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Abstract
Fanhdi/Alphanate is a plasma derived factor VIII concentrate used for treating hemophilia A, for which there has not been

any dedicated model describing its pharmacokinetics (PK). A population PK model was developed using data extracted

from the Web-Accessible Population Pharmacokinetic Service-Hemophilia (WAPPS-Hemo) project. WAPPS-Hemo

provided individual PK profiles for hemophilia patients using sparse observations as provided in routine clinical care by

hemophilia centers. Plasma factor activity measurements and covariate data from hemophilia A patients on Fanhdi/

Alphanate were extracted from the WAPPS-Hemo database. A population PK model was developed using NONMEM and

evaluated for suitability for Bayesian forecasting using prediction-corrected visual predictive check (pcVPC), cross val-

idation, limited sampling analysis and external evaluation against a population PK model developed on rich sampling data.

Plasma factor activity measurements from 92 patients from 12 centers were used to derive the model. The PK was best

described by a 2-compartment model including between subject variability on clearance and central volume, fat free mass

as a covariate on clearance, central and peripheral volumes, and age as covariate on clearance. Evaluations showed that the

developed population PK model could predict the PK parameters of new individuals based on limited sampling analysis

and cross and external evaluations with acceptable precision and bias. This study shows the feasibility of using real-world

data for the development of a population PK model. Evaluation and comparison of the model for Bayesian forecasting

resulted in similar results as a model developed using rich sampling data.
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Introduction

Fanhdi (Grifols, Barcelona, Spain) and Alphanate (Grifols,

Los Angeles, CA, USA) are plasma derived factor VIII

(FVIII) concentrates containing von Willebrand factor
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(VWF) that are used for treating hemophilia A and for

which no specific model describing their pharmacokinetics

(PK) has been developed. These two concentrates are

assumed the same product since they use same manufac-

turing process [1]. This paper describes the development of

a population PK (PopPK) model for Fanhdi/Alphanate

using data collected in routine clinical care by hemophilia

centers.

Hemophilia A is a genetic bleeding disorder caused by a

deficiency in clotting FVIII [2] affecting approximately 1

male in 6500 live births [3]. Patients with severe hemo-

philia A, defined as an endogenous FVIII activity lower

than 0.01 IU/mL, often suffer spontaneous, and recurring

joint bleeds, eventually leading to arthropathy. Prophylac-

tic replacement therapy has become the standard treatment

for severe hemophilia A. It consists of regular injections of

FVIII concentrate and aims at preventing spontaneous joint

bleeds by achieving a trough FVIII activity greater than

0.01 IU/mL [4, 5]. As a trough level of 0.01 IU/mL does

not prevent all patients from bleeding, higher targets are

considered when individualizing treatment [6].

Tailoring a dose and/or a dosing interval to maintain a

desired trough in an individual patient is achievable when

their individual PK parameters are known. Delineation of

the FVIII activity-time profile allows for estimation of

relevant PK parameters [7]. Because PK parameters are

considerably variable between patients [8], individual PK

parameter estimates must be obtained. Such an individual

estimation would require 7–10 well distributed blood

samples over 72 h, whereas only a more limited number of

samples is usually available when studies are performed as

part of routine clinical care.

The Web-Accessible Population Pharmacokinetic Ser-

vice-Hemophilia (WAPPS-Hemo) is a web platform

allowing hemophilia care centers to perform PK-tailored

dosing [9, 10]. This application estimates individual PK

parameters relevant to PK-tailored dosing using limited PK

observations and patient information. The approach of

WAPPS-Hemo to predict individual PK parameters is

Bayesian forecasting using a previously defined PopPK

model as prior information.

PopPK models aim to partition the PK variability

between subjects (BSV), between occasions (BOV) and

within occasion (as remaining residual unexplained error—

RUV) as well as the relationship of PK parameters with

covariates, such as body weight or age [11]. The principle

of Bayesian forecasting is to limit the prediction possibil-

ities of unknown quantities by using prior information on

these unknown quantities and their relationship with known

quantities [12]. When implementing Bayesian forecasting

to PK, PK of new individuals are predicted using the

variability of PK and their relationship with covariates as

described by PopPK models. Consequently, the better the

PK profiles and covariate relationships are described, the

more reliable Bayesian forecasting will be. This approach

is increasingly used in PK tailoring [13–16] and has been

shown to be reliable in a limited sampling environment

[16–19].

