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Abstract: To achieve polyimide-metal complexes with enhanced properties,
5-amine-2-(5-aminopyridin-2-yl)-1-methyl-benzimidazole (PyMePABZ) that contains stiff
2-(2′-pyridyl)benzimidazole (PyBI) was synthesized and exploited to construct the Cu(II)-crosslinked
polyimides (Cu-PIs). These Cu-PIs exhibited higher dielectric, thermal, and mechanical properties
with an increase in Cu2+ content. Among them, their dielectric constants (εrS) were up to 43%
superior to that of the neat PI, glass transition temperatures (Tgs) were all over 400 ◦C, and 5% weight
loss temperature (T5%) maintained beyond 500 ◦C. These data indicate that the metal coordination
crosslinking provided a useful guide to develop high performance PIs which possess potential
application as useful high temperature capacitors.
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1. Introduction

Polymer film capacitors have been attractive in many research efforts for recent years owing to
their low cost, self-healing nature, graceful failure, and flexibility [1–3]. The ideal polymer dielectrics
normally possess high dielectric constant (εr > 3, if possible, higher εr is desirable), such as polyester
(PET), polyethylene naphthalate (PEN), and poly(vinylidene fluoride) (PVDF) [4,5]. Unfortunately,
their low thermal stability is the main restriction for the application at high operating temperature,
because the dielectric properties decrease dramatically near or above Tg [6,7]. Thus, to increase the
operation temperature, initial interest in new dielectric materials is generally directed to enhance
dielectric constants with better thermal durability.

PIs with excellent thermal and mechanical properties have been studied as a kind of
high-performance engineering polymer [8–10]. It is one of the most promising polymers with
outstanding Tgs, nevertheless, their dielectric constant is typically ~3.5, which limits their use as high
dielectric materials [11,12]. Hence, various modified PIs have been widely studied, generally including
a mixture with high dielectric constant fillers and modifications of molecular architecture [7,13–15].
Although these successful methodologies led to a great increase of dielectric properties, the former
causes the degradation of mechanical properties owing to the phase segregation of fillers and the
latter brings the reduced thermal properties with the employment of flexible blocks (e.g., ether
linkage). Differently, the supramolecular polymers that exploit metal–ligand interactions, possess high
dielectric constant because of the improved permanent dipoles caused by metal atoms [16,17], and the
metal-crosslinking can further improve their thermal and mechanical properties [17,18].
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In previous researches, PyBI possesses an NH unit that can be substituted with appropriate groups
and two lone electron pairs of N atoms that can chelate to a metal center [19–21]. To introduce the
special structure into PIs, PyMePABZ was designed and synthesized as a novel diamine (Scheme 1).
The substituent of the proton in the NH eliminates the effects of hydrogen atom which has intramolecular
H-bonding ability [22,23]. In addition, the copolyimide (neat PI) was prepared by copolycondensation
with PyMePABZ and 4,4’-oxydianiline (ODA). The Cu(II)-crosslinked polyimides (Cu-PIs) with
different content of the metal cation were prepared (Scheme 2) and utilized to discuss the relationship
between metal–ligand interactions and properties of polymers.
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2. Experimental

2.1. Materials

N-methyl-4-nitrobenzene-1,2-diamine and 5-nitropicolinoyl chloride were purchased and used as
received from Aladdin Chemical Co. Ltd. ODA, pyromellitic dianhydride (PMDA), triethylamine
(Et3N), p-Toluenesulfonic acid (p-TSA), Cupric(II) acetylacetonate (Cu(C5H7O2)2), 80% hydrazine
monohydrate, 10% palladium on charcoal and other reagents were purchased from Sinopharm
Chemical Reagent Beijing Co. Ltd. (Beijing, China). N-methylpyrolidon (NMP), gamma-butyrolactone
(GBL), and dioxane were purified by vacuum distillation and stored over 4 Å molecular sieves prior to
use. All the other commercially available solvents and reagents were purchased from Sigma-Aldrich
(Shanghai, China), used without further purification.

