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Abstract: Cholangiocarcinoma (CCA) is a highly lethal disease because most patients are asymp-
tomatic until they progress to advanced stages. Current CCA diagnosis relies on clinical imaging
tests and tissue biopsy, while specific CCA biomarkers are still lacking. This study employed a
translational proteomic approach for the discovery, validation, and development of a multiplex CCA
biomarker assay. In the discovery phase, label-free proteomic quantitation was performed on nine
pooled plasma specimens derived from nine CCA patients, nine disease controls (DC), and nine
normal individuals. Seven proteins (S100A9, AACT, AFM, and TAOK3 from proteomic analysis,
and NGAL, PSMA3, and AMBP from previous literature) were selected as the biomarker candidates.
In the validation phase, enzyme-linked immunosorbent assays (ELISAs) were applied to measure
the plasma levels of the seven candidate proteins from 63 participants: 26 CCA patients, 17 DC,
and 20 normal individuals. Four proteins, S100A9, AACT, NGAL, and PSMA3, were significantly
increased in the CCA group. To generate the multiplex biomarker assays, nine machine learning
models were trained on the plasma dynamics of all seven candidates (All-7 panel) or the four sig-
nificant markers (Sig-4 panel) from 45 of the 63 participants (70%). The best-performing models
were tested on the unseen values from the remaining 18 (30%) of the 63 participants. Very strong
predictive performances for CCA diagnosis were obtained from the All-7 panel using a support vector
machine with linear classification (AUC = 0.96; 95% CI 0.88–1.00) and the Sig-4 panel using partial
least square analysis (AUC = 0.94; 95% CI 0.82–1.00). This study supports the use of the composite
plasma biomarkers measured by clinically compatible ELISAs coupled with machine learning models
to identify individuals at risk of CCA. The All-7 and Sig-4 assays for CCA diagnosis should be further
validated in an independent prospective blinded clinical study.

Keywords: biomarker; cholangiocarcinoma; immunoassay; machine learning; multiplex assay;
plasma proteomics; translational research
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1. Introduction

Cholangiocarcinoma (CCA) is an aggressive malignant tumor found in the epithelial
cells lining the biliary tree [1–3]. Its prevalence varies worldwide, however, CCA imposes
a major public health threat in Southeast Asian countries, particularly Thailand, and is
often associated with Opisthorchis viverrini (OV) infestation and nitrosamine intake [4–6].
The highest incidence of CCA is found in the province of Khon Kaen, Northeast Thailand,
where the age-standardized annual incidence rates are 36 per 100,000 in females and
88 per 100,000 in males [1,2]. The worldwide incidence of CCA has been increasing over the
past 30–40 years to ~2% of all cancer-related deaths and 18% of all liver cancers. CCAs are
divided into three types based on their anatomical localization; (i) intrahepatic CCA, which
originates from the small bile ducts, (ii) perihilar CCA, and (iii) distal CCA, which originates
from the ductal epithelium of the extrahepatic biliary tree [5,7–11]. The prognosis of patients
with CCA is poor because of its initial silent clinical characteristics and its rapid growth
and aggressive metastasis in the late stages. Hence, most patients are diagnosed at an
advanced stage when treatment is less effective and the prognosis is poor [1,2,8,11,12]. The
current diagnosis of CCA requires a combination of clinical, biochemical, radiological, and
histological information [7]. Different imaging techniques may be used for the diagnosis of
each CCA subtype, such as ultrasonography, computed tomography (CT), percutaneous
transhepatic cholangiography, and endoscopic retrograde cholangiopancreatography [7,11].
However, these techniques are not desirable for initial testing due to the cost burden,
variable degrees of accuracy, and limited accessibility [11]. Improved detection of this
cancer with a simpler and less invasive approach, such as plasma biomarkers, would be
of substantial clinical benefit for diagnosis, monitoring, and predicting outcomes for CCA
patients [11].