PopPK models used on the WAPPS-Hemo platform are

typically developed using data obtained from a clinical

trial, which often are rich sampling data. However, such

data are not available for Fanhdi/Alphanate. This work

aims to develop a Fanhdi/Alphanate PopPK model using

only data collected through WAPPS-Hemo in routine

clinical care and evaluate the model’s use for Bayesian

forecasting.

Materials and methods

Ethical considerations

The WAPPS user agreement allows reuse of the data for

modelling and other research purposes, as described in the

WAPPS study protocols, approved by the HIREB at

McMaster University and registered in clinicaltrial.gov

(NCT02061072, NCT03533504).

Data for model development

Data input into the WAPPS-Hemo platform by clinicians

contains individual information relevant for modeling

including, but not limited to, dose and duration of infusion;

anthropometric data corresponding to body weight (BW),

age and height (HT); endogenous (baseline) FVIII activity;

measurement assay used (one-stage vs. chromogenic);

timing and measured plasma FVIII activity of blood

samples.

PK observations from hemophilia A patients receiving

an infusion of Fanhdi� or Alphanate� were extracted from

the WAPPS-Hemo database on February 16th, 2018.

Patients with a history of inhibitors were included, but not

those with current inhibitors. Only one occasion per patient

was included in the dataset.

HT was not a mandatory covariate in previous versions

of WAPPS, and was missing for some patients. When HT

was missing, its value was extrapolated from the multi-

linear regression with BW and age and imputed.

PopPK model development

The PopPK analysis was performed using non-linear mixed

effects modelling as implemented in NONMEM and

PDxPop (v7.3 and v5.2, respectively; ICON Development

Solutions, Ellicott City, MD, USA). Estimation of the

parameters was performed using Laplacian option
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implemented in NONMEM. Graphical analysis was con-

ducted in MATLAB (R2017b, Mathworks, Natick, MA,

USA).

As a first step, observed PK data was assessed as fol-

lowing a 1-, 2- or 3-compartment model following an IV

infusion and incorporating any residual FVIII from a pre-

vious infusion (predose) and endogenous FVIII activity [9].

Equation 1 provides an example of the time profile activity

(C(t)) following a 2-compartment model.

C tð Þ ¼ Ae�at þ Be�bt þ endogenous FVIII þ ðpredose
� endogenousÞe�bt

ð1Þ

Endogenous FVIII was modeled as the value entered by

care centers or 0.005 IU/mL when not provided (n = 1

patient only in the evaluation dataset, for which we

imputed the value of the most common lower limit of

quantification—LLOQ—divided by 2; however LLOQ as

low as 0.004 IU/mL are sometimes indicated by centers).

Residual FVIII activity was calculated as observed predose

activity minus endogenous level. This amount decayed

with a rate equal to the terminal decay rate of the com-

partment model [20].

As the LLOQ is higher than the endogenous factor level

in severe hemophilia A patients, samples below LLOQ

(BLQ) can be observed. BLQ observations were consid-

ered as censored values and handled using the M3 method

[21].

Variability in PK parameters (e.g. clearance, volume…)

was described as between-subject variability (BSV) using

an exponential function [9]. Error on the observations was

modeled as residual unexplained variability (RUV) and

was tested as additive, proportional and combined error [9].

As a second step, covariate analysis was performed.

Covariate relationships were assessed graphically and

explored by stepwise forward inclusion (dOFV[ 3.84,

p\ 0.05) and backward elimination (dOFV[ 6.63,

p\ 0.01) [22]. Body weight (BW), height (HT), age and

fat-free mass (FFM) were explored as covariates and nor-

malized to their population median values (covmed) to

perform the analysis. BW, HT and FFM were tested on

each PK parameter (P) using the following equation for any

subject i:

TVPi ¼ Ppop

covi

covmed

� �h

ð2Þ

where TVPi is the subject PK parameter typical value, covi
his covariate value. Ppop represents the PK parameter

typical value for the median subject, and h a scale factor of

the covariate effect on the PK parameter.

