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Abstract: In this study, a contactless vital signs monitoring system was proposed, which can measure
body temperature (BT), heart rate (HR) and respiration rate (RR) for people with and without face
masks using a thermal and an RGB camera. The convolution neural network (CNN) based face
detector was applied and three regions of interest (ROIs) were located based on facial landmarks for
vital sign estimation. Ten healthy subjects from a variety of ethnic backgrounds with skin colors from
pale white to darker brown participated in several different experiments. The absolute error (AE)
between the estimated HR using the proposed method and the reference HR from all experiments is
2.70± 2.28 beats/min (mean ± std), and the AE between the estimated RR and the reference RR from
all experiments is 1.47± 1.33 breaths/min (mean ± std) at a distance of 0.6–1.2 m.

Keywords: vital signs; heart rate (HR); respiration rate (RR); body temperature (BT); face detection;
image processing; signal processing

1. Introduction

With the outbreak of the COVID-19 pandemic, the worldwide healthcare systems are
facing challenges that have never been met before. Most common symptoms of COVID-19
include fever, dry cough, and shortness of breath or difficulty breathing. Some researchers
have found that COVID-19 can cause unexplained tachycardia (rapid heart rate) [1]. It
is important and useful to monitor the vital signs of people before they get a diagnosis
from the hospital as well as to track the vital signs during their recovery. The vital signs,
such as body temperature (BT), respiratory rate (RR) and heart rate (HR), could be used
as evidence for prescreening suspected COVID-19 cases. In order to assist in detecting
COVID-19 symptoms, we developed a contactless vital sign monitoring system, which can
detect the BT, HR and RR at a safe social distance (60–120 cm). The proposed system and
algorithms can be potentially applied for quick vital signs measurement at the entry of
buildings, such as shopping malls, schools and hospitals.

Compared to previous work [2–4], our method improves the contactless vital signs
measurement range up to 2 m for RR estimation and 1.2 m for HR estimation while
preserving the high estimation accuracy. Besides, our proposed approach addresses the
challenge when the subject is wearing the mask and the face is partly occluded using
the CNN based face detector. In addition, the face detector in our method enables us to
measure multiple subjects’ vital signs such as RR and HR at the same time, which, to the
best of our knowledge, has never been studied before. To summarize, our method makes
the following contributions:
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• We present a system that estimates multiple subjects’ vital signs including HR and
RR using thermal and RGB cameras. To the best of our knowledge, it is the first study
that includes different face masks in contactless RR estimation and our results indicate
that the proposed system is feasible for COVID 19-related applications;

• We propose signal processing algorithms that estimate the HR and RR of multiple
subjects under different conditions. Examples of novel approaches include increasing
the contrast of the thermal images to improve the SNR of the extracted signal for RR
estimation as well as a sequence of steps including independent component analysis
(ICA) and empirical mode decomposition (EMD) to enhance heart rate estimation
accuracy from RGB frames. Robustness is improved by performing a signal quality
assessment of the physiological signals and detecting the deviation in the orientation
of the head from the direction towards the camera. By applying the proposed ap-
proaches, the system can provide accurate HR and RR estimations with normal indoor
illuminations and for subjects with different skin tones;

• Our work addresses some of the issues reported in other works such as the small
distance required between the cameras and the subjects and the need to have a
large portion of the face exposed to the camera. Therefore, our system is robust at
larger distances, and can simultaneously estimate the vital signs of two people whose
faces might be partially covered with face masks or not pointed directly towards
the cameras.

2. Related Works

Conventionally, contact based devices are widely used in hospitals and nursing homes
for the measurement of vital signs. For example, electrocardiography (ECG) and photo-
plethysmography (PPG) sensors are usually used in HR monitoring [5] and the breathing
belt is used to measure the RR of the subject. However, these devices need to be attached to
the subjects’ body thereby constraining or causing them discomfort and thus potentially
affecting the measurement. It is also hard to make many people wear this kind of sensor
and collect their data when they are in public places.

To resolve these problems, contactless monitoring systems have been designed and
applied in the aforementioned scenario. Contactless monitoring systems rely on a number
of sensors such as radars, sonars, different kind of camera and so on. In this paper, we
will limit our analysis to camera-based systems. Xiaobai Li and Jie Chen et al. proposed a
method that can measure HR remotely from face videos [2]. After that, many researchers
used the green channel of face images collected from a webcam or smartphone to measure
the heart rate [6,7]. On the other side, with the decline of the cost and size of optical
imaging devices such as infrared cameras and thermal cameras, the respiratory signal can
also be measured by remote monitoring [8–10]. Youngjun Cho et al. proposed a respiratory
rate tracking method based on mobile thermal imaging [3]. One low-cost and small-sized
thermal camera connected to a smartphone was used as a thermographic system to detect
the temperature changes of the nostril area caused by the inhaling and exhaling. There
have been some other works [4,11,12] related to monitoring the respiratory signal using the
thermal camera. However, the detection distance between the human face and the thermal
camera is limited to less than 50 cm in Cho’s work [3] and the estimation error increases
with the distance between the subject and the camera. In addition, some face detection
algorithms [3,4,11] perform poorly in detecting occluded faces if the subjects are wearing
face masks and make it improper for COVID symptoms’ detection as a face mask is always
mandatory in public places.