2.2. Measurements

1H NMR spectra were obtained on a Bruker 600 AVANCE III spectrometer (Billerica, MA, USA),
in which dimethyl sulfoxide-d6 was used as a solvent. Elemental analyses were carried out by Elmentar
Vario EL-III (Hanau, Germany). The inherent viscosities (ηinhs) were measured with an Ubbelohde
viscometer at 25 ± 0.1 ◦C using NMP as a solvent. Fourier transform infrared (FTIR) spectra were
conducted on a ThermoFisher Nicolet 6700 infrared spectrometer (Waltham, MA, USA) by averaging
32 scans within the range of 4000–400 cm−1, with the sample form of powder (monomers) and thin
polymer films (~5 um). The thermogravimetric analysis (TGA) was assessed using TA Instrument
Discovery TGA 550 (New Castle, DE, USA) with a constant heating rate of 10 ◦C min−1 under nitrogen.
Dynamic mechanical analysis (DMA) was performed on a TA Instrument DMA Q800 (New Castle,
Delaware, USA) with a heating rate of 5 ◦C min−1 and a frequency of 1 Hz. Mechanical properties of
polymer membranes were evaluated on a Shimadzu AG-I universal testing apparatus (Kyoto, Japan)
at speed of 5 mm min−1, and tensile modulus (E), tensile strength (σ), and elongation at break (ε) were
demonstrated as the average of five strips. The X-ray photoelectron spectroscopy (XPS) spectrum of the
sample was achieved through a ThermoFisher Escalab 250Xi system (Waltham, MA, USA) equipped
with Mg anode. Dielectric constants (εr) and dissipation factors (Tan δ) were measured on a precision
LCR meter Agilent E4980A (Santa Clara, CA, USA) equipped with dielectric test fixture 16451B at
frequencies of 20Hz-1MHz, using the equation:

εr =
tm ×Cp

π
(

d
2

)2
× εo

(1)

Among them, tm was average film thickness [m], Cp was sample capacitance [F], d was diameter
of thin-film electrode [m] (the sprayed gold was served as electrodes) and εo is a constant of
8.854 × 10−12 F/m (dielectric constant in vacuum).

2.3. Synthesis of Monomers

2.3.1. Synthesis of 5-nitro-2-(5-nitropyridin-2-yl)-1-methyl-benzimidazole (3)

A 250-mL flask is charged with N-methyl-4-nitrobenzene-1,2-diamine (10.0 g, 0.060 mol), Et3N
(7.3 g, 0.072 mol), and THF (100.0 mL). 5-nitropicolinoyl chloride (13.4 g, 0.072 mol) was added dropwise
at a rate maintaining temperature of the reaction mixture being below 10 ◦C. After the mixture was
stirred at room temperature overnight, it was poured in 200.0 mL of water, and the suspension was
collected by filtration. The crude product was dried and then dissolved in GBL (200.0 mL) containing
p-TSA (12.4 g, 0.072 mol). The reaction mixture was allowed to warm to 190 ◦C and stirred for 5 h.
Upon completion of the reaction, the obtained mixture was cooled to room temperature and slowly
poured into a large quantity ice water. The precipitated solid was filtered under vacuum and the
filter cake is washed with 100 mL of ethanol. After evaporation in vacuum and recrystallization
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from DMSO, a resulting yellow solid was obtained (12.7 g, two-step yield: 71.0%). Melting point:
264–265 ◦C. 1H NMR (DMSO-d6, ppm): δ = 9.55 (s, 1 H), 8.81 (d, 1 H, J = 8.6 Hz), 8.69 (s, 1 H), 8.62 (d,
1 H, J = 8.6 Hz), 8.29 (d, 1 H, J = 8.6 Hz), 7.98 (d, 1 H, J = 8.9 Hz), 4.34 (s, 3 H). FTIR (KBr, ν, cm−1): 1615,
1595 (C=N/C=C stretching of ring), 1523, 1326 (NO2 asymmetric and symmetric stretching). Anal.
Calcd. for C13H9N5O4: C, 52.18; H, 3.03; N, 23.40. Found: C, 51.93; H, 3.21; N, 23.67.

2.3.2. Synthesis of 5-amine-2-(5-aminopyridin-2-yl)-1-methyl-benzimidazole (PyMePABZ)

A mixture of 3 (10.0 g, 0.033 mol), Pd/C (1.0 g), and EtOH (100 mL) was stirred and refluxed for 1 h.
Then, hydrazine hydrate (80%, 25 mL) was dropwise added to the mixture for further stirring for 5 h at
80 ◦C. Upon completion of the reaction, addition of water gave a brown powder which was collected
and washed with a mixture of EtOH/H2O. The obtained solid was purified by recrystallizing from a
mixture of EtOH/H2O (5:1) to give the desired product (7.4 g, yield: 93.1%). Melting point: 236–237 ◦C.
1H NMR (DMSO-d6, ppm): δ = 8.02 (d, 1 H, J = 2.7 Hz), 7.92 (d, 1 H, J = 8.6 Hz), 7.19 (d, 1 H, J = 8.5 Hz),
7.04 (dd, 1 H, J = 8.6, 2.7 Hz), 6.75 (d, 1 H, J = 1.9 Hz), 6.60 (dd, 1 H, J = 8.5, 1.9 Hz), 5.76 (s, 2 H), 4.74
(s, 2 H), 4.06 (s, 3 H). FTIR (KBr, ν, cm−1): 1624, 1588 (C=N/C=C stretching of ring), 3418, 3294, 3172
(amine NH). Anal. Calcd. for C13H13N5: C, 65.25; H, 5.48; N, 29.27. Found: C, 65.36; H, 5.62; N, 29.01.