The age relationship was modeled as the most signifi-

cant of linear (Eq. 3) or piecewise linear models (Eq. 4). In

the piecewise linear function, the breakpoint was fixed as

the median age value of the population, meaning that the

typical value was constant for subjects younger than the

median age and proportional to age for subjects older than

median age (or inversely proportional if h\0).

TVPi ¼ Ppop 1þ hAgeðAgei � AgemedÞ=Agemed
� �

ð3Þ

TVPi ¼ Ppop 1þ hAgemaxð0;Agei � AgemedÞ=Agemed
� �

ð4Þ

If two covariates were correlated, only the most signif-

icant covariate was kept.

Selection between comparable intermediate models was

primarily performed using the objective function value

(OFV) and the likelihood ratio test; addition of one

parameter to a model was considered significantly better if

the OFV decreased by 3.84 or more corresponding to

p\ 0.05 [9]. To complement the selection of the model,

diagnostic plots were used to assess the goodness of fit and

parameters distributions, especially, the shrinkage of these

parameters [23]. If shrinkage of any BSV parameter was

higher than 35%, the model was considered over-parame-

terized and the BSV term was removed. Standard error and

confidence intervals on the parameters of selected models

were assessed by bootstrap analysis. Bootstrap analysis was

performed on 1000 runs by random sampling with

replacement accounting for age stratification of the dataset.

PopPK model evaluation

Prediction-corrected visual predictive check (pcVPC) is a

diagnostic tool comparing FVIII activity simulated by the

model with observations by plotting percentiles of the

observations and simulations vs time [24]. Since the

response profile is dependent on dose and covariates, the

observations and simulations are normalized by the popu-

lation predictions of the model allowing a better evaluation

of the model. pcVPC was performed by replicating 500

simulations.

Tenfold cross validation was performed to evaluate the

ability of the model to predict new data by splitting the data

into a learning dataset, used for re-estimating the parame-

ters of the model, and a validation dataset, used for eval-

uating the model Bayesian predictions. The evaluation

consisted in calculating the relative error (REi) of each

individual prediction of the new estimated model (Predi—

derived from the sub dataset) to the predictions obtained

using the original model (Pred0i —derived from the com-

plete dataset). For every subject i in the evaluation dataset:

REi ¼ 100
Predi�Pred0ið Þ

Pred0
i

. The evaluation was repeated 100
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times using a random split of the dataset at every iteration.

Median and 95th percentile of the absolute value of the

relative errors were then computed for clearance (CL) and

central volume (V1), as well as for half-life and time spent

above a 0.02 IU/mL threshold (TAT2) that were individ-

ually derived from the predicted PK parameters. Derivation

of TAT2 was obtained by simulating the PK profile using

the individual PK parameters, baseline and dose informa-

tion, then calculating for which time point FVIII was

higher than 0.02 IU/mL.

Limited sampling analysis (LSA) evaluates the precision

and bias of the model as a function of the number and

timing of observations. More specifically, LSA assesses the

model robustness in a sparse sampling environment and

was performed as described in Brekkan et al. [16]. A vir-

tual dataset was created using the same distribution of

demographics and PK as in the final PopPK model. FVIII

activity in 1000 virtual subjects receiving 50 IU/kg every

Monday-Wednesday-Friday was simulated over 4 weeks.

Factor VIII activity from the last Friday dose was used for

the analysis. One sample was taken 30 min before and 9

samples were taken after that infusion (at 1, 3, 6, 12, 24, 30,

48, 54, and 72 h). Bayesian predictions of CL and V1, and

derived half-life and TAT2, between sparse sampling

designs accounting for 2 and 3 observations were compared

for precision and bias to the full sampling design.

External evaluation

New data extracted from WAPPS-Hemo on September

14th, 2018 were used to perform an external evaluation to

determine whether the model we derived produced PK

outcomes on new patients that were similar to those in the

development dataset. Bayesian forecasting was performed

to estimate CL, V1, and derive half-life, TAT2 as well as

the concentration–time profile for every subject. This

evaluation aims to ensure that when the model is used to

predict PK profiles in new patients, it does not produce

erroneous results.