In our task of monitoring a subject’s HR and RR using cameras, the subject’s face
should be detected from the video frames where the face detection and tracking algorithms
need to be developed and applied. The Kanade–Lucas–Tomasi (KLT) feature tracker
originally proposed in 1991 is generally used to track the faces and the region of interest
(ROI) in videos [5]. In addition, there are many face detectors in OpenCV and Matlab
toolboxes such as the Viola–Jones face detector [13] and the Discriminative Response
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Map Fitting (DRMF) detector [14]. However, these detectors have a problem handling
the occluded faces so they cannot be used in our scenario. Face detection also receives
attention in the deep learning community where many convolutional neural network
frameworks have been developed in recent years to address the challenges. Multi-task
Cascaded Convolutional Networks (MTCNN), proposed by Kaipeng Zhang et al. in 2016,
which adopt a cascaded structure of deep convolutional networks to detect the face and
landmarks [15], were widely used in the task of detecting faces. However, MTCNN cannot
resolve the problem when the face is covered with a mask. The Single Shot Scale-invariant
Face Detector (S3FD) [16] proposed in 2017 also does not perform well in occluded face
detection. PyramidBox, proposed in 2018 [17], is capable of handling the hard face detection
problems such as blurred and partially occluded faces in an uncontrolled environment.
Though PyramidBox has already been applied to detecting faces occluded by the mask
in the application of respiratory infections detection using RGB-Infrared sensors [18], it
cannot be applied to scenarios where the facial landmarks or ROI detection are required.
Besides the face detection, fitting methods for face alignment [19] are also significant in our
task, because we need to detect the interested region based on facial landmarks. However,
this landmarks detection relies on complete faces without occlusion.

3. Materials and Protocols
3.1. Data Acquisition System

In this study, a thermal camera (Rakinda Technology, FT20) and an RGB webcam
(Logitech©, C270) were employed to collect thermal and RGB videos from human subjects.
The thermal camera operates at 25 fps and its resolution is 256 × 192, the RGB camera
operates at 30 fps and its resolution is 640 × 480. These cameras are placed side by side
horizontally on a pole and the height is 1.6 m. An LED camera light (Neewer, model 176
LED) was placed close to the cameras to enhance illuminations on subjects’ faces and to
avoid shadows (normal indoor illumination level). The setup of the devices is shown in
Figure 1. To evaluate the performance of the proposed system in vital sign estimation,
an optical PPG sensor (Sparkfun, heart rate sensor), a force-based chest respiration belt
(Vernier, Go Direct) and a handheld infrared forehead thermometer were used as reference
measurements of heart rate, respiration rate and body temperature, respectively.

A desktop (Intel Core i9, Nvidia GeForce RTX 2080 Ti, 64 GB RAM, Ubuntu 20 OS) was
used for video acquisitions from the thermal and RGB cameras, reference signal acquisition,
visualization, data storage and analysis. Face detection and tracking, signal processing and
the proposed algorithms were developed using Python 3.7.

Figure 1. The illustration of vital signs measurement experiment setup.
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3.2. Experimental Protocols

In this study, ten healthy subjects (seven males, three females, 24–35 years old) par-
ticipated in several different experiments. The subjects came from a variety of ethnic
backgrounds with skin colors from pale white to darker brown. The protocol was approved
by the University of Ottawa Research Ethics Board.

One subject (male, 27 years) participated in RR estimation with different face masks at
different detection ranges. At each detection range (75 cm, 120 cm and 200 cm), the subject
was asked to stand still in front of the thermal and RGB cameras without face mask and
with three different face masks (medical/cloth, N90, N95) for two minutes respectively.
The subject performed normal breaths during the test. These experiments aim to test the
performance of RR monitoring using a thermal camera when a subject has a face cover.

Ten healthy subjects (seven males, three females, 24–35 years old) participated in one-
subject vital sign estimation experiments. Each subject was asked to keep stationary and
breathe normally in front of the cameras at four different detection ranges (60 cm, 80 cm,
100 cm and 120 cm) separately. At each distance, simultaneous thermal and RGB videos
were collected from the subject with and without a face mask (medical/cloth mask) for
two minutes respectively. The simultaneous reference respiration waveform was collected
from the subject’s chest and the reference PPG signal was collected from the subject’s
fingertip. The reference body temperature was measured by the infrared thermometer from
the subject’s forehead every 30 s.