2.4. Preparation of Polymers

Cu-PIs were prepared through a three-stage synthesis, including poly(amic acid) (PAA) precursors,
Cu(II)-PAAs, and a thermal imidization process (Scheme 2). First, after the PyMePABZ (0.2393 g,
1.0 mmol) and ODA (0.6007 g, 3.0 mmol) were completely dissolved in NMP (15.4 g), PMDA (0.8725 g,
4.0 mmol) was slowly added with continuous stirring at room temperature for 16 h. The viscous
PAA solution generally maintained a solid content of 10 wt%. Second, anhydrous Cu(C5H7O2)2 (0,
0.0524, 0.0916, 0.1309 g) was separately added into the sealed bottle containing PAAs and stirred for
another 16 h at room temperature. Finally, the Cu(II)-PAA solutions were cast on a clean and dry glass
plate, and cured in an oven with a curing program typically at 80, 150, 250, and 350 ◦C for 1 h at each
temperature. The thickness of the PI films was approximately 20 µm. All PIs were divided into two
series: Neat-PI and Cu-PIs.

3. Results and Discussion

3.1. Molecular Structure and Polymerization Characterization

As illustrated in Scheme 1, PyMePABZ was synthesized from the reaction sequence. In the FTIR
spectrum (Figure S1), the characteristic absorptions (3418–3172 cm−1) arose from -NH2 stretching
bands that could be found obviously in PyMePABZ, also, the results of 1H NMR (Figure 1) showed
two obvious signals of amine proton located at near 5.76 and 4.74 ppm corresponding to the amine
protons which were linked to benzimidazole (BI) and pyridine ring, respectively. These data indicated
the diamine was synthesized successfully. Additionally, the signals of methyl (4.06 ppm) and pyridine
(8.02–7.04 ppm) illustrated the successful introduction of the corresponding units.
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The inherent viscosities of the Gu-PAAs were in the range of 1.10–0.83 dL g−1 (Table 1), which
guaranteed the successful formation of the tough and flexible PI films. Interestingly, the values showed
an upward trend when the Cu(II) content increased. This could be ascribed to the appearance of the
crosslinked system caused by the Cu2+ in the PAA solutions, and the degree of crosslinking increased
with the increase of Cu2+ content. The PyBI ligand could coordinate with Cu ions to form 2:1 complexes,
therefore, 50% Cu-PAA (0.5 equiv. Cu per PyMePABZ) showed the highest ηinh. In this work, higher
proportions of PyMePABZ and Cu (II) content (e.g., n:m = 50:50 and 0.5 equiv. Cu per PyMePABZ) in
the metal-crosslinked PAAs had been achieved, but the mixture generated gels and lost the fluidity,
resulting in weak film-forming capability. The phenomenon was herein assumed to correspond to the
insolubility of the stiff crosslinked unit (PyBI-Cu2+) when it reached a certain degree [18].

Table 1. Properties of neat PI and Cu-PI films.

Sample No.
ηinh

(Cu-PAAs)
(dL g−1)

Tg
a

(◦C)

T5%
b

(N2)
(◦C)

E
(GPa)

σ

(MPa)
ε

(%)
εr

(1000 Hz)
Tan δ * 100
(1000 Hz)

Neat PI 0.83 395 534 5.7 127 7.7 3.7 0.38
20% Gu-PI 0.85 401 525 5.7 137 8.2 4.5 0.62
35% Gu-PI 0.91 406 512 5.8 147 8.9 4.8 0.71
50% Gu-PI 1.10 414 504 5.8 160 9.3 5.3 0.80

a Glass transition temperature measured by DMA at a heating rate of 5 ◦C min−1 at 1 Hz. b 5% weight loss
temperature measured by TGA in nitrogen at a heating rate of 10 ◦C min−1.