To assess if this model, built using routine clinical care

data, produced similar outcomes as compared to a generic

PopPK model for plasma derived FVIII currently used on

WAPPS-Hemo [25], Bayesian forecasting was completed

with both models for the 49 patients and the outcomes

compared by coefficient of determination (R2). The generic

model was derived using 2760 observations from 310

patients (n = 7 brands) who underwent dense data PK as

part of industry and investigator-initiated research projects.

Specific covariates are included for plasma derived con-

centrates accounting for 14 subjects administered with

Emoclot and 35 subjects administered with Octanate. This

evaluation aims to assess if a plasma-derived FVIII model

built using real-world data produces similar outcomes on

new patients as compared to a plasma-derived FVIII model

built using clinical trial data.

Results

Data

Ninety-two subjects were included in the development

dataset; 67 of which came from 3 centers (Campinas,

Brazil; Valencia, Spain; and Santiago, Chile) and the

remaining 25 from 9 other centers. These patients were

administered one dose of FVIII with between 1 and 8 post-

infusion blood samples measured for FVIII activity using

the one-stage assay (Table 1). The final dataset contained

386 observations with 13 (3.4%) below LLOQ (BLQ)

(LLOQ for these measurements was 0.01 IU/mL). Plots

showing the observed FVIII activity versus time following

the infusion are shown on Fig. 1.

Development of the PopPK model

A 2-compartment model with a proportional error model

was selected (dOFV = - 86.1 and ? 6.0 compared to 1-,

and 3- compartment models respectively). The addition of

any additive error did not significantly decrease the OFV.

Addition of BSV terms on both CL and V1 led to signifi-

cant decrease of the OFV (dOFV = - 356.6).

Addition of BSV on Q and/or V2 led to a significant

decrease in the OFV, however the shrinkage of these

parameters was higher than 44% in each case. Since

addition of these parameters was associated with over-

parametrization, we maintained the 2-compartment model

with BSV on CL and V1 and with proportional RUV for

covariate modeling (Intermediate model A).

Diagnostic plots (Fig. 2) were produced to assess all the

covariates. FFM was the most significant covariate on both

CL and V1 with Spearman correlation coefficients 0.41 and

0.49, respectively (dOFV = - 5.0 compared to BW).

Addition of this covariate on CL and V1 significantly

decreased the OFV (dOFV = - 64.7). Addition of FFM as

a covariate on Q and/or V2 was also tested and led to a

significant decrease of the OFV when added to V2

(dOFV = - 16.7). Consequently, the FFM effect on CL,

V1 and V2 was kept at that stage.

Diagnostic plots (Fig. S1) were produced to assess if

there was an age effect on top of FFM. Age was not cor-

related with individual values of V1 (gV1). However, age
was well correlated with individual values of CL (gCL). A
piecewise linear function best fitted the age effect on CL

and this addition significantly decreased the OFV

(dOFV = - 13.2) even if it was not significantly better

than a linear function in term of OFV decrease (dOFV =
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- 2.7 compared to linear model). The piecewise function

was maintained in the model. Backward elimination did

not change the significance of any of the covariates, that

were consequently all kept in the model. Finally, diagnostic

plots of gCL versus gV1 led to the inclusion of a correlation

term between CL and V1 BSV and this effect significantly

decreased the OFV (dOFV = - 66.3). The final PopPK

model had FFM as a covariate on CL, V1 and V2 as well as

Age on CL.

The final PopPK model developed for Fanhdi/Alphanate

can be summarized by the following expressions and the

values shown in Table 2.

Table 1 Summary of subject demographics for derivation and evaluation populations

Age

(years)

Height

(cm)

Body weight

(kg)

BMI (kg/

m2)

Fat free mass

(kg)

Sex Endogenous FVIII level

(IU/mL)

Samples/patient

Derivation population

N 92 87 92 87 87 92

males

92

Mean 26.1 155.4 59.9 23.4 45.3 – Severe patients

(\ 0.01 IU/mL)

N = 80 (87.0%)