Six subjects (four males, two females, 24–28 years old) participated in two-subjects
vital sign estimation experiments. In each experiment, two subjects were asked to keep
stationary and breathe normally in front of the cameras at different distances (70 cm, 100 cm)
for two minutes respectively. Subjects were not wearing face masks in Experiments 1–3
and they were wearing face masks in Experiments 4–5 as demonstrated in Section 5.2.3.
The reference respiration waveforms were collected from subjects’ chests and the reference
PPG signals were collected from the subject’s fingertips simultaneously.

4. Methods

The steps of remote estimation of heart rate, respiration rate and body temperature
are shown in Figure 2. In our system, RGB and thermal videos are collected by RGB and
thermal cameras simultaneously, and the sampling rate of these two cameras is 25 frames
per second (fps). The RGB camera is used to detect and track human subjects’ faces, and
thus locate three different regions of interest (ROIs) for vital signs estimation. The forehead
area from the RGB video sequence is extracted to estimate HR. In addition, with the help of
image alignment process, a point from the forehead area and the nostril area can be located
on the simultaneous thermal video frames for BT and RR estimation.

Figure 2. The workflow of vital signs estimation using RGB and thermal cameras.

4.1. Face Detection

We applied the RetinaFace [20] framework to detect faces from the RGB video frames.
RetinaFace was proposed by Deng et al. and ranks second in the competition of WIDER
FACE (Hard). The WIDER FACE dataset [21] is a face detection benchmark dataset with
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32,203 images and 393,703 labeled faces which has a high degree of variability in scale,
pose and occlusion. RetinaFace is a practical single-stage deep learning based face detector
working on each frame of the video. Consequently, we chose it because only the RetinaFace
detector can detect both face and facial landmarks with the confidence score over 0.9
comparing to some widely used face detectors including MTCNN, S3FD and PyramidBox.
An example of face and facial landmarks detection using these face detectors when a subject
was wearing a face mask is illustrated in Figure 3.

Figure 3. An example of face detection using different detectors (a). No face detected by MTCNN face
detector, (b) face (blue box) detected by S3FD face detector, (c) face (blue box) detected by PyramidBox
face detector, (d) face (blue box) and facial landmarks (colored dots) detected by RetinaFace detector.

Additionally, RetinaFace can detect multiple faces from one image as illustrated in
Figure 4, which makes it possible for our system to detect multiple subjects’ vital signs
even when their faces are partially occluded by face masks at the same time.

Figure 4. An example of multiple subjects’ faces (red bounding boxes) and facial landmarks (colored
dots) detected by RetinaFace detector when they were wearing face masks.

4.2. Regions of Interest (ROIs)

In this study, the proposed system aims to monitor three vital signs (BT, HR and RR)
remotely. Therefore after detecting subject’s face, three different regions of interest (ROIs)
needs to be located from RGB or thermal video frames. The locations of the ROIs are
illustrated in Figure 5.
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Figure 5. ROIs employed for vital signs estimation, (a). the location of ROIHR on the RGB image,
(b). The locations of ROIRR and ROIBT on the simultaneous thermal image.

4.2.1. ROI for BT Estimation

Like most of the non-contact thermometers measurements, a single point (ROIBT) on
the forehead is identified as the interested point (Tx, Ty) for body temperature estimation
in our system. After detecting the bounding box of the face and locating the positions of
the eyes, Ty is defined as H1/3 above the middle point of the left and right eyes, where
H1 is the difference between the upper edge of the bounding box and the middle point
of eyes on y-axis. Tx equals the mean value of x coordinates of the left and right eyes. A
demonstration of locating ROIBT using the bounding box and facial landmarks is shown in
Figure 6a.

Figure 6. A demonstration of ROIs localization using facial landmarks, (a) the definitions of ROIBT

and ROIRR, (b) the definition of ROIHR.

4.2.2. ROI for RR Estimation

In this study, a nostril is determined as the ROIRR for RR estimation as shown in
Figure 5b. Warm air from inside the lungs is released through the respiratory system
and it increases the temperature in the nasal region during exhalation, whereas cool air
from the external environment is breathed in and it lowers the temperature in the nasal
region during inhalation. Therefore, the respiration waveform can be obtained by using
an infrared thermal camera to measure such nasal-region temperature changes associated
with respiration. Consequently, the nostril areas are chosen as an ROI for respiratory signal
detection. The nose tip landmark is chosen as the center-point of the nostril area. The
width of ROIRR is defined as 90 percent of the mouth width W2, and the height of ROIRR
is 60 percent of the vertical difference (H2) between the mouth middle point and the nose
tip. An illustration of ROIRR can be found in Figure 6a.

