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Abstract

Background: RNA sequencing (RNA-Seq) allows an unbiased survey of the entire transcriptome in a high-throughput
manner. A major application of RNA-Seq is to detect differential isoform expression across experimental conditions,
which is of great biological interest due to its direct relevance to protein function and disease pathogenesis. Detection
of differential isoform expression is challenging because of uncertainty in isoform expression estimation owing to
ambiguous reads and variability in precision of the estimates across samples. It is desirable to have a method that
can account for these issues and is flexible enough to allow adjustment for covariates.

Results: In this paper, we present MetaDiff, a random-effects meta-regression model that naturally fits for the
above purposes. Through extensive simulations and analysis of an RNA-Seq dataset on human heart failure, we
show that the random-effects meta-regression approach is computationally fast, reliable, and can improve the
power of differential expression analysis while controlling for false positives due to the effect of covariates or
confounding variables. In contrast, several existing methods either fail to control false discovery rate or have
reduced power in the presence of covariates or confounding variables. The source code, compiled JAR package
and documentation of MetaDiff are freely available at https://github.com/jiach/MetaDiff.

Conclusion: Our results indicate that random-effects meta-regression offers a flexible framework for differential

expression analysis of isoforms, particularly when gene expression is influenced by other variables.
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Background
The advent of massively parallel sequencing has revolu-
tionized genetics, epigenetics, and transcriptomics studies.
RNA sequencing (RNA-Seq) allows an unbiased survey of
the entire transcriptome in a high-throughput manner. It
has rapidly replaced traditional microarrays as the major
platform for transcriptomics studies because it allows for
more accurate and a wider range of measurement of gene
expression [1].

A major application of RNA-Seq is to detect differential
isoform (i.e., transcript) expression across experimental
conditions, which is of great biological interest due to its

* Correspondence: cxl791@case.edu; mingyao@mail.med.upenn.edu
"Equal contributors

*Department of Epidemiology and Biostatistics, Case Western Reserve
University, Cleveland, OH 44106, USA

'Department of Biostatistics and Epidemiology, University of Pennsylvania
Perelman School of Medicine, Philadelphia, PA 19104, USA

Full list of author information is available at the end of the article

( BiolMed Central

direct relevance to protein function and disease pathogen-
esis. Recent evidence suggests that almost all human
multi-exon genes have more than one isoform [2], and dif-
ferent isoforms are often differentially expressed (DE)
across tissues, developmental stages, disease conditions,
and even across cells from the same tissue [3, 4]. There-
fore, detection of DE isoforms is important for under-
standing complicated biological mechanisms and for
mapping disease susceptibility genes.

Detection of DE isoforms using RNA-Seq, however, is
challenging because of the uncertainty in isoform ex-
pression estimation owing to ambiguous reads and the
variability in precision of the estimates across samples.
Popular analysis methods such as DESeq [5], DESeq2
[6], and EdgeR [7] expect read counts as input. When
using these programs, one would have to estimate the
number of fragments originating from each isoform
using other programs [8—10] and then analyze the esti-
mated counts as if they were directly observed. Since the
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estimation of isoform expression may be biased system-
atically, failing to account for the variability in estima-
tion precision can result in increased false discoveries.
Other programs such as Cuffdiff [11], BitSeq [12], and
EBSeq [13] can appropriately account for uncertainty in
isoform expression estimates. However, these programs
cannot be used to adjust for covariates and confounders
that may affect gene expression. Recent studies have
shown that gene expression can change with environ-
ment and age in multiple tissues [14, 15]; for example,
Glass et al. [15] found that ~10-15 % of the genes in the
human genome are affected by age in skin, adipose,
blood, and brain. In this paper, we refer a covariate as an
independent variable that correlates with gene expres-
sion but not with the phenotype of interest (e.g., disease
status, or treatment group), while a confounder as one
that correlates with both gene expression and the
phenotype.