4.2

SD 18.3 26.6 25.9 5.5 18.0 – 1.5

CV% 70.2% 17.1% 43.3% 23.4% 39.7% – 35.7%

Median 25 167 63.5 23.9 50.5 – 5

Min 1 73.8 9.68 11.1 7.5 – \ 0.010 1

Max 72 188 119 39.3 73.0 – 0.169 8

Evaluation population

N 49 49 49 49 49 49

males

48

Mean 27.1 158.9 59.7 22.2 46.2 – Severe patients

(\ 0.01 IU/mL)

N = 46 (95.8%)

2.9

SD 17.3 28.9 24.8 5.0 18.0 – 1.3

CV% 63.8% 18.2% 41.6% 22.3% 39.0% – 46.9%

Median 31 169 65 22.1 53.9 – 3

Min 0.92 76 10.59 13.4 8.1 – \ 0.010 1

Max 60 197 112.5 34.7 73.5 – 0.012 6

Fig. 1 Observations versus time after dose in linear scale (left) and log scale (right)
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Fig. 2 Individual values of CL and V1 versus available covariates

Table 2 Population PK model parameters and confidence intervals

Parameter (unit) Estimate %

RSE

95% CI bootstrap

lower bound

95% CI bootstrap

upper bound

Definitions RSE: root of standard error

CI: confidence interval (obtained from bootstrap)

Structural model

CLpop (L/h) 0.195 5.69% 0.176 0.217 CL: clearance

V1pop (L) 2.30 7.45% 1.95 2.62 V1: central volume

Qpop (L/h) 0.078 21.3% 0.047 0.120 Q: inter-compartmental clearance

V2pop (L) 0.449 27.1% 0.279 0.776 V2: peripheral volume

Covariate effects

FFM effect on CL 0.701 12.0% 0.527 0.872 FFM: fat free mass

FFM effect on V1 0.726 13.0% 0.542 0.903

FFM effect on V2 0.842 72.7% 0.365 3.976

AGE effect on CL - 0.302 19.1% - 0.407 - 0.167

Between subject variability

CV of CL 0.456 9.22% 0.365 0.529 CV: coefficient of variation (defined as standard

deviation of g)

CV of V1 0.542 11.3% 0.421 0.660

CorrCL�V1 0.797 7.50% 0.669 0.895 Corr: correlation between g

Residual variability

CV of

proportional

RUV

0.205 8.23% 0.169 0.232 RUV: residual unexplained variability
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CL ¼ CLpop
FFM

50:5

� �hFFM�CL

1þ hAGE�CL

maxð0;AGE � 25Þ
25

� �
egCL

V1 ¼ V1pop
FFM

50:5

� �hFFM�V1

egV1

Q ¼ Qpop

V2 ¼ V2pop
FFM

50:5

� �hFFM�V2

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

ð5Þ

With CLpop the typical clearance, V1pop typical central

volume, Qpop typical inter-compartment clearance, V2pop
typical peripheral volume, hFFM FFM effects, hAGE�CL age

effect on CL, gCL BSV term on CL and gV1 BSV term on

V1.

Distributions and correlations of gCL and gV1 were

approximatively normally distributed (Fig. S2). Shrinkage

of the standard deviations was 4.01% for gCL and 9.32% for

gV1 distributions. Compared to the intermediate model A,

BSV was reduced by 14% for CL and by 18.3% for V1.

Standard goodness of fit plots for the final Fanhdi/Al-

phanate PopPK model are provided in Figs. S3 and S4. The

observed versus population and individual predicted FVIII

activity show that the model described the data well except

for high values of FVIII activity, with R2 of 0.947 and

smoothers of the data lying on the line of unity until 1 IU/

mL (Fig. S3). The distribution of CWRES (Fig. S4) was

close to a normal distribution and centered around zero

along either the population prediction values or the time

after dose. RUV shrinkage was 20.8% due to a relatively

high amount of sparse sample data (16.3% of the subjects

had 2 observations or less).

A comparison was performed on the final model with a

different baseline modeling that was assuming a 0.005 IU/

mL baseline for every severe patient. Differences between

the model estimates were\ 1% and the OFV was not

significantly modified (dOFV = - 0.7).

PopPK model evaluations

Median, 5th and 95th percentiles of observations and pre-

dictions are presented on the pcVPC (Fig. 3). Percentiles of

observations were within the confidence intervals of pre-

dictions in all times.