4.2.3. ROI for HR Estimation

Phenomena exploited in rBVP (remote blood volume pulse) for HR estimation are
closely related to the cardiac cycle. During each cycle, blood is moved from the heart to the
head through the carotid arteries. This periodic blood inflow affects both optical properties
of facial skin and the mechanical movement of the head, enabling researchers to measure
HR remotely [22].

Several different ROIs used for remote HR estimation are described in existing research.
Some researchers used the bounding box of the face given by the face detection algorithm as
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the ROI [6,23–26]. Other researchers used the forehead area of the detected face as the ROI
for HR estimation [6,23,27]. Through our experiments, the forehead area always performed
better than the face area in HR estimation and the forehead will not be occluded by a face
mask, therefore the forehead was determined as ROIHR. The center point of the ROIHR
is ROIBT (Tx, Ty). The height of the ROIHR is 0.4 of the height of the bounding box and
the width of the ROIHR is 0.5 of the width of the bounding box detected by the RetinaFace
detector. A demonstration of ROIHR location can be found in Figure 6b.

4.3. Head Movement Detection

The facial landmarks are important for the division of the face and detection of our
interested regions as illustrated in Figure 7a. To achieve accurate estimations of the vital
signs, the subjects are supposed to keep stationary and look at the cameras during the data
collection. However, there may be some scenarios where the subjects move their heads
to other directions as shown in Figure 7b. If the movement is too large, we assume that it
is not possible to reliable extract the vital signs and therefore, there is no longer need to
extract the data from the ROIs. We calculate the ratio of the distance between the midpoint
of the two detected eyes and the midpoint of the face along the x axis to the width of the
face box:

Facede f lection =
|Tx − Facex|

Facewidth
, (1)

where Tx represents the x coordinate of the midpoint of the left eye and the right eye, Facex
represents the x coordinate of the midpoint of the face box. Facewidth is the width of the
face box, and Facede f lection denotes the ratio of the distance between the eyes’ midpoint x
coordinate and the face midpoint x coordinate to the face width. The ratio Facede f lection
increases with the face moving away from the camera and the variation of the value de-
scribes the status of the subject’s face whether still or moving. We set the ratio Facede f lection
threshold to 0.17 when the face is not towards the camera as illustrated in Figure 7b and
we do not need to process the data to estimate vital signs under this condition anymore.
It is noted that we only consider horizontal face inclines rather than the vertical inclines
because our device is mounted at a certain height and the subject is required to face the
camera during the experiments.

Figure 7. (a) Facial landmarks and partitions when the subject is looking at the camera. (b) Scenario
when the subject is not looking at the camera and the ratio Facede f lection reaches 0.17.

4.4. Frame Registration

After locating the ROIs from the RGB frame, the ROIRR and ROIBT also needs to
be located on the thermal image as the RR and BT estimations are based on temperature
readings. The resolution of the thermal camera is also lower than the RGB camera, hence
an image alignment method needs to be applied. In our system, two cameras are placed
side by side in the same plane. Consequently, the alignment of frames from two cameras is
simplified to an affine transformation problem. Affine transformation is a linear mapping
method that preserves points, straight lines, and planes. Sets of parallel lines remain
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parallel after an affine transformation. We only consider translation and scaling in our
two-camera system.

Transformation matrix T is defined as:

T =

 sx 0 0
0 sy 0
tx ty 1

, (2)

where tx specifies the displacement along the x axis, ty specifies the displacement along the
y axis, sx specifies the scale factor along the x axis, and sy specifies the scale factor along the
y axis.

Translation transformation is caused by the difference between the position of the two
parallel cameras. Since the imaging planes of the RGB camera and the thermal camera
are within the same plane, the displacements are along the x axis and the y axis. Scale
transformation is caused by the focal length. The lens of the RGB camera has a shorter focal
length compared to the lens of the thermal camera, and so the RGB camera captures a much
wider field of view while producing a smaller picture. Figure 8a shows the original frame
with 640× 480 captured by the RGB camera, and Figure 8b,c show the synchronous and
registered thermal frame and RGB frame with 256× 192 using the transformation matrix T.

Figure 8. Demonstration of RGB and thermal image alignment, (a) original RGB image (640 × 480),
(b) cropped RGB image (256 × 192), (c) aligned thermal image (256 × 192).