A method for detecting DE isoforms ideally should be
able to: 1) account for isoform expression estimation
uncertainty, 2) account for variation in the precision of
isoform expression estimates across biological repli-
cates, and 3) allow adjustment for covariates and con-
founding factors. Recently, Turro et al. [16] developed
MMDIFE, a Bayesian random-effects method that
meets these purposes. However, it is difficult to directly
compare MMDIFF with other alternative methods that
are frequentist in nature and allow assessment of statistical
significance through p-values.

In this paper, we present MetaDiff, a regression frame-
work based on a random-effects meta-regression model
that can be considered as a frequentist version of MMDIFF

Page 2 of 12

[16]. The original goal of random-effects meta-regression is
to synthesize results from multiple studies while accounting
for varying standard errors of the effect estimates by expli-
citly allowing for different sources of variability: within- and
between-study variation. Its mathematical model matches
perfectly with the analysis of DE isoform in that within-
study variation represents variable precision in isoform ex-
pression estimation and between-study variation represents
variation in isoform expression levels across samples (Fig. 1).
This analogy motivated us to explore random-effects meta-
regression as a means for identification of DE isoforms.

Through extensive simulations and the analysis of an
RNA-Seq dataset on human heart failure, we show that
MetaDiff is computationally fast, reliable, and can easily
incorporate covariates/confounders. In summary, random-
effects meta-regression offers a flexible framework for dif-
ferential expression analysis of isoforms, particularly when
gene expression is influenced by other variables.

Results

We evaluated the performance of random-effects meta-
regression on both simulated and real RNA-Seq data
and compared it with five existing algorithms, including
Cuffdiff, DESeq, DESeq2, EdgeR and EBSeq. To make a
fair comparison, all programs used FPKMs estimated
from Cufflinks, one of the most popular programs for
isoform expression estimation. Since DESeq, DESeq2,
EdgeR and EBSeq can only take counts as input, we
converted the estimated FPKMs into counts for these
programs. EBSeq does not explicitly model estimation
uncertainty for each isoform, but rather divides iso-
forms into different groups according to the number of
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Fig. 1 Analogy between meta-regression and isoform differential expression analysis in RNA-Seq
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isoforms in a gene. In our analysis, we used the default
option in EBSeq that divides the isoforms into three
groups. A transcript was declared to be DE if its FDR-
adjusted p-value was less than the nominal FDR level
(for Cufflinks, DESeq, DESeq2, and EdgeR) or if its
posterior probability of DE was greater than one -
nominal FDR level (for EBSeq). We did not include
MMDIFF in the comparison because it can only take
isoform expression estimates obtained from MMSEQ
[17]. We note that DESeq, DESeq2, and EdgeR are not
designed for differential expression analysis of isoforms.
However, given the popularity of these methods, it might
be tempting for an end user to identify DE isoforms using
FPKM converted counts. Therefore, we included DESeq,
DESeq2, and EdgeR in our comparisons.

Overview of random-effects meta-regression
Isoform-specific gene expression levels cannot be dir-
ectly observed in RNA-Seq, but rather have to be esti-
mated using deconvolution-based algorithms [8—10].
A natural way to account for variable uncertainty in
isoform expression estimation when testing the rela-
tionship between isoform expression level Y; and the
variable of interest X; (e.g., disease status, treatment
group, etc.) is to use a random-effects regression
model, which can be written as

log(Y:) = By + B1Xi + ByZi + ui + e;.

Here i is an index for subject (i=1, ..., n), u; repre-
sents the estimation uncertainty for log(Y;), and e; is ran-
dom error. To test the null hypothesis of no differential
expression between groups, i.e., Hy: B =0, we use two
statistical tests: t-test and Bartlett corrected likelihood-
ratio test (BcLR) [18]. Details of the random-effects
meta-regression model are described in Methods.