The most widely used clinical biomarkers for CCA diagnosis include carbohydrate
antigen 19-9 (CA19-9) and carcinoembryonic antigen (CEA). However, both CA19-9 and
CEA are not specific to CCAs; they also increase in many other liver diseases, including
alcoholic liver disease, viral hepatitis, primary sclerosing cholangitis (PSC), cholestasis,
liver injury, and other cancer types [1,6,9,11,13]. CA19-9 has large variations in sensitivity
(50–90%) and specificity (54–98%) and may be elevated in benign biliary disease or cholan-
gitis. For the diagnosis of intrahepatic CCA, the sensitivity and specificity of CA19-9 are
62% and 63%, respectively, while primary sclerosing cholangitis (PSC) patients have 75%
sensitivity and 80% specificity in diagnosing extrahepatic CCA by CA19-9 [8]. However, a
high CA19-9 level of >1000 U/mL has been associated with metastatic intrahepatic CCA
and might be used in disease staging rather than diagnosis [8]. Similarly, the CCA diag-
nostic sensitivity of CEA ranges from 42% to 85% and CEA specificity ranges from 70% to
89% [7,14,15]. High levels of CEA are often observed in gastrointestinal cancer, especially
in colorectal carcinoma, and may also be observed in cholangiocarcinoma [16]. Moreover,
the low sensitivity/specificity and poor early detection limit the clinical usefulness of
these markers.

New biomarkers for CCA detection are needed. Mass spectrometry-based proteomics
is a powerful tool for biomarker discovery [17]. Several quantitative proteomic studies
using different sample types (plasma, bile, urine, extracellular vesicles, and tissues) and
various techniques have been used to search for specific CCA biomarkers [5,7,18]. Gene
expression profiling and immunohistochemistry comparing CCA tumor tissues with nor-
mal liver tissues identified the potential CCA biomarkers ANXA1, ANXA2, SERPINC1,
and AMBP [19]. Proteomic screening also found the overexpression of AMBP protein
precursors in cholangiocarcinoma tissue [20]. The secretomes of cholangiocarcinoma cell
lines specifically express lipocalin-2 (NGAL) and 49 other proteins that are not expressed by
hepatocellular carcinoma cells [21]. High levels of proteasome subunit α type-3 (PSMA3)
are in the plasma of CCA patients compared to normal individuals and patients with hep-
atocellular carcinoma [4]. Thus, AMBP, NGAL, and PSMA3 are also promising potential
biomarkers for cholangiocarcinoma.
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This study applied a translational proteomic approach to accelerate CCA biomarker
discovery, validation, and multiplex assay development. The accessible potential diagnos-
tic protein markers were investigated in the plasma of CCA patients and compared with
normal individuals and disease controls, including non-CCA tumors and non-malignant
hepatobiliary pathological conditions. Candidate markers were identified from previ-
ous studies [4,19–21] and by the label-free proteomic quantitation of nine pooled plasma
specimens of a discovery cohort (total n = 27; 9 CCA, 9 normal, 9 DC; 3 samples of each
group/pool). The candidate biomarkers were validated by clinically compatible ELISA
immunoassays in a larger cohort of 63 patients and controls. Machine learning models
were trained and tested on ELISA-measured values of the candidate biomarkers to develop
predictive models for CCA diagnosis. The workflow of this study is illustrated in Figure 1.
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Figure 1. The workflow of this study. (a) Biomarker discovery by proteomics. (b) Biomarker
validation by enzyme-linked immunosorbent assays (ELISAs). (c) Multiple assay generation by
machine learning. CCA, cholangiocarcinoma; CV, cross-validation; MARS-14, multi-affinity removal
column, human-14; DC, disease control.

2. Results
2.1. Discovery of Candidate Biomarkers by Plasma Proteomics

In the discovery phase, 27 plasma samples from nine CCA patients (CCA group), nine
healthy individuals (normal group), and nine patients with non-CCA tumor or hepatobil-
iary diseases (disease control group) generated three pooled normal (pN), three pooled
CCA (pCCA), and three pooled disease control (pDC) samples. The clinical features of the
healthy controls, patients with cholangiocarcinoma, and disease control, including gender,
age, the definitive diagnosis, and stage of disease, are shown in Table 1. The disease control
group comprised patients who presented with clinical features resembling CCA: jaundice,
pale stool, cachexia, low-grade fever, and/or ascites/abdominal mass; the diagnosis of CCA
was excluded by standard clinical investigations: computed tomography (CT), endoscopic
retrograde cholangiopancreatography (ERCP), and/or tissue biopsy.
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Table 1. Characteristics of CCA, normal, and disease control samples.