4.5. Vital Signs Estimation
4.5.1. Body Temperature Measurement

Thermal cameras can measure a subject’s surface skin temperature without being
physically close to the person being evaluated. The FT20 thermal imaging module provides
us with 256× 192 temperature values in each frame. Among them, the device outputs the
data including the temperature of the center, the highest temperature and location, the
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lowest temperature and location, and the overall temperature in each pixel location within
the frame. Consequently, we estimate the forehead skin temperature by directly extracting
from the location of the forehead center point (Tx, Ty) in the thermal frame.

All of the 256× 192 temperature values in one thermal frame are raw data generated by
the thermal camera following the sequence of a pixel array. However, the raw temperature
data are processed and transformed using the palette to be visible as pixels in the output
thermal frame. Thus, the coordinate of the forehead center point (Tx, Ty) functions as a key
of the dictionary to extract forehead temperature from the table of raw data.

The calibration of the thermal camera is done by using a black body device and has
been tested by the camera manufacturer before the delivery. However, the thermal system
measures surface skin temperature, which is usually lower than a temperature measured
orally, and the experiments also show that the detection range and environmental temper-
ature could have an impact on the measurement. So there are some difference between
the measured value and the real body temperature. We also compare our temperature
measurements with the handheld thermometer measurements, which only shows a subtle
difference of less than 0.5 Celsius degrees when measuring the forehead skin temperature.

4.5.2. Heart Rate Estimation

The steps of HR estimation proposed in this study are shown in Figure 9. After
locating the ROIHR from an RGB video frame by frame, the raw color channel signals can
be extracted by calculating the mean values of red, green and blue channels within ROIHR.
A 3rd order Butterworth bandpass filter with the passband of 0.8–2 Hz (corresponding to
48–120 beats/min) is applied on raw color signals for noise reduction.

Figure 9. Methods developed for remote HR estimation.

Several different approaches have been considered and tested. The independent
component analysis (ICA) method and the empirical mode decomposition (EMD) based
signal selection method which perform well in HR estimation for subjects with different
skin tones and in different illuminations are proposed for rBVP waveform recovery. The
ICA, which was originally employed in [7], is widely used in vision-based HR estimation. It
is a blind source separation technique used to separate multivariate signals from underlying
sources. ICA can decompose the RGB signals into three independent source signals. Any
of them can carry rBVP information. For ROIHR extracted at time point t, the denoised
signals from red, green and blue channels are denoted as x1(t), x2(t) and x3(t) respectively.
Then, these RGB traces are normalized as follows:

x,
i(t) =

xi(t)− µi
σi

, (3)

where µi and σi for i = 1, 2, 3 are the mean and standard deviation of xi(t), respectively.
The normalization transforms xi(t) to x,

i(t), which is zero-mean and has unit variance.
The normalized traces are then decomposed into three independent source signals

using ICA. The joint approximate diagonalization of the eigenmatrices (JADE) algorithm
developed by Cardoso [28] is applied, and the second component, which always contains
the strongest plethysmographic signal, is selected as the desired source signal. Then the
EMD, which can decompose the signal into a series of IMFs (Intrinsic Mode Functions), is
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applied to the extracted signal and the power of each IMF is calculated. The IMF with the
maximum power is selected as the recovered rBVP signal for HR estimation.

The systolic peaks of the extracted rBVP signal were detected using a peak detec-
tion algorithm. Then the mean time interval TIHR between two consecutive systolic
peaks was calculated. Therefore, the HR estimated using an RGB camera can be obtained
as HRRGB = 60/TIHR (beats/min). An example of the extracted rBVP waveform using
the proposed approaches and the simultaneous reference PPG waveform is shown in
Figure 10b.

Figure 10. (a) Respiration waveform extracted from the thermal camera (red) and the reference
measurement using a breath belt (blue), (b) BVP waveform extracted the RGB camera (red) and
reference PPG waveform (blue).

4.5.3. Respiration Rate Estimation

After locating the nasal region from the thermal video, the respiratory signal is ex-
tracted by averaging the values of all pixels within ROInostril frame by frame. However, the
respiratory signal extracted directly from the original thermal frames has a small magnitude
when the respiration-induced thermal variance is weak, for example, during shallow breath-
ing or at a long detection distance. Consequently, we applied a histogram equalization to
solve the weak signal problem. Here we use the Contrast Limited Adaptive Histogram
Equalization (CLAHE) algorithm [29] to increase the contrast by spreading out the most
frequent intensity values. As a result, we enhance the variation of ROI within thermal
frames as illustrated in Figure 11 before we attempt to extract the respiratory signal.

Figure 11. (a) Original thermal image with ROIRR detected (red bounding box), (b) the contrast of
the thermal image enhanced by CLAHE.

Then, a 3rd order Butterworth bandpass filter with a lower cutoff frequency of 0.15 Hz
and a higher cutoff frequency of 0.5 Hz (corresponding to 9–30 breaths/min) was applied
to the extracted respiratory signal for noise removal.