Tenfold cross validation resulted in using 83 subjects in

the learning datasets and 9 subjects in the evaluation data-

sets. Consequently, 900 Bayesian predictions were com-

pared to the estimates obtained on the complete dataset. The

errors obtained on the individual estimates were low, cen-

tered around 0 and normally distributed for every parame-

ter. Median—(95th percentile) of absolute errors were

1.01%—(5.27%) for half-life, 0.40%—(3.00%) for TAT2,

0.40%—(2.22%) for CL and 0.67%—(4.76%) for V1.

Mean and coefficient of variation (CV) of CL and V1

predicted using the rich sampling design were similar to the

values estimated in the PopPK model (Table S5). Median

and 90th percentile of absolute value of relative error

between rich and limited sampling designs are summarized

in Table S5 for half-life, TAT2, CL and V1.

As expected, for every parameter, the fewer the samples

the greater the spread of the error: designs with 2 samples

usually led to higher error than designs with 3 samples.

Focusing on designs with 3 sample time points median

error was lower than 10% for half-life and TAT2. For the

same limited sampling designs, the 90th percentile error

ranged between 13.0 and 25.2% for half life and between

6.1 and 21.8% for TAT2. Designs that did not have any

sampling after 30 h led to higher error on these 2 param-

eters related to the end phase of the PK profile. Conse-

quently, every 3-sample design tested, except those with

only early samples, gave similar results (Fig. S6). Designs

assessing the effect of unknown residual FVIII (predose)

gave error similar to other designs and no bias (Fig. S6).

Forty-nine patients from 13 centers were used for the

external evaluation (Table 1). Subjects were ranging from

11 months to 60 years of age and from 10.6 to 112.5 kg.

Bayesian forecasting produced half-life and TAT2 esti-

mates similar to the development population. A compar-

ison between Bayesian estimates using the developed

Fanhdi/Alphanate model and the generic plasma-derived

FVIII model in WAPPS demonstrated a good correlation of

CL, V1, half-life and TAT2 estimates (Fig. 4), with coef-

ficients of determination (R2) for equality respectively

equal to 0.97, 0.84, 0.91 and 0.96. V1 was less correlated,

Fig. 3 Prediction-corrected visual predictive check of the final model.

The dashed lines represent the 5th, 50th, and 95th of the observed

data. The solid lines and shaded areas are respectively the

corresponding simulated data and their 90% confidence intervals.

500 simulations were performed
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however, the differences were found on patients who did

not have any observation of peak activity.

Discussion/conclusion

This study describes the development and evaluation of a

PopPK model built from routine clinical data that were

input into the WAPPS-Hemo platform. The purpose of this

PopPK model is for use as a prior for Bayesian forecasting

in the WAPPS-Hemo platform.

FFM was a better predictor of clearance and volume as

compared to BW. From a physiological point of view this

is expected considering FVIII is a macro-molecule and has

very limited distribution confined to vascular space and

some interstitial. Previous PopPK models of FVIII used an

allometric exponent on BW to account for a mismatch with

overweight patients [26]. In more recent modeling, lean

body weight has replaced total body weight as a covariate

[27]. Lean body weight and FFM are similar in concept but

the equation used to generate FFM [22] used a high quality

method (dual energy x-ray absorptiometry) across the

entire age spectrum (3–82 years) for which is was devel-

oped and therefore provides confidence that FFM was

appropriately assessed for patients used to build the Fan-

hdi/Alphanate model. Despite not being precisely esti-

mated (RSE of 72.7%), FFM was kept on peripheral

volume because, from a physiological stand-point, smaller

patients with low FFM and low central volume, are more

likely to have a smaller peripheral volume.

Based on a mechanistic understanding of clearance for

FVIII, vWF levels should be the most relevant covariate on

CL [28], but the data was not available for many patients.

