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Abstract

To identify interactions a nucleoside analog library (NAL) consisting of 45 FDA-approved nucleoside analogs was screened
against 23 enzymes of the human nucleotide metabolism using a thermal shift assay. The method was validated with
deoxycytidine kinase; eight interactions known from the literature were detected and five additional interactions were
revealed after the addition of ATP, the second substrate. The NAL screening gave relatively few significant hits, supporting a
low rate of ‘‘off target effects.’’ However, unexpected ligands were identified for two catabolic enzymes guanine deaminase
(GDA) and uridine phosphorylase 1 (UPP1). An acyclic guanosine prodrug analog, valaciclovir, was shown to stabilize GDA to
the same degree as the natural substrate, guanine, with a DTagg around 7uC. Aciclovir, penciclovir, ganciclovir, thioguanine
and mercaptopurine were also identified as ligands for GDA. The crystal structure of GDA with valaciclovir bound in the
active site was determined, revealing the binding of the long unbranched chain of valaciclovir in the active site of the
enzyme. Several ligands were identified for UPP1: vidarabine, an antiviral nucleoside analog, as well as trifluridine,
idoxuridine, floxuridine, zidovudine, telbivudine, fluorouracil and thioguanine caused concentration-dependent stabilization
of UPP1. A kinetic study of UPP1 with vidarabine revealed that vidarabine was a mixed-type competitive inhibitor with the
natural substrate uridine. The unexpected ligands identified for UPP1 and GDA imply further metabolic consequences for
these nucleoside analogs, which could also serve as a starting point for future drug design.
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Introduction

Nucleotide metabolism is one of the major metabolic pathways

in cells. Nucleotides are not only the building blocks for DNA and

RNA but also key regulators and intermediates in a wide range of

cellular signalling and other metabolic processes. Nucleotides are

synthesized by either the de novo pathways or the salvage pathways

where nucleobases, nucleosides and deoxynucleosides are recycled

from nutrients or from degraded DNA, RNA and nucleotides. To

provide appropriate pool sizes of nucleotides in particular cellular

states, nucleotide metabolism is highly regulated by feedback

binding of pathway intermediates. For example, binding of

effectors such as nucleoside products or intermediates in nucleo-

tide metabolism to regulatory sites of key enzymes often provides

negative feed-back regulation, but in some cases may activate these

enzymes. Due to the fundamental role of nucleotides in cellular

metabolism, the enzymes of nucleotide metabolism constitute

important anti-proliferative targets for treatment of cancers or for

immunosuppressant therapy. Also, more than half of currently

approved antiviral drugs are nucleoside-based analogs [1–3].

Nucleoside analogs used in antiviral and anticancer chemotherapy

are prodrugs which require activation by cellular enzymes to their

active forms before reaching the intended target enzymes. Due to

the similarity in chemical structure of natural nucleosides and

nucleotides to the nucleoside analogs (NAs) used as drugs, there is

a potential for cross-reactivity with enzymes along their metabolic

pathways. For example, NAs could inhibit enzymes of nucleotide

metabolism by binding within the active sites. Alternatively, they

might also bind to regulatory sites and thus serve as inhibitors or

activators. One example is gemcitabine, which in its diphosphate

form binds to and inhibits ribonucleotide reductase. Other

examples are fluorouracil and floxuridine, which after conversion

to fluorodeoxyuridine monophosphate, inhibit thymidylate syn-

thase via a covalent interaction [4]. These interactions are
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considered to be important for the therapeutic effect but these

compounds can also act as polymerase chain terminators by

selective depletion of nucleotide (dNTP) pools and/or upon

incorporation into the nucleic acid chain.

In the present study we have addressed the possible cross-

reactivity of NAs with enzymes of human nucleotide metabolism

using an in vitro approach. Insights into novel cross-reactivity could

potentially explain some toxicity of NAs. In addition the

identification of novel interactions of NAs with enzymes in

nucleoside metabolism could render these compounds useful as

starting points for the development of novel, specific inhibitors that

target these enzymes. As a basis for the in vitro approach, more

than 30 enzymes of human nucleotide metabolism have been

purified to high homogeneity at the Structural Genomics

Consortium (SGC) Laboratory at the Karolinska Institute in

Stockholm. Furthermore, the structures of many of these enzymes

have been determined (sgc.ki.se/structures.html) [5].

The establishment of activity assays for a large number of

different enzymes is very challenging. Instead, a biophysical

binding assay was used to determine the interaction of the

enzymes with nucleoside analogs. Thermal shift assay (TSA) was

used, where binding is detected by the thermal stabilization of

proteins due to interaction with the ligand. There are several

potential formats for this assay including fluorescence- and light

scattering-based methods [6,7]. One advantage is that detection of

protein melting temperature using these assays can be done in a

high throughput format on multi-well plates and require relative

small amounts of protein sample. Similar approaches have been

used to screen protein kinases [8] and sulphotransferases [9]

toward panels of inhibitors and substrates. In these cases, many of

the compounds were already known to interact with members of

the families, due to significant sequence conservation of residues in

their active sites, cross-reactivates were expected.