The peaks of the extracted respiration signal were detected using a peak detec-
tion algorithm. Then the mean time interval TIRR between two consecutive peaks was
calculated. Therefore, the RR estimated using a thermal camera can be obtained as
RRthermal = 60/TIRR (breaths/min). An example of the extracted respiratory waveform
using the proposed approaches and the simultaneous reference respiration waveform from
a breath belt is shown in Figure 10a. It is worth mentioning that the reference breath belt is
a force sensor based device and the force value increases during inhalation and decreases
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during exhalation; however, the temperature at the nostril area decreases during inhalation
and increases during exhalation.

4.6. Signal Quality Evaluation

An ensemble averaging based signal quality assessment method was implemented to
evaluate the stationarity of the extracted respiratory waveform and rBVP waveform. First,
the peaks of the target signal are detected. The template window length is determined as
the median value of the durations between two successive peaks. Individual pulses are then
aligned with their peaks centered in the middle of the template window and these pulses
are averaged to form the signal template. The Pearson correlation coefficients between each
individual pulse and the signal template are calculated and their mean value is extracted
as the signal quality index (SQI) of this signal segment. Finally, the signal segment will be
used for RR and HR estimation if SQIRR > 0.7 and SQIHR > 0.8 respectively. An example
of the proposed signal quality assessment method applied on a 15 s extracted rBVP signal
is shown in Figure 12.

Figure 12. Demonstration of signal quality assessment, (a) A 15s rBVP waveform and detected peaks
using proposed approaches, (b) rBVP pulses (gray curves) and the averaged rBVP template (red
curves), SQI = 0.94.

5. Results
5.1. Facial ROIs Detection

Our ROI detection method based on the RetinaFace detector, is deployed both on a
desktop computer and an embedded device Nvidia Jetson Board for testing. The classifica-
tion scores showing the probability of the detection of a human face that are tested on all of
the four subjects at different positions with or without mask reach 99.95% or even higher
using Retinaface detector. Besides, there are no difference between the subject wearing the
mask and the one without mask when we evaluate the face classification probabilities. In
addition, to evaluate the performance of facial landmarks detection which is the base of
our facial ROI detection, we use the normalised mean error (NME) metric:

NME =
1
N

N

∑
i=1

√
∆x2

i + ∆y2
i

d
, (4)

where N denotes the number of facial landmarks, which is five in our situation and d
denotes the normalized distance. ∆x2

i and ∆y2
i are deviations between the ith predicted

landmark and ground truth in x axis and y axis. We employ the face box size (
√

W × H) as
the d in the evaluation. We found that the average of NME is 1.5% when the subject is not
wearing the mask, while the NME reaches 2.4% when the subject is wearing the mask.

In terms of execution time, we applied the whole RetinaFace detector on the embedded
device NVIDIA Jetson TX2 board. Jetson TX2 is built around an NVIDIA Pascal™-family
GPU and loaded with 8 GB of memory and 59.7 GB/s of memory bandwidth. The Reti-
naFace detector takes average 5 s to load the whole network model. Besides it takes around
0.7 s to detect each frame, which means that the fps is more than 1. Due to the limited
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computing power, the embedded device is still insufficient to run the face detector in
real time.

On the other side, RetinaFace detector has a much shorter running time on a desktop
computer with more computing power. We applied the whole network on a machine with
a NVIDIA GeForce RTX 2080 Ti GPU that has a total memory of 10.76 GB. This graphical
processing unit has 7.5 times larger computing capacity than the one in the embedded
device mentioned above. The RetinaFace detector takes an average of 0.025 s to detect
one frame and the running speed reaches around 40 fps, which is far better than the real
time detection on an embedded platform. However, the detection time will grow with
the increase of the number of subjects in the image. For example, when there is only one
subject in the image, the detector takes less than 0.02 s to detect the faces in one frame.

5.2. Vital Sign Estimation

To simulate the most potential use case of this study where people’s vital signs are
remotely measured at the entrances (i.e., stores, buildings), the collected signals from our
experiments were divided into 15 s’ segments using the sliding window method with 50%
overlap between two consecutive segments for analysis.

5.2.1. Respiration Rate Estimation

The mean absolute error (MAE) between the estimated RR and reference RR of each
respiration cycle was employed to evaluate the performance of the proposed system. The
respiratory signal examples extracted from ROIRR and a reference breath belt of a subject
with different face masks and without face mask can be found in Figure 13. A demo video
of respiration monitored by a thermal camera when a subject was wearing different face
masks can be found in Supplementary Material Video S1. The MAE between the estimated
RR and reference RR of this subject with different face masks and without face masks at
different detection ranges is shown in Table 1.