As a result, we used age as a proxy of vWF as they are

correlated [28]. The primary reason for using a piecewise

linear model for age was to prevent any interference

between correlated covariates. In children and teenagers,

age and FFM are strongly correlated. An age effect on CL

in children would have led to an over-estimation of FFM

on CL. This can lead to a non-physiological artifact effect,

such as half-life decreasing when FFM increases. Blood

type was also not available on many patients, otherwise it

Fig. 4 Comparison of CL, V1, half-life and time spent above a 0.02 IU/mL threshold (TAT2) estimated in the evaluation dataset by Fanhdi/

Alphanate PopPK model and generic plasma-derived (pd) FVIII model
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Table 3 Summary of FVIII PopPK models available in literature

References FVIII concentrate Number

of

subjects

Age

(years)

Median

(range)

BW (kg)

Median

(range)

CL

TV (L/h)—BSV

(CV)

covariates

V1

TV (L)—BSV

(CV)

covariates

Q

TV

(L/

h)

V2

TV

(L)

RUV

P (CV)

A (SD in

IU/mL)

Fanhdi/Alphanate 92 25

(1–72)

63.5

(9.7–119)

0.195a—45.6%

FFM, Age

2.30a—54.2%

FFM

0.078 0.449 P: 20.5%

Abrantes [29] Refacto/

Xyntha

754 23

(0.003–73)

69

(3–134)

0.276b—30.5%

inhibitors, age,

study

2.45b—0%

BW

2.51 0.923 P: 19.2%

Garmann [27] Kovaltry 183 22

(1–61)

60

(11–124)

0.188c—37%

LBW

3.00c—11.2%

LBW

0.190 0.637 P: 26.7%

A: 0.011

Shah [36] Kovaltry

(joint with Advate)

18 36

(19–64)

80

(55–99)

0.151—27.2% 2.36—7.93% 0.159 0.535 P: 5.73%

Zhang [30] Afstyla 106 23

(1–60)

60.8

(10–106)

0.212d—24.1%

BW, VWF

3.36d—19.7%

BW

0.134 0.265 P: 10.9%

A: 0.011

Bjorkman

[26]

Advate 152 22

(1.1–66)

56

(11–108)

0.193e—30%

BW, age

2.22e- 21%

BW

0.147 0.73 A: 0.089

Bolon-Larger

[17]

Multiple plasma

derived and

recombinant

51 39.5

(7–77)

68

(21–120)

0.177f—45.4% 2.82f—21.1%

BSA

0.152 1.54 Not

specified

Hazendonk

[31]

Multiple plasma

derived and

recombinant

119 40

(0.2–78)

75

(5–111)

0.160g—36%

BW, age, Blood

group O,

surgery

2.81g—26%

BW, age

0.170 1.89 P: 18-23%

A: 0.05-

0.14

Nestorov [32] rFVIII-Fc

Advate

180

118

30

30

73

73

0.173 h—25.1%

VWF

0.253 h—30.4%

3.68 h—13.4%

BW, HCT

3.46 h—16.2%

BW

0.0279

0.0548

0.409

0.494

P: 15.4%

A: 0.0024

P:16.8%

A: 0.0011

Karafoulidou

[33]

Refacto 28 34

(18–70)

75

(54–104)

0.393i—38.9%

BW

4.86i—13.0%

BW, viral

status

_l _ 15.2%

Jimenez [37] Novo8 76 20

(1–60)

75

(12–107)

0.302j—32.0%

BW, age

3.46j—22.0%

BW

_ _ Not

specified

McEneny-

King [25]

Multiple plasma

derived and

recombinant

400 22.5

(1–67)

67.1

(10.6–140)

0.275k—40.9%

FFM, age,

concentrate

3.18k—30.7%

FFM,

concentrate

0.153 0.559 P: 16.2%

A: 0.0095

TV typical value, BSV between subject variability, P proportional, A additive, LBW lean body weight, VWF Von Willebrand factor, BSA body

surface area, HCT hematocrit
aTypical value for a 25 year old—50.5 kg FFM subject
bTypical value for a 20 year old—70 kg BW subject
cTypical value for a 51.1 kg LBW subject
dTypical value for a 113% VWF activity—68 kg BW subject
eTypical value for a 22 year old—56 kg BW subject
fTypical value for a 1.80 m2 BSA and 68 kg BW subject
gTypical value for a 20 year old—68 kg BW subject
hTypical value for a 45 of HCT—118 VWF—73 kg BW subject
iTypical value for a 75 kg BW subject
jTypical value for a 20 year old—75 kg BW subject
kTypical value for a 22 year old—53 kg FFM subject
lWas used to indicate a 1 compartment model (in which neither Q nor V2 are defined)
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would have been tested as an additional covariate to sup-

plement age as a vWF surrogate [28].