We have designed a nucleoside analog library (NAL) containing

45 FDA (U.S. Food and Drug Administration)-approved nucleo-

side drugs. This library was screened against 23 selected enzymes

in human nucleotide metabolism using a light scattering-based

TSA [10]. In contrast to large scale TSA-based screening on

protein kinases and sulphotransferases mentioned above, our

enzyme collection is composed of a wide range of structural

enzyme families and therefore contains a highly divergent set of

active sites and effector binding sites. The TSA approach was

validated by the well-characterized enzyme, deoxycytidine kinase

(dCK) which is known to activate many NAs. Most of NAs did not

display significant off target effects using the TSA. However,

unexpected stabilizing ligands were identified for two proteins:

guanine deaminase (GDA) and uridine phosphorylase 1 (UPP1),

which were further analyzed by using biochemical and structural

means. Together this work established TSA as a useful strategy for

screening libraries against en ensemble of diverse enzymes within

pathways, as well provide new information on prodrug cross

reactivity, mechanism of side effects as well as rationale for future

drug design targeting the nucleotide metabolism.

Results and Discussion

Selection of Compounds to be Included in the
Nucleoside Analog Library (NAL)

A library of NAs was designed using two criteria: the compound

should be approved by the FDA as a pharmaceutical and the

compound should contain a natural or modified nucleobase,

nucleoside or nucleotide. Given these criteria, a search was

performed using Drugbank [11,12]. A total of 47 compounds were

identified and two of them, enprofylline and pentostatin, could not

be readily purchased. Thus, the nucleoside analog library

contained 45 compounds and is in the following referred to as

the NAL, although some compounds are nucleobase and

nucleotide analogs. The compounds included in NAL are listed

in Table S2 with their common name and IUPAC name. These

compounds are primarily used to treat different types of cancers or

viral infections caused by HIV, hepatitis B, hepatitis C, herpes

simplex virus type 1, herpes simplex virus type 2 and varicella

zoster virus [1–3,13,14].

Nucleotide Metabolism Enzyme Library
The proteins investigated here are listed in Table 1. They

constitute enzymes of human nucleotide metabolism, for most of

which expression and purification conditions have been estab-

lished at the SGC-Stockholm-Karolinska Institute. Many of the

proteins were also recently structurally characterized at SGC

(http://www.thesgc.org/structures) [5]. Most of the proteins

selected during expression and purification optimization proce-

dure contain all their functional domains but with small

truncations in the C- and N-terminus. A few of the proteins

(CTPS2, RRM1, UMPS (1) and UMPS (2)) contain individual

functional domains from larger multiple-domain enzymes

(Table 1). Information on gene name, full enzyme name, GenBank

ID, accession number, EC number, construct size, the part of

nucleotide metabolism in which the enzyme is involved and Tagg

for enzymes in the absence of ligands is given in Table 1. The

enzymes are numbered, which corresponded to the number in

Figure 1. However, this list of enzymes is not a complete list of all

enzymes in nucleoside and nucleotide metabolism, for example,

purine nucleoside phosphorylase and adenosine deaminase, which

are important enzymes in the metabolism of several nucleoside

and nucleobase analogs used in this study, are for technical reasons

not included.

Criteria for Thermal Shift Assay
A thermal shift assay based on light scattering was used to

measure enzyme-ligand binding. Normally when proteins melt

they rapidly form aggregates and this is detected by light scattering

[10]. The aggregation temperature (Tagg) measured correlates well

with the melting-temperature of the proteins [15]. Binding of

ligands most often increases the thermal stability e.g. the Tagg of

the proteins [15]. Positive DTagg values therefore indicate that a

compound acted as a potential ligand for a protein. Negative

DTagg values are also sometimes observed, which indicate that a

compound either destabilizes the folded protein by e.g. releasing a

stronger binding ligand or binds to a protein in its unfolded state

or on the path to the unfolded state. Ligands which form covalent

adducts or metal-coordinated ligands may also lead to negative

DTagg values. DTagg above 1uC may indicate specific binding of a

compound to a protein and was used as initial criteria in this study

[10]. For validation concentration-dependent response curves of

DTagg were established. In specific cases such as the control

enzyme dCK, DTagg below 1uC were still reporting on binding of

known substrates/ligands. In the end different enzymes showed

different root-mean-square deviation of the response which was

used as an additional criteria for prioritizing compounds for

further analysis. Compounds exhibiting a DTagg value above

0.5uC were further examined by concentration-dependent re-

sponse curve in order to validate whether they are ligands.

‘‘Fingerprints’’ for each enzyme screened with NAL was

determined, and in many cases addition of a second known

substrate or product was used to provide further complementing

information [15].