RNA-Seq data simulation

We conducted simulations to evaluate the performance
of random-effects meta-regression and compared it with
other state-of-the-art algorithms for differential expres-
sion analysis. To simulate a realistic dataset, we used
Flux Simulator [19] to generate paired-end RNA-Seq
data by modeling RNA-Seq experiments in silico. The
human genome sequence (hgl9, NCBI build 37) was
downloaded from UCSC together with the coordinates
of all isoforms in the RefGene table. Flux Simulator as-
signs an abundance value to each isoform following a
mixed power/exponential law. Additionally, it simulates
common sources of systematic bias in the abundance
and distribution of reads by in silico library preparation
and sequencing. We simulated 16 cases and 16 controls.
To reflect varying sequencing depth across samples, each
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individual’s total sequencing output was determined by a
uniform distribution from 8 million to 12 million reads.

We first simulated the data without any covariate or
confounding effect (Scenario I). We designated 30 % of
the transcripts to be DE, half up-regulated in cases by
1.25 fold and half down-regulated by 1.25 fold. The
remaining 70 % of the transcripts were assumed to be
non-DE between the two groups. This setup allowed us
to evaluate both false discovery rate (FDR) and power.

Next, we considered a situation in which some gene
expression levels were influenced by a covariate (e.g.,
age) (Scenario II). The distribution of the covariate was
uniform from 18 to 60 in both cases and controls. Simi-
lar to Scenario I, 30 % of the transcripts were designated
to be DE and 70 % were non-DE. We further allowed
10 % of the transcripts to be affected by the covariate,
half with differential expression between the cases and
controls and half without differential expression; these
transcripts had 1.35 fold increased expression for every
one standard deviation increase in the covariate, which
is equivalent to 2.5 % increased expression for every one
unit increase of the covariate. Detailed simulation setup
is shown in Fig. 2.

Finally, we considered a variation of Scenario II, in
which the covariate was correlated with both gene ex-
pression and disease status (Scenario III). We introduced
confounding by allowing the covariate to have different
distributions: uniform(40,85) for the cases and uni-
form(18,60) for the controls. The rest of the simulation
setup was the same as that in Scenario II (Fig. 2).

For each simulated dataset, the RNA-Seq reads were
mapped to the human reference genome using Tophat
with default options [20]. Isoform-specific gene expres-
sion was estimated using Cufflinks [8]. The estimated
FPKM was normalized following the procedure de-
scribed in DESeq [5]. For each expressed transcript, we
tested for differential expression between cases and con-
trols using the t-test and the BcLR test implemented in
the R metatest package. We also analyzed the data using
popular software packages including Cuffdiff (version
2.1.1), DESeq (version 1.20.0), DESeq2 (version 1.16),
EdgeR (version 3.10.0), and EBSeq. Since DESeq,
DESeq2, EdgeR and EBSeq can only take counts as in-
put, we converted isoform expression to read count
using the formula FPKM x N x L/10°, where FPKM is
the estimated expression level, N is the total number of
mapped reads in the sample, and L is the length of the
transcript. We note that Cuffdiff and EBSeq cannot ad-
just for covariates. For each of the three scenarios, we
also evaluated the impact of sample size by analyzing a
subset of m cases and m controls (m =4, 8) randomly
chosen from the simulated dataset. We note that Cuffdiff
uses a sampling-based method for differential analysis and
only generates p-values > 5 x 10,
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Fig. 2 Simulation setup. Simulation setup when isoform expression is influenced by a variable either as a covariate (Scenario Il) or as a

Comparison of empirical FDR in simulated data

The empirical FDR was estimated as the fraction of true
non-DE transcripts among those declared to be DE. For
meta-regression based tests, we filtered out transcripts
for which the normalized FPKM had coefficient of vari-
ation (CV) >0.4 in either cases or controls as these tran-
scripts would likely yield false positive findings due to
high heteroscedasticity (Additional file 1: Figures S1-S7).
Fig. 3 shows the empirical FDR of each method across a
range of nominal FDR levels (0.01 to 0.1 with increment
of 0.01). When there was no covariate or confounding
variable (Scenario I), all methods had well-controlled
FDR except for DESeq and DESeq2 in which the empirical
FDRs were well-above the nominal levels when sample size
was small (m =4). This is consistent with findings reported
in the DESeq2 paper, which reported that DESeq and
DESeq2 tend to have inflated FDRs when sample size is
small. When there was a covariate that influenced gene ex-
pression (Scenario II), the empirical FDRs of EBSeq and
DESeq were severely inflated, regardless of the sample size,
whereas all other methods had empirical FDRs below the
nominal levels. In scenario III, when there was a con-
founder variable, Cuffdiff, EBSeq, and DESeq yielded highly
inflated empirical FDRs due to their inability to adjust for
confounders. DESeq’s empirical FDR became smaller when
sample size was increased to 16. In contrast, BcLR, t-test,
DESeq2, and EdgeR all had empirical FDRs well below or
close to the nominal levels. These results clearly demon-
strate the importance of adjusting for confounding variables
in differential expression analysis.