The analysis used to develop this PopPK model is

similar to what is already performed for other FVIII con-

centrates [17, 26, 27, 29–33]. Table 3 summarizes some

features of PopPK models available in the literature. Our

analysis for Fanhdi/Alphanate led to similar outcomes in

terms of model structure with a 2-compartment model best

describing the PK profile; as well as covariates of age for

CL and body size for V1 and CL. Typical values for PK

parameters as well as proportional error were within the

same range as other FVIII PopPK models; however, BSV

for CL and V1 were higher in this PopPK model. This is

likely due to both the sparsity of some data along with

diversity in measurement standards and methods between

hemophilia centers. Inter-laboratory variability in activity

measurement is usually higher than 10% and was reported

up to 35% for the one-stage assay [34, 35]. Since data were

entered by 12 different hemophilia centers worldwide for

the development data, this variability may be captured in

CL and V1 BSV.

Since the purpose of this PopPK model is to be used as a

prior model for Bayesian forecasting on the WAPPS-Hemo

platform, we focused on dedicated evaluation methods and

criteria. Half-life and time spent above a certain activity

threshold are two major criteria when designing a pro-

phylactic treatment regimen. pcVPC showed that the

PopPK is able to simulate the observed data. Tenfold cross

validation showed that new data can be predicted by

Bayesian forecasting with sufficient precision and no bias.

As suggested by Björkman et al. [18], combining a

PopPK model with limited sampling strategies can be

useful for the prediction of FVIII PK. Indeed, LSA pro-

vides relevant information on the reliability of the PopPK

model when predicting PK parameters from sparse data as

well as where this sparse sample data is informative to the

prediction. In our analysis, half-life and TAT2 are param-

eters better predicted using late observations where using

observations before 30 h alone does not bring individual

information to these parameters. In terms of reliability, no

bias was observed in the predictions; errors on CL and V1

are acceptable considering that BSV had a 50% CV for

both parameters. Theoretically, since our LSA was per-

formed on simulated data, we cannot exclude that a similar

analysis performed on densely sampled data would provide

different results. However, the LSA results are in line with

similar analyses performed on dense data for other factor

VIII concentrates, and can guide practice until eventually

confirmed or replaced by new data.

External evaluation with comparison to a generic

plasma-derived FVIII PopPK model developed using

clinical trial data added further value to this newly devel-

oped PopPK model. First, the agreement between these two

different models in term of FVIII activity-time profile and

PK estimates were good. Differences between the predic-

tions of these two models were only found in cases where

the observations did not bring individual information to the

predicted parameter, and the model prediction conse-

quently reflected the population value for the subject. This

was especially the case for V1, where discrepancies of

predictions corresponded to patients having samples

observed after 24 h. With respect to the assessment of

Bayesian forecasting using new data from WAPPS, the aim

was to check that the PopPK model produced reasonable

Bayesian predictions in an external cohort before being

released to the Web Service. Since the true PK profiles and

parameters are not known for the external cohort, the

comparison with the derivation data is limited to checking

that the new predictions are in reasonable agreement with

the derivation data. It is however understood that the

Bayesian predictions may differ between cohorts even

given the same covariates.

The work described in this paper shows the feasibility of

developing a PopPK model from routine clinical data and

using it for Bayesian analysis. This PopPK model was

comparable with PopPK models describing clinical trial

data. It encompasses a wide range of age and body weight

allowing a relevant description of the covariate effects.

Consequently, the model and its inputs might be more

suited to predict new clinical routine data that can’t be

captured by clinical trials.

Since optional information can be input in the platform,

further analysis, especially in terms of covariates, can be

explored with such data. From this analysis, a promising

perspective would be to supplement clinical trial data with

routine practice data in order to build future PopPK mod-

els. On one hand, dense data from clinical trials brings

stability and a good description of the shape of the PK

curves; on the other hand, sparse data from routine practice

widens the possible observations, input and covariates of

the model.
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