Pooled Sample Gender Age Condition/Disease CCA Stage

M 46 Cholangiocarcinoma, perihilar I

pCCA1 M 51 Cholangiocarcinoma, distal IIa

M 73 Cholangiocarcinoma, distal IIb

M 67 Cholangiocarcinoma, intrahepatic III

pCCA2 F 55 Cholangiocarcinoma, intrahepatic IIIA

F 46 Cholangiocarcinoma, intrahepatic IIIA

M 50 Cholangiocarcinoma, metastasis IV

pCCA3 M 55 Cholangiocarcinoma, intrahepatic IV

F 51 Cholangiocarcinoma, intrahepatic IV

F 51 Healthy -

pN1 M 56 Healthy -

F 52 Healthy -

M 55 Healthy -

pN2 F 59 Healthy -

F 50 Healthy -

M 54 Healthy -

pN3 F 56 Healthy -

M 66 Healthy -

F 72 HCC, chronic cholecystitis -

pDC1 M 52 HCC, cirrhosis -

F 61 HCC -

M 34 Chronic HBV infection -

pDC2 F 64 Chronic cholecystitis, DM, HT -

M 56 Periductal fibrosis -

F 33 Focal nodular hyperplasia, liver -

pDC3 M 59 Granulomatous inflammation, CBD -

F 64 Gastrointestinal stromal tumor -

Abbreviations: CBD, common bile duct; DM, diabetes mellitus; F, female; HBV, hepatitis B virus; HCC, hepatocel-
lular carcinoma; HT, hypertension; M, male; pCCA, pooled cholangiocarcinoma sample; pDC, pooled disease
control sample; pN, pooled normal sample.

The pooled samples were pre-fractionated by a MARS-14 (multi-affinity removal
column, human-14) immunodepletion column (to remove 14 highly abundant plasma
proteins) before in-solution tryptic digestion and label-free quantitation (LFQ) mass spec-
trometry (full details in the Methods section). Each pooled sample was analyzed in three
technical replicates, resulting in a total of 27 LC-MS/MS runs. A total of 1595 peptides,
corresponding to 248 unique proteins, were identified and quantified across 27 injections at
a 1% false discovery rate (FDR) using Progenesis label-free LC-MS software v.3.1 (Table S1
contains the full dataset).

The global proteome profiling of 248 plasma proteins was analyzed using a heatmap
with unsupervised clustering (Figure 2a). The hierarchical clustering clearly separated
the normal control group from the CCA and disease control groups, even though pCCA
1 (which represented early-stage CCA) showed considerable similarity to the normal
control group. Then, differential expression analysis was performed to detect the candidate
biomarkers at the thresholds of a 1.5× fold-change and p < 0.05, adjusted for the post-
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hoc analysis of multiple comparisons. Accordingly, 24, 6, and 21 differentially expressed
proteins were found in the comparisons of pCCA vs. pN, pCCA vs. pDC, and pDC vs. pN,
respectively (Figure 2b). Table S2 lists all significant proteins with their fold changes.
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Figure 2. Cholangiocarcinoma biomarker discovery by plasma proteomic analysis. (a) Heatmap with
unsupervised hierarchical clustering of 248 protein expressions across 27 injections corresponding to
nine pooled plasma samples with three technical replicates (details in Tables 1 and S1). (b) Differential
expression analysis of pooled plasma samples of the normal control (pN), CCA (pCCA), and disease
control (pDC) groups. The proteins are shown in rows and the samples are arrayed by column. Red
indicates upregulation and blue indicates downregulation relative to the median expression (white)
of each protein across all samples. (b) Volcano plot demonstrates the significant proteins (red color)
at the thresholds of a 1.5× fold-change and p < 0.05 after multiple comparisons using ANOVA with
Tukey’s post-hoc analysis. X-axis is log2 fold change. Y-axis indicates −log10 (p-value).