Comparison of quantile-quantile(QQ) plots in simulated data
We also examined the QQ plots for non-DE transcripts
(Fig. 4). A good-performing method is expected to

have —logl0 transformed p-values falling along the di-
agonal line in a QQ plot. In general, BcLR and ¢-test
had p-values close to the expected distribution in all
three scenarios. However, some of the other methods
had strong deviation from the diagonal line even
though their empirical FDRs were under control.
EdegR showed upward deviation in Scenario I when
sample size was small (m=4) or moderate (m =8).
DESeq and DESeq2 tended to deviate upward in all
three scenarios, and the degree of deviation was more
pronounced in Scenario I. Such deviation for EdgeR,
DESeq, and DESeq2 is likely due to their inability to
account for isoform expression estimation uncertainty.
In Scenario III, Cuffdiff showed a substantial upward
deviation from the diagonal line, which is consistent
with its highly inflated FDRs shown in Fig. 3. The plateau
is due to the sampling based method employed by Cuffdiff
for significance evaluation; the current program only gives
p-values > 5 x 107,

Comparison of power in simulated data

Next, we compared the power of different methods in
detecting DE isoforms across a range of nominal FDR
levels (Fig. 5). In Scenario I, BcLR and ¢-test had the
highest power when sample size was eight or 16,
whereas EdgeR and EBSeq had relatively lower power
than the other methods. When sample size was four,
DESeq, DESeq2, and Cuffdiff had the highest power, but
this should be interpreted with caution because DESeq
and DESeq2’s empirical FDRs exceeded the nominal
levels. When sample size was four, Cuffdiff performed
the best in that its power was the third highest, its em-
pirical FDR was under control and its p-value distribu-
tion agreed well with the expected null distribution in
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Fig. 3 Empirical FDR of different tests in detecting DE isoforms at various nominal FDR levels. Empirical FDR for Scenario | was calculated using all
isoforms, whereas the empirical FDR for Scenarios Il and IIl was calculated using only those isoforms that were influenced by a covariate or a confounder

the QQ plot. In Scenario II, BcLR and ¢-test had the high-
est power when sample size was eight or 16, followed by
DESeq2, EdgeR, and Cuffdiff, whereas DESeq and EBSeq
had almost no power. When sample size was four, BCLR

had the highest power, followed by DESeq2, but it is worth
noting that DESeq2 tended to generate extremely small
p-values when sample size was small, thus one should
interpret the results from DESeq2 with caution. Since
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Fig. 4 Quantile-quantile (QQ) plots of different tests in detecting DE isoforms. Displayed are p-values for those true non-DE isoforms

DESeq and EBSeq had almost no power in detecting in
DE isoforms in Scenario II, as a sanity check, we examined
those isoforms that were not influenced by the covariate.
As expected, DESeq and EBSeq had similar power as those
shown in Scenario I. These results indicate that DESeq

and EBSeq may not be robust when the expression of a
gene is influenced by covariates. In Scenario III, BcLR ap-
peared to be the best-performing method when sample
size was eight or 16, followed by t-test, DESeq2, EdgeR,
and EBSeq, and DESeq still had almost no power. When
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Fig. 5 Estimated power of different tests in detecting DE isoforms at various nominal FDR. Power for Scenario | was calculated using all true DE
isoforms, whereas the power for Scenarios Il and Ill was calculated using only those true DE isoforms that were influenced by a covariate or
a confounder

sample size was four, DESeq2 had slightly higher power
than BcLR, but that is likely due to its relative higher FDR
and upward deviation from the diagonal line in the QQ
plot. We further compared the performance of different

methods by using Receiver Operating Characteristic
(ROC) curve (Fig. 6; Additional file 1: Figure S8). The rela-
tive performance of different methods is generally consist-
ent with our power comparison results.
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Fig. 6 Receiver Operating Characteristic (ROC) curves. Sensitivity and specificity were calculated by varying the p-value cutoffs

