated With Specific Types of Genetic Variants
Severity of ASD is highly dependent on the manifestation
of comorbid conditions such as macrocephaly, epilepsy,

schizophrenia, and ID (104, 157–159). These comorbidities are
common in ASD and through impairing intelligence they are
influencing ASD ethology. However, a minor, but notable portion
of autistic individuals does not have any severe comorbidity.
Concerning IQ, about one quarter of the ASD cases have severe
ID, while half of the cases have normal or above average IQ (159).

We hypothesize that ASD risk increasing genetic variants have
small to medium influences, but onmany vulnerability pathways,
creating a disease-causing combination of impairments (160).
To study the relation between genetics and diseases we should
separate the types of the causative genetic variants. The ratio of
rare, disruptive alleles is higher in severe, than in mild ID, while
inherited common variants are more strongly connected to mild,
than to severe ID (161). Moreover, ASD-related, rare, disruptive
variants are purified by negative selection, but common variants
are under positive selection (162). Interestingly, these latter
variants are positively associated with intelligence (163). These
results suggest that although common ASD variants can be
evolutionarily beneficial, cognition decreasing, rare variants are
under negative selection.

Strong impairment of component formation can severely
impair cognitive abilities in general. These impairments might be
partially compensated in less complex tasks via increased interest
in those tasks. Certain de novo variants can cause severe IDs and
give rise to autistic-like symptoms even without impairments in
social rewarding. Such cases may exhibit severe comorbidities,
e.g., ID and/or epilepsy (164–166). ID can be the consequence
of epilepsy, abnormal brain development, severely damaged
synaptogenesis, and there are some highly penetrant variants
behind these neurological problems, among other ones. Severe
damages in the mTOR pathway or loss of SHANK3 demonstrate
these cases (see “Molecular Pathways and Neural Circuits as
Vulnerabilities” section of the Supplementary Materials).

These thoughts imply that ASD subgroups could be identified
according to their underlying impairments. Genetics and the
type of genetic variants could help to find single impairments,
while comorbidities are informative about the possible sets of
associated impairments.

Stronger Social Rewarding in Women Justifies the

Female Protective Model
As suggested above, the type of causing genetic variants can
have a stratificational value on clinical phenotypes. In case
of ASD with severe ID, de novo variants are more frequent,
while in high-functioning ASD cases, inherited common variants
can be observed. These inherited variants and family history
of psychiatric disorders are positively correlated with IQ. It is
striking that this stronger familial influence is observable only
in high functioning male patients (167), whereas in female
cases, comorbidities, de novo variants and rare inherited variants
with loss-of-function effects are enriched. Therefore, lower-
functioning cases and female cases have a stronger influence from
sporadic genetic variants, while high-functioning male cases are
influenced more likely by inherited common variants (167).

A recent study tested if shared variants contribute to the
disorder by using a standard measure of genetic relation. They
compared ASD individuals with unrelated discordant siblings,
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i.e., unrelated probands and their unaffected siblings. According
to the genetic metric, affected individuals were more similar to
the affected than to the unaffected member of the unrelated
sibling pair (168) as expected. However, common variants and
less common, non-coding regulatory variants of dosage sensitive
ASD-related genes are inherited more likely from the father
(169), while rare, disruptive, coding variants of these genes
are mostly transmitted from the mother (170). A possible
explanation to this is that variants with moderate effects can be
balanced both in man and woman, while variants with larger
effects are carried more likely by the mother because of the
“female protective model” (171).

Genetic variants of OXT receptors provide further
information from multiple points of view. Beyond their
effect on prosocial behavior, they show sex-dependent effect on
ASD etiology (172). Results suggest that social interaction is
more rewarding for women than for men (173–175). Internal
motivation for being in social situations helps one to gain skills
in the social context. Social rewarding is stronger in females
that may be one of the reasons for the “female protective
model.” Higher burden of mutations and increased ratio of ID
in female ASD cases may be due to the social reward system
that compensates or possibly overcomes the effect of mild
impairments of cognition related social skills.