Figure 13. Respiratory signals extracted from thermal video (red) and from a reference breath belt
(blue) of a subject at 75 cm with different face masks, (a) No face mask, (b) medical face mask, (c) N90
face mask, and (d) N95 face mask.

Table 1. The mean absolute error between the estimated RR and the reference RR of a subject with
different face masks at different detection ranges (unit: breaths/min).

75 cm 120 cm 200 cm

No mask 0.41 0.28 0.80
Mask1 (medical/cloth) 0.52 0.45 0.59
Mask2 (N90) 0.06 0.01 0.17
Mask3 (N95) 0.06 0.42 0.88
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For one-subject RR estimation with and without face masks at different detection
ranges, the mean absolute RR estimation error for each respiration cycle were calculated
for each subject and can be found in Table 2. The correlation plots and the Bland–Altman
plots of the estimated RR and the reference RR for experiments when the subjects with and
without face masks are shown in Figure 14. The MAE for all one-subject RR experiments
is 1.52 breaths/min. For one-subject experiments, when subjects were not wearing face
masks, the MAE is 1.83 breaths/min and the Pearson correlation coefficient between the
estimated RR and reference RR is 0.83 as shown in Figure 14a. The mean bias is −0.012
breaths/min and the limits of agreement are −4.63 breaths/min and 4.40 breaths/min as
demonstrated in Figure 14b. For one-subject experiments, when subjects were wearing
face masks, the MAE is 1.21 breaths/min and the Pearson correlation coefficient between
the estimated RR and reference RR is 0.91 as shown in Figure 14c. The mean bias is −0.24
breaths/min and the limits of agreement are −3.45 breaths/min and 2.96 breaths/min as
demonstrated in Figure 14d.

It can be observed that the overall performance of RR estimation for experiments
with face masks is better than experiments without face masks. This is because the area of
temperature changes around the nostril is larger and the temperature changes caused by
respiration are more obvious when subjects are wearing face masks.

Figure 14. (a) Correlation plot of the estimated RR and reference RR for experiments when subjects
were not wearing face masks, (b) Bland–Altman plot of the estimated RR and reference RR for
experiments when subjects were not wearing face masks, (c) Correlation plot of the estimated RR and
reference RR for experiments when subjects were wearing face masks, (d) Bland–Altman plot of the
estimated RR and reference RR for experiments when subjects were wearing face masks.
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Table 2. Mean absolute error between the estimated RR and the reference RR (unit: breaths/min).
Boldface character denotes the best result.

60 cm 80 cm 100 cm 120 cm

No Mask Mask No Mask Mask No Mask Mask No Mask Mask

Subject1 1.83 0.50 2.04 1.60 2.73 0.74 2.08 0.74
Subject2 2.68 0.40 2.24 0.36 2.49 0.23 1.25 0.52
Subject3 1.84 0.46 1.72 0.56 1.69 0.57 2.01 0.18
Subject4 1.70 2.30 2.06 1.65 2.31 1.69 2.09 1.54
Subject5 1.04 1.65 1.99 1.75 2.10 0.88 1.26 1.15
Subject6 1.94 2.22 2.58 1.40 2.45 1.04 3.10 2.16
Subject7 1.82 0.59 2.18 0.49 0.65 0.60 1.14 0.78
Subject8 1.65 1.24 1.35 0.64 2.17 1.01 1.38 1.14
Subject9 1.18 1.67 0.99 0.96 1.12 1.07 1.24 1.42
Subject10 1.71 2.47 2.30 1.80 2.85 2.46 1.56 1.70

5.2.2. Heart Rate Estimation

The absolute difference (eHR) between the estimated HR and reference HR of each
cardiac cycle was employed to evaluate the performance of the proposed system. The
mean (MeHR) and standard deviation (SDeHR) of the absolute HR estimation error for each
cardiac cycle are calculated for each subject different distances, as shown in Table 3. The
correlation plots and the Bland-Altman plots of the estimated HR and the reference HR
for subjects with different skin tones are shown in Figure 15. The MAE for all one-subject
HR experiments is 2.79 beats/min. For subjects who have a pale skin tone, the MAE is
2.87 beats/min and the Pearson correlation coefficient between the estimated HR and
reference HR is 0.96 as shown in Figure 15a. The mean bias is 0.17 beats/min and the
limits of agreement are−7.21 beats/min and 7.56 beats/min as demonstrated in Figure 15b.
For subjects who have medium or dark skin tones, the MAE is 2.66 beats/min and the
Pearson correlation coefficient between the estimated HR and reference HR is 0.97 as
shown in Figure 15c. The mean bias is 0.25 beats/min and the limits of agreement are
−6.53 beats/min and 7.03 beats/min as demonstrated in Figure 15d.