Application to the human heart failure RNA-Seq data

We next evaluated the performance of these methods
using a dataset from our ongoing study on human heart
failure. RNA sequencing using Illumina HiSeq 2000 was
performed on left ventricle samples collected from four
cases and three controls in the MAGNet study (http://
www.med.upenn.edu/magnet). The heart was perfused
with cold cardioplegia prior to cardiectomy to arrest
contraction and prevent ischemic damage. Left ventricu-
lar free-wall tissue was harvested and snap frozen with
liquid nitrogen at the time of cardiac surgery from sub-
jects with heart failure undergoing transplantation and

from unused donor hearts. This study was approved by
the University of Pennsylvania Institutional Review
Board and the Cleveland Clinic Institutional Review
Board. All participants were 18 years or older and provided
written informed consent. The seven selected subjects had
a wide range of age distribution (controls: mean = 47, range
[32, 57]; cases: mean =58.5, range [41, 68]). Among the
seven subjects, four were male and three were female. Poly-
A library preparation and sequencing was performed at the
Penn Genome Frontiers Institute’s High-Throughput Se-
quencing Facility following standard protocols. The average
sequencing depth was 43 million 2 x 101 bp paired-end
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reads. We mapped the reads to the human reference
genome using Tophat, and then applied several filtering
criteria to ensure that the reads were uniquely mapped
with a mapping quality score > 30 and that two reads in
a pair were mapped to the same chromosome with ex-
pected orientations and distance < 500,000 bp. We esti-
mated isoform-specific gene expression using Cufflinks.

In this heart failure dataset, the controls tended to be
younger than the cases. Since men have a higher incidence
of heart failure than women [21], both sex and age may in-
fluence gene expression in heart. We performed two sets of
analyses, both at isoform level, one without any covariate
adjustment and one with adjustment for age and sex. The
numbers of DE transcripts detected by each test are shown
in Table 1. Among the 94 transcripts detected by age-sex
adjusted BcLR test but missed by unadjusted BcLR test,
most (71/94) had p-values less than 0.05 for age or sex, sug-
gesting the influence of covariates/confounders on isoform
expression in heart. To assess the impact of covariate ad-
justment, we also compared the p-values between un-
adjusted and adjusted analyses. The Spearman correlation
between unadjusted p-values and age-sex adjusted p-values
was 0.66 for BcLR, 0.67 for t-test, 0.85 for DESeq, 0.64 for
DESeq2 and 0.65 for EdgeR. If age and sex influence gene
expression in heart, the correlation may not be very high.

We further examined the 41 DE transcripts that were
detected by the age-sex adjusted BcLR test but were
missed by the other tests, including age-sex adjusted
t-test, DESeq, DESeq2 and EdgeR, and unadjusted BcLR,
t-test, DESeq, DESeq2 and EdgeR. Several of these tran-
scripts are from genes that have been implicated in heart
failure pathogenesis. For example, Schattermann et al.
[22] reported that PDGFA is required for normal murine
cardiovascular development. Wang et al. [23] showed
that PLCE1 is upregulated in human hearts during heart
failure, which is consistent with elevated expression
levels of the DE isoform (NM_001165979) observed in
our heart failure samples. Proteins encoded by the
SMYD family are shown to be key regulators in skeletal
and cardiac muscle development and function [24].
TMEMS88 encodes a protein that is crucial for heart

Table 1 Number of DE transcripts (FDR adjusted p-value < 0.05
or posterior probability of DE > 0.95) detected by each method
in the heart failure dataset

Unadjusted Age-sex-adjusted Overlap
BcLR 6 95 1
t-test 1 0 0
DESeq 106 77 56
DeSeq2 102 49 31
EdgeR 3 0 0
Cuffdiff 7 - -
EBSeq 256 - -
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development and acts downstream of GATA factors in
the pre-cardiac mesoderm. It is worth noting that among
the genes for which the 41 DE transcripts originate
from, only about half were detected to be DE by gene
level analysis using the age-sex adjusted BcLR test. This
suggests that if one were to perform gene-only analysis,
signals at the isoform level would have been missed.