2.2. Rationale for Selection of the Candidate CCA Biomarkers

From our perspective, good candidate biomarkers should be recognized by at least
two independent studies for better reproducibility, or one study with a highly confi-
dent biomarker potential. For multiplexing biomarkers, each should represent distinct
pathogenic conditions or states for better coverage of disease heterogeneity and to maxi-
mize specificity for the disease. Accordingly, four significant proteins from our proteomic
analysis, S100A9, AACT, AFM, and TAOK3, and three potential CCA biomarkers from
previous studies, NGAL, PSMA3, and AMBP, were selected for further validation using the
clinically compatible antibody-based assay. It is noteworthy that the label-free proteomic
quantitation in our work may be able to detect intermediate-to-low abundance plasma
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proteins at the concentration range of nanograms per milliliter (33). The use of ELISAs
with greater detection sensitivity from low nanograms to picograms per milliliter level (ac-
cording to the manufacturer’s instructions) would offer a channel to evaluate the potential
contributions of previously identified biomarkers, even though they were missed during
the proteomic biomarker screening. The specific rationale for the selection of the candidate
biomarkers is provided in Table 2.

Table 2. The selected candidate CCA biomarkers for the validation study.

Gene Name Accession Protein Name Rationale for Selection Reference

S100A9 S10A9_HUMAN Protein S100-A9 Significantly upregulated in pCCA vs. pN and
pDC (p < 0.001)

Previously identified as a CCA biomarker in
multiple independent studies

This study

[22–25]

SERPINA3 AACT_HUMAN Alpha-1-
antichymotrypsin

Significantly upregulated in pCCA vs. pN and
pDC (p < 0.001)

Previously proposed as a candidate biomarker of
opisthorchiasis-associated CCA

This study

[26,27]

AFM AFAM_HUMAN Afamin Significantly downregulated in pCCA vs. pN
(p < 0.001)

Previously identified as a biomarker of advanced
CCA with poor prognosis

This study

[28,29]

TAOK3 TAOK3_HUMAN Serine/threonine-
protein kinase

TAO3

Significantly upregulated in pCCA vs. pDC
(p < 0.001)

A tumor suppressor gene with genomic evidence
of significant alteration in CCA

This study

[30]

NGAL NGAL_HUMAN Neutrophil
gelatinase-associated

lipocalin

Previously identified as a biomarker of perihilar
CCA, which could distinguish CCA from benign

biliary tract diseases

[21,31,32]

PSMA3 PSA3_HUMAN Proteasome subunit
alpha type 3

Previously identified as a CCA biomarker from
the CCA cell secretome and successfully

validated using an antibody-based assay in
12 clinical plasma samples (5 normal, 4 CCA,

3 DC)

[4] a

AMBP AMBP_HUMAN Alpha-1
microglobulin

Previously identified as a biomarker of
intrahepatic CCA

[19,20]

a PSMA3 is justified by our previous study as having highly confident CCA biomarker potential.

2.3. Validation of the Candidate Biomarkers by ELISA

The potential clinical applicability of the biomarker candidates was validated in the
validation patient cohort of n = 63:26 CCA, 20 normal controls, and 17 disease controls
(demographic data in Table S3). In addition, unlike the discovery plasma proteomics that
analyzed the MARS14-immunodepleted plasma, the whole unfractionated plasma was
measured by the clinically compatible ELISAs to test the clinical relevance of the identified
biomarkers more stringently. Figure 3 shows the plasma levels of S100A9, AACT, AFM,
TAOK3, NGAL, PSMA3, and AMBP proteins. The results show that the CCA patients
had significantly higher plasma S100A9, AACT, NGAL, and PSMA3 levels relative to the
normal controls (Figure 3). The plasma S100A9 and AACT proteins of the CCA group were
also significantly higher than those of the DC group (Figure 3). Plasma AFM, AMBP, and
TAOK3 were not statistically different among the groups. This finding identifies plasma
S100A9, AACT, NGAL, and PSMA3 proteins as the potential biomarkers for CCA diagnosis,
although it is unlikely that any protein could serve as the CCA biomarker alone.
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2.4. Diagnostic Performance of the Multiplex CCA Markers