Strengthening of this internal reward system could be an
effective therapy for individuals with impaired social reward
systems. Furthermore, if these therapies are used early, they could
work alike to the case of female protection and could be beneficial
for individuals with mild developmental delay by increasing
their interest and learning efforts in the social domain. Genetic
findings suggest that this type of therapy would be the most
effective for patients without rare, disruptive genetic variants,
and severe comorbidities. Therefore, experimental studies where
social rewarding measurements are correlated with genome-wide
genetic data seem justified especially when considering that better
means of assessment of social motivation are also needed.

Summary of Section Genetics
In this section, we reviewed the genetic bases of autism
and presented cases where genetic variants can be connected
to phenotypical changes. We showed that different types of
genetic variants can have different effects on autism. This
supports our Autism Palette hypothesis. Due to their distinct
genetic background, we considered the possibility of dissecting
(a) domain-general regularization and (b) social specific
reinforcement as two colors of the palette. We also suggested
aiming for different therapeutic approaches for patients with
different impairments.

COMBINING THE ARGUMENTS

We posed the following question: How come that (a) many
subsets of bountiful discrepancies can give rise to a single leading
symptom, namely, the impairment in social behaviors and (b)
discrepancies may give rise to the leading symptom no matter if

some components of those discrepancies are stronger or weaker
than usual or even if they are missing?

We have argued that

a) Social interactions as opposed to typical non-social activities
involve a larger number of hidden variables of the social
partners and are complex. They require highly efficient
component discoveries and learning of both separable
components, such as the elements of the cloth (i.e., Type
1 Cartesian Factors) and modifiable, but non-separable
components, such as color, scent, mood (i.e., Type 2
Cartesian Factors).

b) The searches for adequate behavioral responses in social
interactions are to be learned and the solutions to the
learning problem should be deduced from experiences and
motivational and external reinforcers. Social interactions
become harder if motivations are negligible and practicing
is infrequent, if specific signs in social interactions are not
recognized or misunderstood.

c) Given (a) and (b), there are many potential causes for
autism and a few of them may be sufficient to impair social
interaction. The set of potential dysfunctions forms the autism
spectrum, whereas the combinations of elements of the set form
the Autism Palette. The more the number of causes, the less
impairments may be sufficient to sum up and to have an
impact on social interactions.

d) Genetics reinforces our arguments, since many different
genetic causes contribute to autism and they act along
different pathways and in diverse ways. Genetics thus shows
a large set of potential causes and GWASes indicate that ASD
individuals have diverse subsets of genetic variants from an
even larger set of putative ASD related variants.

e) Impairments combined in autism include (a) component
related impairments, including searching, finding, and
consolidating components, encoding the components into
the neocortex, manipulating, and controlling the components
by means of high precision synchronization either in the
virtual cognitive space or in real space, or in both, (b) the
reward system for social interactions. This is in line with
findings of Warrier et al. (176) on the genetic dissociability
of social and non-social (“systemizing”) traits of ASD that
translates to our model as follows: (i) social impairments
could be the consequence of abnormal reinforcement, or
to a somewhat impaired component formation, or both,
(ii) ID can be related to severe impairments of component
formation, and (iii) systemizing behavior seems to be result of
specific motivations. In addition, a stronger internal reward,
i.e., motivation for social interaction can compensate social
impairments and may support the female protective model.

Although certain aspects of autism may be modeled as illustrated
by the predictive, group-structured and sparse autoencoding
architecture of Figure 6, the modeling of the diverse features
of the potential colors of the Autism Palette remains a major
challenge. This weakness is due to the core of our hypothesis that
autism is the result of insufficient counteraction to the “course
of dimensionality” during cognitive and emotional development
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and its critical modeling is beyond present capabilities. In our
view, social interactions require one to deal with a large number
of variables that are (a) well-hidden, (b) may also undergo quick
changes, and that (c) their estimation or recognition can be
impaired in many ways.

Finally, we note that the diverse origins of the autistic trait
suggest that different treatments may be optimal for people with
different impairments. Our framework could help in finding
the patient-specific mixture of impaired vulnerabilities, i.e.,
the colors of The Autism Palette, and the related biological
mechanisms. For example, increasing the frequency of social
interaction together with the employment of external immediate
rewards could enhance social motivation and may help the
condition of patients with damaged social-specific reinforcement.
Similarly, for an efficient cognitive therapy and/or medication, it
seems advantageous to determine the individual combinations of
impairments in this heterogeneous disorder.
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