Discussion

One of the major applications of RNA-Seq is to identify
DE isoforms. In differential expression analysis, it is im-
portant to account for the fact that isoform expression
levels are estimated rather than observed, that they are
estimated with various precision across samples, and
that covariates and confounding factors may play a role
to influence gene expression. To do so, we have pro-
posed a flexible regression framework, utilizing the well-
established random-effects meta-regression approach.
Through computer simulations and the analysis of a real
RNA-Seq dataset on human heart failure, we demon-
strated that the proposed method can improve the
power of isoform differential analysis while controlling
for false positives due to the effect of covariates or con-
founding variables. The meta-regression approach we
used is computationally efficient and widely available in
existing statistical software packages. We have provided
a tool and instructions on how to use meta-regression
for isoform differential expression analysis with RNA-
Seq data.

We have compared the performance of our method
and other commonly used methods for differential ex-
pression analysis, including Cuffdiff, DESeq, DESeq2,
EdgeR, and EBSeq. Both Cuffdiff and EBSeq take into ac-
count the estimation uncertainty for isoform expression
levels, although EBSeq does not explicitly model the de-
gree of uncertainty. In our simulated data, when no covar-
iate and confounder influenced isoform expression
(Scenario I), Cuffdiff had lower power than our method
when m = 8 or 16, but better power when sample size was
small (m=4). In contrast, EBSeq had conservative FDR
among non-DE transcripts and correspondingly lower
power for detecting true DE transcripts. When a covariate
or confounder was present, these two methods showed
either lower statistical power (in Scenario II) or inflated
FDR (in Scenario III) as they are unable to adjust for
covariates.

DESeq, DESeq2, and EdgeR are based on negative
binomial regression to model read counts from an RNA-
Seq experiment, and thus it is natural for these methods
to incorporate covariates. To estimate the variance in a
negative binomial distribution, EdgeR relates the vari-
ance to the mean through a dispersion parameter that is
constant across all genes. DESeq, on the other hand, ap-
plies a local regression to allow the dispersion parameter
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to vary from gene to gene. DESeq2 is a successor of
DESeq. It uses shrinkage estimation to estimate dispersion
parameters and fold change, thus offering improved stabil-
ity as compared to DESeq. Additionally, DESeq2 allows ad-
justment of continuous covariates, whereas DESeq can only
adjust discrete covariates. In our simulations, although
EdgeR could control FDR in the presence of a confounder,
it was conservative in all three scenarios. It also had lower
power to detect true DE transcripts compared to our
method and Cuffdiff in Scenario I In contrast, DESeq
showed inflated FDR for non-DE transcripts regardless the
presence of confounder, especially when sample size was
small. When a covariate or a confounder was present,
DESeq had little power to detect DE transcripts that were
correlated with the covariate. DESeq2 showed better per-
formance than DESeq, however, its overall performance
was not as satisfactory as BcLR and #-test. We note that
EdgeR, DESeq, and DESeq2 cannot take into account the
uncertainty in isoform expression estimation, which may
lead to biased testing results.