To address whether these candidate CCA markers could be combined to build a
multiplex assay, pairwise scatter plots of all combinations of plasma S100A9, AACT, AFM,
TAOK3, NGAL, PSMA3, and AMBP proteins evaluated their composite effects on the
separation of the CCA vs. non-CCA (collapsing normal and DC) groups (Figure 4). The
data were normalized by log2 transformation to reduce potential biases due to differences
in the order of magnitude of the plasma concentrations of the candidate proteins, and the
boxplots of the transformed data in Figure 4a are consistent with the non-transformed data
in Figure 3. The S100A9, AACT, NGAL, and PSMA3 proteins were increased in the CCA
group. The AFM protein trended toward increasing in CCA, while the TAOK3 and AMBP
proteins were unchanged among groups. Next, the transformed data were arranged as
pairwise scatter plots, resulting in a total of 21 combinations of two candidate biomarkers
(Figure 4b). As anticipated, different combinations of the candidate proteins delivered
dissimilar patterns between the CCA and non-CCA sample separation, thereby supporting
further investigation into using multiple candidate biomarkers for CCA diagnosis.
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Figure 3. ELISA-based biomarker validation. Levels of seven candidate biomarkers were determined
in the whole plasma of CCA (n = 26), normal controls (n = 20), and disease control (DC; n = 17).
AACT, alpha-1-antichymotrypsin; AFM, afamin; AMBP, alpha-1 microglobulin; NGAL, neutrophil
gelatinase-associated lipocalin; PSMA3, proteasome subunit alpha type-3; TAOK3, TAO kinase 3.

Two composite biomarker panels were designed for testing. The All-7 panel consisted
of all candidate CCA biomarkers (S100A9, AACT, AFM, TAOK3, NGAL, PSMA3, and
AMBP) identified by the plasma proteomic analysis of the nine pooled samples and from
the literature (Figure 2 and Table 2). The Sig-4 panel consisted of four proteins (S100A9,
AACT, NGAL, and PSMA3) that were successfully validated by ELISA (Figure 3).

Machine learning classification was coupled with the multiplex biomarker assays,
aiming for the improvement of their diagnostic performance. Nine machine learning mod-
els, including the Bayesian generalized linear model (bayesglm), generalized linear model
(glm), k-nearest neighbors (knn), naïve Bayes (nb), neural network (nnet), partial least
squares (pls), random forest with 1000 decision trees (rf1000), support vector machine (SVM)
with linear classification (svm_linear), and SVM with radial kernel function (svm_radial)
were trained on the training dataset (n = 45/63 (70%), using 19 CCA vs. 26 non-CCA
(17 normal and 9 DC; Table S4) with 10-fold cross-validation (details of parameter tunings
in Table S5). The results indicate that the svm_linear model exhibited the best ranking
with the area under the receiver operating characteristic curve for the All-7 panel, and



Molecules 2022, 27, 5904 8 of 15

the pls exhibited the best ranking for the Sig-4 panel. The diagnostic performances of the
All-7 with the svm_linear model and the Sig-4 with the pls model were validated using
the unseen testing dataset (n = 18/63 (30%); 7 CCA vs. 11 non-CCA, 3 normal and 8 DC;
Table S6). The receiver operating characteristics show strong predictive performances for
CCA diagnosis using the svm_linear model on the All-7 panel (AUC of 0.961; 95% CI of
0.885-1.000) and the pls model on the Sig-4 panel (AUC of 0.935; 95% CI of 0.819–1.000)
(Figure 5b). The predictive performances of all nine models for the All-7 and the Sig-4
panels are shown in Figure S1.
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non-CCA potential biomarkers.
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(a) The performance of nine models trained on a 70% subset of the parent dataset (n = 45) with
10-fold cross-validation. Ranking by the area under the ROC curve, the support vector machine
with linear classification (svm_linear) was the best performing model for the All-7 panel, and partial
least square (pls) performed best for the Sig-4 multiplex biomarker panels. (b) CCA diagnostic
performances of the All-7 with svm_linear and the Sig-4 with pls against the unseen testing dataset
(n = 18). Abbreviations: bayesglm, Bayesian generalized linear model; glm, generalized linear model;
knn, k-nearest neighbors; nnet, neural network; nb, naïve Bayes; pls, partial least squares; rf1000,
random forest with 1000 decision trees; ROC, receiver operating characteristics; Sens, sensitivity;
Spec, specificity; svm_linear, support vector machine with linear classification; svm_radial, support
vector machine with radial kernel function.