Neat PI and Cu-PIs were prepared according to Scheme 2. The molecule structures of the
successfully prepared PIs were investigated by FTIR as shown in Figure 2a. The typical characteristic
peaks at around 1777, 1723, 1376 cm−1 were assigned to imide carbonyl asymmetric stretching, imide
carbonyl symmetric stretching, and cyclic C–N stretching, indicating the successful formation of
imide rings. The breathing peak of BI ring (1307 cm−1) and band of the pyridine ring (~1600 cm−1)
suggested the corresponding groups had been introduced into the PI chains [24–26]. Moreover, the peak
corresponding to the C=O in -CONH- (1660 cm−1, gray band domain) was hardly observed, indicating
that the imidization of the PAA solutions was fully completed [27,28].
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3.2. Cu(II)-Coordination of PIs

The formation of Cu-coordination bonds was confirmed by FTIR spectra (Figure 2a) and X-ray
photoelectron spectroscopy (XPS) (Figure 2b). As we know, the characteristic band of free pyridine
ring was at 1596 cm−1 and the band at 1603 cm−1 could be defined as the absorption from boned
pyridine ring in the polymer FTIR spectra [25,26]. In the resulting PIs, not only the neat PI (no Cu2+)
had a clear band corresponding to the pure pyridine ring absorption, but also the band assigned to the
boned pyridine ring could be observed in the 50% Cu-PI (ligand fully chelate to metal). Additionally,
the band position of pyridine ring (~1600 cm−1) gradually generated a conspicuous shift after the
incorporation of Cu2+ into PIs (Figure 2a), which demonstrated the increased amount of complexed
pyridine units with an increase in Cu2+ content. This was consistent with the results of the data in
the inherent viscosities analyses (Table 1). In the further analysis of XPS at the Cu 2p level, all Gu-PIs
displayed the Cu 2p3/2 main peak (933.1–933.6 eV) and a lower shake-up peak (939–944 eV), which
was in agreement with two major XPS characteristics of CuO [29,30]. These results indicated that the
Cu ions of the metal-crosslinked PIs were in the 2+ oxidation state.

3.3. Physical Properties of PIs

The data of dielectric constants was summarized in Figure 3a and Table 1. All the Cu-PIs possessed
high values (εr = 4.5−5.3), which were superior to common commercial PIs. Such high dielectric
constants were achieved because of the special complex molecular structure from the ligand PyBI
and metal-center Cu(II). The complexation, as a kind of highly polarized units, occurred by the d-π
bonds between the unoccupied d-orbitals of Cu(II) and the lone electron pairs of N atoms in PyBI
segments. Incorporation of the metal-bonded fraction enhanced the orientational polarizability in the
resulting PIs and, thus, improved their dielectric constant. This trend was further confirmed by the PIs
with higher content of Cu-bonded blocks having εr higher than that containing less Cu2+. Among
them, the value of 50% Cu-PI increased 43% than that of the one without Cu-complex. Moreover,
the dielectric constant was found to be dependent on the frequency of external field. The values slightly
decreased as the frequency increased, because alternating in dipoles could not keep up with changed
electric field, resulting in a slight decrease in the orientational polarization at high frequency. As shown
in Figure 3b and Table 1, the dielectric loss of PIs prepared here was below 1% at 1 kHz and room
temperature. Although the dielectric loss slightly increased at higher frequency or with increasing
amount of Cu-complex because of the enhanced dipolar polarization, the values remained below 3.5%,
comparable to that of most previously reported polymers for energy storage applications [31–33].
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Thermal stability of these PI films was evaluated by TGA (Figure 4 and Table 1). When the PIs with
side groups endured a high temperature, the beginning weight loss was considered to be related to the
thermal degradation of the methyl side group [34,35]. In the resulting Cu-PIs, the efficient crosslinking
reactions facilitated the possibility of methyl rupture and, thus the degradation behavior slightly shifted
to low temperatures after the addition of Cu2+ in the polymers. However, the crosslinked networks
might counteract thermal fragmentation without volatile compounds formation, and that was with
crosslinking reactions, the characteristic weight loss of the Cu-PIs showed a more moderate trend [36],
which could be clearly recognized in Figure 4. On the other hand, the use of PyBI as a stiff unit increased
the π-electron system, which led to a rapid conduction of heat between chemical bonds and alleviated
the polymer degradation in a high temperature [37]. Therefore, the observed T5% of the Cu-PIs under
a nitrogen atmosphere maintained beyond 500 ◦C. Further, more metal-crosslinking might reserve
Cu2+ in the materials to a considerable extent and more residues could be left. The experimental value
of Cu-PIs at 800 ◦C was higher than that of the neat one.
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The dielectric constants were believed to increase dramatically above Tg, resulting in negative effect
on the energy storage of polar polymers [7]. Therefore, a high Tg was required urgently to increase the
operation temperature. In this work, the Tgs were measured by DMA (Figure 5) and the values of Cu-PIs
(Table 1) maintained >400 ◦C, which were impressive for the polymers used in dielectric capacitors.
The more attractive values were largely attributed to the PI substrates with high heat resistance that
resulted from the rigid rod-like backbone and enhanced electron donation-acceptance interaction of BI
diamines [38,39]. Additionally, the interchain interaction played a key role in influencing Tg values for
this kind of polymer. The metal-crosslinking, as the strong physical interaction, significantly limited the
rotational freedom around single bonds, improving the Tg. This interaction was further strengthened
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when the content of Cu2+ in the metal-crosslinked PIs increased and, consequently, 50% Cu-PIs had a
high Tg up to 414 ◦C.