Table 3. Mean and standard deviation of the absolute error between the estimated HR and the
reference HR (unit: beats/min). Boldface character denotes the best result.

60 cm 80 cm 100 cm 120 cm

Skin Tone MeHR SDeHR MeHR SDeHR MeHR SDeHR MeHR SDeHR

Subject1 pale 2.92 1.21 3.02 1.11 4.31 1.57 2.93 1.31
Subject2 pale 3.58 2.59 4.08 3.26 3.82 3.05 4.83 4.00
Subject3 pale 2.61 2.42 4.28 2.86 3.89 3.01 4.50 2.88
Subject4 pale 3.35 2.31 2.17 1.82 2.88 1.82 2.50 1.23
Subject5 pale 1.73 3.21 2.62 1.44 1.81 1.76 2.03 1.65
Subject6 pale 1.50 1.78 1.05 1.43 1.86 2.29 1.76 3.02
Subject7 medium 1.68 1.55 2.61 2.90 3.05 2.55 3.09 2.69
Subject8 medium 2.53 1.53 3.07 3.05 2.35 2.59 3.04 2.89
Subject9 dark 2.72 1.75 3.83 1.88 3.31 2.44 2.21 1.56
Subject10 dark 3.38 2.15 2.20 1.86 2.20 1.50 2.09 1.88
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Figure 15. (a) Correlation plot of the estimated HR and reference HR for subjects who have a pale
skin tone, (b) Bland–Altman plot of the estimated HR and reference HR for subjects who have a pale
skin tone, (c) Correlation plot of the estimated HR and reference HR for subjects who have medium
or dark skin tones, (d) Bland–Altman plot of the estimated HR and reference HR for subjects who
have medium or dark skin tones.

5.2.3. Two-Subjects RR and HR Estimation

The feasibility of estimating multiple subjects’ RR and HR at the same time using
our proposed methods was verified. Two subjects with and without face masks were
required to stand in front of the cameras for two minutes at a distance of 70 cm and 100 cm,
respectively. The breathing belts were used to collect reference respiratory waveform from
their chests and PPG sensors were used to measure reference HR from their fingertips. The
mean and standard deviation of the absolute errors between the estimations and references
for each experiment are demonstrated in Table 4.

Table 4. Mean and standard deviation of the absolute error of two-subjects RR and HR estimations
(RR unit: breaths/min, HR unit: beats/min).

Subject1 Subject2

RR HR RR HR

Experiment 1 0.89 ± 0.47 3.60 ± 2.10 1.31 ± 0.86 1.72 ± 1.40
Experiment 2 1.25 ± 0.63 2.17 ± 2.20 0.80 ± 0.57 2.41 ± 1.13
Experiment 3 0.49 ± 0.33 1.79 ± 1.06 1.07 ± 0.58 1.35 ± 1.12
Experiment 4 (mask) 1.57 ± 0.96 2.03 ± 1.18 0.74 ± 0.52 2.39 ± 1.67
Experiment 5 (mask) 1.60 ± 0.58 2.15 ± 2.07 0.49 ± 0.32 2.31 ± 1.09

6. Conclusions

This paper presented a technique for contactless measurements of three vital signs of
a subject including forehead temperature, respiratory rate and heart rate at the same time.
We designed the system based on one thermal camera and one RGB camera. Ten healthy
subjects with different skin colors participated in several different experiments to verify
the feasibility of the proposed system for real-world applications. By comparing with the
reference data collected at the same time from other devices, such as a thermometer, a
respiration chest-belt and a PPG sensor, it was shown that our methods have acceptable
accuracy in estimating BT, RR and HR.
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Our methods can detect multiple subjects in a very short time, and can handle the
problem of faces being occluded by masks very well. Our methods perform well in
estimating vital signs at near distances (60 cm–120 cm) for subjects with and without face
masks, which are great improvements compared to previous research because we enhance
the detection range and allow for the wearing of masks and slight movement of the subjects
during the measurements. As a result, our system is capable of contactless monitoring
of vital signs and can be potentially applied for the entrance screening of people’s health
condition. For application scenarios, such as detecting the vital signs in an emergency
situation, HR measurement with an error less than 5 beats/min is likely to be acceptable [7].

For future work, we will implement our methods on the embedded devices or mobile
devices to make the whole system portable and capable of running in real time, and a
larger study population will be included to validate the stability and repeatability of the
proposed approach. In addition, we will use our methods on other thermal cameras and
RGB cameras to test the robustness and portability of the methods.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22020627/s1, Video S1: Respiration monitored by a thermal
camera with different face masks.
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