3. Discussion

This study applied translational research principles by identifying the candidate
CCA biomarkers in a small number of patients, validating their potential usefulness in
a larger patient cohort, and developing multiplex biomarker predictive models that war-
rant further prospective diagnostic studies. Lessons learned in the past suggest that it
is unlikely to discover a single novel plasma protein with exceptional cancer diagnostic
performance [4,5,7,18,21,33]. Instead, the combination of multiple plasma proteins associ-
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ated with different aspects of CCA heterogeneity may allow for the identification of CCA
patients at various disease stages.

To achieve this goal, the identification and selection of the CCA biomarker candidates
did not rely solely on high-throughput proteomic analysis (Figure 2) but also took into ac-
count the feasibility of the identified proteins in relation to previous independent studies of
CCA biomarkers [4,6,19,21–27,29–32], thereby reflecting several CCA types and pathogenic
conditions (Table 2). ELISA, a clinically compatible antibody-based assay, was chosen for
biomarker validation. Finding increased levels of plasma S100A9, AACT, NGAL, and
PSMA3 proteins in 26 CCA patients relative to 20 normal individuals and 17 patients with
non-CCA diseases allowed us to develop the All-7 and the Sig-4 panels. Multiplex assays
(Figure 3) provided a database from which machine learning developed the predictive
models using the training dataset. The most promising models exhibited strong diagnostic
performances (AUC > 0.9) when coupled with the All-7 and the Sig-4 panels (Figure 5).
Nonetheless, the true diagnostic performance of All-7 ELISAs vs. Sig-4 ELISAs, in conjunc-
tion with their time- and cost-effectiveness, require testing in independent clinical trials.

Although this translational proteomic project delivered potentially useful multiplex
assays for CCA diagnosis, several limitations remain to be addressed:

Firstly, the relatively small sample size of this study in the discovery (nine pooled
samples of 27 individuals) and validation cohorts (63 individuals) allow the possibility
that the biomarkers discovered and validated may not generalize to larger cohorts due
to unknown variations of the measured biomarkers at the population level [34,35]. To
address this issue, this study developed multiplex panels including only biomarkers with
previous evidence of positive outcomes in several independent cohorts (Table 2), implying
that the developed multiplex assays could be applied to many, if not all, populations of
CCA. Nonetheless, the true diagnostic performance of the All-7 and Sig-4 panels in the
general population requires further validation.

Secondly, during the proteomic discovery phase, this study may have missed some
novel (and valid) biomarkers due to the selection process that prioritized reproducibility
over novelty. For example, APC membrane recruitment protein 1 (AMER1) significantly
increased in the pCCA compared to the pDC and pN groups (Figure 2). Nonetheless, the
AMER1 protein has never been studied in cholangiocarcinoma and thus was not prioritized
for further validation in this study. Follow-up studies may consider including more proteins
of interest for the validation phase to potentially strengthen the final assay.

Lastly, this study developed the multiplex biomarker assays coupled to the top-
performance trained models, which showed strong predictive performance for detecting
CCA with the AUC > 0.9. Nevertheless, this result is based on a single machine learning
model. The ensemble-based machine learning method could possibly exhibit better perfor-
mance, stability, and predictive accuracy [36]. Future studies of CCA biomarkers should be
pursued in prospective multicenter or population-based cohorts. Bile analysis for proteins,
as well as the correlation between the measured biomarkers and the CCA stages, should
also be included. Additional biomarkers of interest may be added to the All-7 or Sig-4
panels coupled with the ensemble-based machine learning method, aiming to maximize
the diagnostic accuracy of early CCA.

Nonetheless, the current study strongly supports the utility of the described novel
approach toward identifying candidates for use in building more sophisticated biomarker
assays: identification of a panel of relevant biomarker proteins; testing potential biomarkers
by ELISA; in silico identification of the most potent biomarker combinations; and in silico
machine learning to identify the panel of biomarkers and the program for processing
clinical data. The resultant final assay holds great promise for earlier and more precise
detection of life-threatening diseases.
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4. Materials and Methods
4.1. Plasma Collection