The uncertainty in an isoform FPKM estimate can be
quantified as a standard error, which can be calculated
in Cufflinks. In differential expression analysis, the FPKM
value is usually log-transformed, and we approximate the
variance of log(FPKM) using the delta method, which is
also used in Cuffdiff 1.0 [8]. However, this approximation
can be poor and lead to false positive results when the
variance of FPKM value is large compared to its magni-
tude. Hence we filtered out transcripts with large CVs in
meta-regression. To avoid using delta method to approxi-
mate the variance of log(FPKM), one could use MMSEQ
estimated isoform expression because MMSEQ directly
gives the variance estimate of log(FPKM). Since DE tran-
scripts that were influenced by a covariate or a confounder
tended to have a higher CV than those not influenced by
covariates/confounders, the true DE transcripts that were
filtered out would have a higher proportion in the former.
This is confirmed in Additional file 2: Table S1. If we had
not applied the filter, the power of our proposed approach
would have been even higher, but at the expense of in-
flated false positive results. We are in search of alternative
filtering criteria to minimize the number of true DE tran-
scripts being filtered out.

We note that filtering is a commonly used strategy to
eliminate potential false positive signals in genomic data
analysis. Other methods have also employed filtering.
For example, Cuffdiff gives NOTEST if the number of
reads is smaller than some internally defined threshold.
In EBSeq, those whose 75™ quantile of normalized
counts is less than 10 are also filtered because lowly
expressed genes are more likely to be affected by noises.
In our experience, transcripts with a high CV typically
have low expression levels because lowly expressed tran-
scripts generally have smaller number of reads mapped
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to them and this would lead to relatively higher esti-
mation uncertainty and thus high variability of expres-
sion estimates among samples. We evaluated the
impact of using various CV thresholds on filtering by
examining empirical FDRs and QQ plots. Through
simulations and sensitivity analysis, we chose a cutoff
of 0.4, which gives satisfactory FDRs and QQ plots for
all simulation settings we considered. We note that
CV filtering could also help eliminate false positive
results in the other methods evaluated in this paper,
although these methods didn’t choose to use CV as
a filter.

We note that Cuffdiff (version 2.1.1) implemented a
sampling-based method for differential analysis instead
of estimating the standard error of log-transformed
FPKM, and this approach led to slightly better results as
compared to the delta method approximation. However,
the resolution of its p-value is limited by the number of
samplings, and the current implementation of the pro-
gram generates p-values only up to 5x 107>, When a
more stringent p-value threshold is desired, the com-
putational time will be significantly increased with an
increased number of samplings.

Throughout the paper, we have used FPKMs estimated
from Cufflinks as input for various evaluations. We note
that meta-regression only requires estimates of isoform
expression and the corresponding estimation uncer-
tainty, but it is not tied to any particular estimation
method. However, to evaluate the potential impact of
isoform expression estimation method on our results,
we compared the estimated isoform expression levels
using three different software packages, including Cuf-
flinks, RSEM, and MMSEQ. Our evaluation indicates
that these three software packages gave highly similar
expression estimates (Additional file 2). The choice of
expression estimation method has little impact on our
results, and this was confirmed by comparing MetaDiff
with Cufflinks and MMSEQ estimated isoform expres-
sions (Additional file 2).

In this paper, we explained the equivalence between
a random-effects model that accounts for estimation
uncertainty in differential expression analysis and the
random-effects meta-regression. Meta-regression has
been well studied in statistics and epidemiology litera-
tures [25—27], and is easy to implement using standard
software. Both RNA-Seq analysis and meta-analysis
face the same problem of small sample size. The BcLR
test uses a correction factor to modify the standard LR
test for small sample sizes. Huizenga et al. [18] com-
pared several testing procedures for meta-regression
and showed that the BcLR test and t-test are the two
best options. In our simulation study, we found that
the BcLR test outperformed ¢-test with less conserva-
tive FDR and more power to detect DE transcripts.
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Meta-regression is similar in nature to MMDIFF [16],
a recently developed Bayesian random-effects model for
isoform differential expression analysis. We did not in-
clude MMDIFF in our evaluations because MMDIFF can
only take MMSEQ [17] expression estimates as input.
However, our additional analyses indicate that results
from MMDIFF and meta-regression are highly concord-
ant. Since meta-regression is frequentist-based and yields
p-values, we believe it offers a useful alternative to
MMDIFF.