Polymers 2020, 12, x FOR PEER REVIEW 7 of 10 

 

[36], which could be clearly recognized in Figure 4. On the other hand, the use of PyBI as a stiff unit 

increased the -electron system, which led to a rapid conduction of heat between chemical bonds and 

alleviated the polymer degradation in a high temperature [37]. Therefore, the observed T5% of the Cu-

PIs under a nitrogen atmosphere maintained beyond 500 °C. Further, more metal-crosslinking might 

reserve Cu2+ in the materials to a considerable extent and more residues could be left. The experimental 

value of Cu-PIs at 800 °C was higher than that of the neat one. 

 

Figure 4. TGA curves of neat PI and Cu-PI films under a nitrogen atmosphere. 

The dielectric constants were believed to increase dramatically above Tg, resulting in negative 

effect on the energy storage of polar polymers [7]. Therefore, a high Tg was required urgently to increase 

the operation temperature. In this work, the Tgs were measured by DMA (Figure 5) and the values of 

Cu-PIs (Table 1) maintained >400 °C, which were impressive for the polymers used in dielectric capacitors. 

The more attractive values were largely attributed to the PI substrates with high heat resistance that 

resulted from the rigid rod-like backbone and enhanced electron donation-acceptance interaction of BI 

diamines [38,39]. Additionally, the interchain interaction played a key role in influencing Tg values for 

this kind of polymer. The metal-crosslinking, as the strong physical interaction, significantly limited 

the rotational freedom around single bonds, improving the Tg. This interaction was further 

strengthened when the content of Cu2+ in the metal-crosslinked PIs increased and, consequently, 50% 

Cu-PIs had a high Tg up to 414 °C. 

 

Figure 5. DMA curves of neat PI and Cu-PI films. 
Figure 5. DMA curves of neat PI and Cu-PI films.

In addition to improving the thermal performance, the crosslinking effect also enhanced the
mechanical properties of these PIs. In the results of Figure S2 and Table 1, the Cu-PIs showed the
good tensile strength of 137–160 MPa and high elongation at break of 8.2%–9.3%, illustrating their
toughness and flexibility. Overall, after the coordination was formed between the Cu2+ and PyBI,
the intermolecular forces could be increased, leading to the increasing of the PI’s mechanical properties.
In particular, 50% Cu-PIs led to an increase of greater than 20% in tensile strength and elongation at
break for the neat PIs. While the modulus of these PIs showed little noticeable improvement with the
increasing amount of Cu2+, the values (~5.8 GPa) would be sufficient for further applications in the
capacitor fields.

4. Conclusions

A novel diamine MePyPABZ was synthesized and exploited to copolycondensed with ODPA,
and the copoly(amic acid) was added to different amounts of Cu2+ to prepare the Cu-PIs with
imidization processes. The introduction of Cu2+ with the formation of metal-complex could increase
the polarizability, providing the resulting PIs with higher dielectric constants depending on the Cu2+

content. All Cu-PIs exhibited outstanding physical properties, including excellent Tg up to 414 ◦C,
high T5% over 500 ◦C, good tensile strength from 137 to 160 MPa, and elongation at break beyond 8.2%,
because of the additional metal-crosslinking. In summary, the metal coordination network in these PIs
not only improved their dielectric properties, but also enabled their thermal and mechanical properties
to be enhanced, which provided a useful guide to provide high performance polymers for energy
storage applications used in high temperature.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/2/442/s1,
Figure S1: IR spectra of 3 and PyMePABZ, Figure S2: Stress–strain curves of neat PI and Cu-PI films.
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