EDTA-blood tubes were collected at Sappasitthiprasong Hospital, Ubon Ratchathani,
Thailand, as left-over specimens. Healthy individuals who presented at the hospital for an
annual check-up without a history of underlying disease comprised the normal controls.
Definitive diagnosis for individuals with intrahepatic, perihilar, or distal CCA identified
the CCA group. Diagnoses of underlying hepatobiliary diseases (disease control; DC) were
made based on the histopathological examination of biopsy or surgical specimens. The
EDTA-blood was centrifuged at 380× g for 15 min at 4 ◦C to obtain plasma specimens,
which were aliquoted and stored at −80 ◦C until use. The study was approved by the local
Ethics Committee of the Faculty of Medicine, Ramathibodi Hospital, Mahidol University
and Sappasitthiprasong Hospital (protocol ID 03-58-68; approved on 8 May 2015; last
amended on 4 May 2018). Written informed consent was waived due to the use of discarded
de-identified specimens.

4.2. Immunodepletion of High Abundance Plasma Proteins

MARS-14 columns (4.6 × 100 mm), purchased from Agilent Technologies, Inc., were
used to deplete the 14 most abundant proteins (albumin, immunoglobulin gamma (IgG), an-
titrypsin, IgA, transferrin, haptoglobin, fibrinogen, alpha2-macroglobulin, alpha1-acid gly-
coprotein, IgM, apolipoprotein AI, apolipoprotein AII, complement C3, and transthyretin)
from the pooled plasma samples. Immunodepletion was performed at room temper-
ature using an Agilent 1260 Infinity high-performance liquid chromatography (HPLC)
system. Briefly, the MARS-14 column was injected with 80 µL of the diluted plasma
(1:3 plasma/buffer A) at a low flow rate (0.125 mL/min) for 18 min and then at a flow
rate of 1 mL/min for 2 min. The flow-through fraction (representing the depleted plasma)
was collected. For reusing the column, the system was changed to 100% buffer B (elution
buffer), to elute the bound proteins at a flow rate of 1 mL/min for 7 min. The column was
then regenerated by equilibration in 100% buffer A for 11 min at a flow rate of 1.0 mL/min.
The detector was set at a wavelength of 280 nm. The flow-through fractions were pooled
and concentrated using a Spin-X UF 500 concentrator (5 kDa MW cut-off; Corning Life
Sciences, Tewksbury, MA, USA) centrifuge containing a fixed-angle rotor at 15,000× g for
30 min at 4 ◦C. The protein concentration was estimated using the Bradford assay.

4.3. In-Solution Tryptic Digestion

Ten micrograms of protein were reduced with 100 mM DTT (10 mM final concentration)
for 5 min at 95 ◦C. Alkylation was performed using a 1/10 volume of 200 mM iodoacetamide
and incubated for 30 min at room temperature in the dark. The proteins were then digested
by a 1:50 (w/w) sequencing grade trypsin (Promega Corporation, Madison, WI, USA) at
37 ◦C overnight. The digestion reaction was stopped by adding formic acid to reach a
1% final concentration, and the samples were evaporated to dryness in a SpeedVac. The
samples were purified by C18 ZipTip®(MilliporeSigma, Burlington, MA, USA) and stored
at −20 ◦C until they were used for analysis.

4.4. Label-Free Quantitation Mass Spectrometry

The digested samples were dissolved in 0.1% formic acid in water. Each pooled
plasma sample was run in triplicate in a nano-flow liquid chromatography system (Thermo
Fisher Scientific, Inc., Waltham, MA, USA) coupled with the amaZon speed ion trap mass
spectrometer (Bruker Corporation, Billerica, MA, USA). A C18 Acclaim PepMap RSLC
(75 µm i.d. × 150 mm) column (Thermo Fisher Scientific, Inc.) was used to desalt and
concentrate tryptic peptides. An LC gradient of 1–50%B for 70 min, 50–90%B for 5 min,
followed by 90%B for 15 min was obtained by combining mobile phase A (0.1% formic
acid in water) and mobile phase B (0.1% formic acid in 100% ACN). One microliter of the
sample containing 100 ng/µL was injected into the nano-LC system prior to separation by
the gradient.
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Progenesis label-free LC-MS software (version 3.1; Nonlinear Dynamics, Newcastle
upon Tyne, UK) was used to identify and quantify peaks in the raw data from the LC-
MS/MS. Data alignment was based on the LC retention time of each sample. A reference
sample was established, the retention times of all other replicates were aligned to this
reference, and the peak intensities were then normalized. Data from the MS/MS spectra
were searched using Mascot software version 2.4.0 (www.matrixscience.com, accessed on
13 August 2022) against the SwissProt (Homo sapiens) database. The following search pa-
rameters were used for protein identification: MS/MS mass tolerance set to 0.6 Da; peptide
mass tolerance set to 1.2 Da; carbamidomethylation set as a fixed modification; mass peaks
(features) with charge states +2, +3, and +4; ESI-TRAP instrument; and ≤1 missed cleavages
were allowed. Significant peptide identifications above the identity or homology threshold
were adjusted to a ≤1% peptide false discovery rate (FDR) using the Mascot Percolator
algorithm. Peptides were considered valid if their Mascot ion score was over 30. After the
spectral counts were normalized, comparisons of each protein expression were performed.