Conclusion

In summary, we have proposed MetaDiff, a flexible re-
gression framework for isoform differential expression
analysis that can take into account isoform expression
estimation uncertainty and variation across biological
replicates, and allow for covariate adjustment. Our
method can effectively control for false positives due to
confounding and increase the power to detect true DE
transcripts. MetaDiff can be freely downloaded from
https://github.com/jiach/MetaDiff. This regression frame-
work is flexible and can be readily extended to other
study designs, e.g., paired data and time course data.

Methods

Notation

Let Y; i=1,..., n, denote the estimated expression level
of an isoform of a gene, as represented by fragments per
kilobase of transcript per million fragments sequenced
(FPKM) value for subject i, and oy; denote the standard
error of the estimated FPKM. Both Y; and ¢y, can be ob-
tained from programs that estimate isoform-specific
gene expression (e.g., Cufflinks). The variable of interest
(e.g., disease status, treatment group, etc.) is denoted by
X;. For simplicity of presentation, we assume there is
only one additional variable, Z; but additional variables
can be easily incorporated in the regression framework
as described later in this section. When Z; is correlated
with both Y; and Xj, it is typically called a confounder. In
differential expression analysis, the FPKM values are
usually log-transformed so that their distribution is ap-
proximately normal. We approximate the standard error
of log(Y;) using the delta method:

Var[log(Y;)] 4¢f o2~ O%; (1)

When the FPKM values were 0, we add 0.0001 in order
to avoid negative infinity in the log transformation.

Random-effects meta-regression for testing differential
expression

Isoform-specific gene expression levels cannot be directly
observed in RNA-Seq, but rather have to be estimated
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using deconvolution-based algorithms [8-10]. A natural
way to account for variable uncertainty in isoform expres-
sion estimation when testing the relationship between iso-
form expression and X; is to use a random-effects
regression model, which can be written as

log(Y:) = By + By Xi + ByZi + ui + e;. (2)

Here u; represents the estimation uncertainty for
log(Y7), and e; is random error. For this random-effects
model, we assume: 1) u; ~ N(0, 03,), 2) e; ~ N(0, 7°), 3) u;
and e; are uncorrelated, i.e., Cov(u;, e; =0), and 4) the n
observations are independent. We note that equation (2)
is identical to the random-effects meta-regression model
that is widely used in meta-analysis [16]. Because of this,
we can readily carry out statistical inference using standard
statistical software, such as R (http://www.r-project.org)
and Stata (Stata Corp, College Station, TX). In our analysis,
we used the metatest package in R [18].

Specifically, to test the null hypothesis of no differential
expression between cases and controls, i.e., Hy: 5, =0, we
consider two statistical tests: ¢-test and Bartlett corrected
likelihood-ratio test (BcLR). The t-test statistic is calcu-
lated as

t= /}1/51‘3 (/3)1)7

where the estimated parameter f5; is divided by its
standard error obtained from the random-effects
model. Under the null hypothesis of no differential expres-
sion, the distribution of this test statistic approximately
follows a ¢-distribution with # — 3 degrees of freedom. Be-
cause the ¢-test can have an exact sample distribution that
does not depend on the asymptotic assumption, it is
expected to perform well when the model assumption
is correct and sample size is small, which is common in
gene expression experiments using RNA-Seq.

Alternatively, we can test for differential expression
using the standard likelihood ratio test. However, the
corresponding test statistic may not follow a chi-squared
distribution when sample size is small. To obtain more
reliable results in small samples, we consider a Bartlett
corrected version, the BcLR test. Let € be the maximized
log likelihood under the full model, and ¢, be the log
likelihood under the null model. The BcLR test statistic
is calculated as

BcLR = BCF x 2(¢-¢y),

where BCF is the Bartlett correction factor. Under the
null hypothesis, BcLR follows a chi-squared distribution
with one degree of freedom. Huizenga et al. [18] derived
the BCF for meta-regression model, and demonstrated
that the BcLR test outperformed the standard likelihood-
ratio test.
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Data access
RNA-Seq data have been deposited in the Gene Expression
Omnibus (GEO) database (accession number GSE57344).
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Additional file 2: Comparison of isoform expression estimates from
Cufflinks, RSEM and MMSEQ.
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