4.5. ELISA

Commercially available ELISA kits were used to measure the plasma concentrations of
the biomarker candidates in the cohort of 63 (26 CCA, 20 normal controls, 17 DC). The ELISA
kits included: S100A9 (E-EL-H1290; Elabscience, Wuhan, China), AACT (ab157706; Abcam,
Cambridge, UK), AFM (MBS2704330; MyBioSource, Inc.), TAOK3 (KTE60470; Abbkine, Inc,
Wuhan, China), NGAL (BMS2202; eBioScience, Vienna, Austria), PSMA3 (MBS9336584;
MyBioSource, Inc., San Diego, CA, USA), and AMBP (MBS564034; MyBioSource, Inc.). All
assays were performed on whole plasma according to the manufacturers’ instructions. The
optical density (OD) was measured on a SpectraMax M2 Microplate Reader (Molecular
Devices) at 450 nm.

4.6. Data and Statistical Analyses

Data and statistical analyses were performed using Excel and R programs. Multiple
comparisons were performed by one-way analysis of variance (ANOVA) with Tukey’s
post-test or Wilcoxon’s signed-rank test, as appropriate. Proteomic data analysis and
visualization were performed using our custom bioinformatic workflow as described
previously [37]. Machine learning was performed using caret, ranger, and arm packages.
Data preprocessing was performed by log2 transformation followed by a 70:30 splitting
assigned to the training and testing datasets. The data were centered and scaled, and
then 10-fold cross-validation was performed to fit the training model. Receiver operating
characteristics (ROCs) were used to determine the predictive performance of the trained
model on the unseen testing dataset, where a 95% confidence interval (CI) of the area under
the curve (AUC) was calculated by the DeLong method. p-values < 0.05 were considered
statistically significant.

5. Conclusions

This report describes a translational proteomic approach for the identification of
CCA, including biomarker discovery by high-throughput proteomic analysis, biomarker
validation by clinically compatible immunoassays, and multiplex assay generation with
the support of machine learning models. The performance of the All-7 and the Sig-4
multiplex assays can now be further validated in a full-sized clinical prospective cohort or
multicenter study. When fully validated, this assay holds great promise for earlier and more
precise detection of cholangiocarcinoma. Moreover, this novel approach to developing
multi-biomarker multiplex assays may be used as a general strategy to address many other
dire diseases.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/molecules27185904/s1. Figure S1: CCA diagnostic performance
of (a) the All-7 and (b) the Sig-4 panels with nine trained models on the test dataset (total n = 18;
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7 CCA vs. 11 non-CCA), Table S1: Label-free quantitation of nine pooled plasma samples from
cholangiocarcinoma (pCCA, 3 samples/pool), normal individual (pN; 3 samples/pool), and disease
control (pDC; 3 samples/pool) groups, Table S2: Differential protein expression analysis of pooled
plasma from CCA (pCCA) vs. normal individuals (pN) and disease controls (pDC), Table S3: Charac-
teristics of the validation cohort (total n = 63; 26 CCA, 20 normal individuals, and 17 disease controls),
Table S4: Training dataset (total n = 45; 19 CCA vs. 26 non-CCA), Table S5: Information regarding
parameter tunings of nine machine learning models on the training datasets of the All-7 and the Sig-4
panels, Table S6: Testing dataset (total n = 18; 7 CCA vs. 11 non-CCA).
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