Screening of a Nucleoside Analog Library
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Figure 1. The DTagg values for the 23 enzymes screened against NAL. The enzymes are numbered: 1 ADSS2, 2 ADSL, 3 BPNT1, 4 CMPK2, 5
CTPS2, 6 DCTD, 7 DPYS, 8 GART, 9 GDA, 10 GMPR2, 11 GMPS, 12 ITPA, 13 NT5C2, 14 NT5C3, 15 NUDT16, 16 PAICS, 17 PRTFDC1, 18 RRM1, 19
UCK1, 20 UMPS (1), 21 UMPS (2), 22 UPB1, 23 UPP1, 24 UPP2. DTagg represents the difference between Tagg of a protein in the presence and
absence of a compound. The DTagg values are given as color codes based on DTagg calculated from two values within the same screen. The maximum
average mean deviation for DTagg is 0.5uC. However, in some cases, one of the values has been disregarded due to inappropriate curve fitting
parameters. In total of 1080 measurements 44 have either one value missing (8) or an average mean deviation greater than 0.5uC (36).
doi:10.1371/journal.pone.0037724.g001

Screening of a Nucleoside Analog Library
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Method Validation Using dCK
dCK is an enzyme of the salvage pathway and converts

deoxycytidine (dCyd), deoxyadenosine (dAdo) and deoxyguano-

sine (dGuo) into their corresponding monophosphates, with dCyd

as the preferred substrate. Both UTP and ATP function as

phosphate donors and the kinetic patterns differ depending on the

phosphate donor used. The enzyme is feedback inhibited by its

distal end product, deoxycytidine triphosphate (dCTP) [16]. From

a clinical perspective, dCK activates several anticancer and

antiviral drugs used in therapy. Among these are lamivudine,

cytarabine, cladribine, gemcitabine, fludarabine, zalcitabine,

vidarabine, nelarabine, decitabine, clofarabine, emtricitabine,

azacytidine and didanosine [16–18].

dCK was tested against the NAL at two different concentrations

(100 and 500 mM) in the presence and absence of 0.1 and 1 mM

ATP (Table 2). Interaction between dCK and ATP (1 mM) alone

gave a DTagg value of 21.6uC.

The compounds shown to increase the thermal stability of dCK

can be divided into two groups: 1) emtricitabine, lamivudine,

decitabine, clofarabine, cladribine, gemcitabine, cytarabine and

fludarabine and 2) zalcitabine, entecavir, azacytidine, vidarabine

and nelarabine. Interactions between dCK and group 1 ligands

increased dCK thermal stability with DTagg $1uC even in the

absence of ATP, with cladribine as an exception. In the presence

of ATP DTagg values were significantly increased. Group 2 ligands

produced mostly negative DTagg values and only in the presence of

1 mM ATP the DTagg values were positive, but they were still

,1uC, which was the detection limit. These ligands ranked

directly after the group 1 ligands in the full screen with 45 NAs,

indicating that these thermal shifts, although relative small, can be

assumed to be relevant. For both groups the relative shifts

observed at 500 mM, either with or without ATP, were between 3

and 5uC for group 1 ligands and more than 1uC for group 2

ligands (Table 2). Thus, all compounds in Table 2 are interacting

with dCK, as have previously been shown in biochemical studies

[16–18].

Some of the interactions were further evaluated and a

concentration-dependent stabilization was observed for all group

1 compounds, including cladribine, in the absence of ATP.

However, in case of fludarabine a negative concentration-

dependent curve was obtained, i.e. from DTagg of 2uC at

100 mM to just below 0uC at 1000 mM (data not shown). None

of the group 2 compounds exhibited positive concentration-

dependent curves in the absence of ATP. The fact that the thermal

shifts were greater when ATP was added, albeit the thermal shift

with ATP alone was negative (at 0.5 mM ATP, DTagg was 20.8uC
and at 1 mM ATP, DTagg was 21.6uC), indicated cooperative

binding of the substrates as expected. It is interesting to note that

the TSA approach allows for direct detection of interaction

between dCK and both substrates, e.g. nucleoside and ATP, in

spite of their transient nature, albeit it is not clear if stabilization is

due to binding of a ternary complex, the products or both.

In summary, we were able to identify eight ligands (emtricita-

bine, lamivudine, decitabine, clofarabine, cladribine, gemcitabine,

cytarabine and fludarabine) for dCK. A second set of potential

ligands (zalcitabine, entecavir, azacytidine, vidarabine and nelar-

abine) was detected with relative thermal shifts above 1uC. All of

these NAs, except for entecavir, are known to be activated by

dCK. Therefore, after careful multiple measurements, a threshold

(DTagg) as low as 0.5uC had allowed identification of known

substrates which gave concentration dependent responses of

thermal shifts for dCK.

Screening of 23 Enzymes of the Nucleotide Metabolism
Library Toward NAL

All 23 enzymes were exposed to 100 and 500 mM of the

nucleoside analogs. Results are shown for the enzymes with

500 mM of the compounds (Fig. 1). Several enzymes, i.e. GART,

GDA, GMPR2, ITPA, NUDT16 and UPP1, were stabilized with

a DTagg .1uC in the presence of several ligands. Destabilization

(negative DTagg value) was observed with several enzymes

including CMPK2, DPYS, ITPA, NUDT16 and RRM1. It was

unexpected that azathioprine caused destabilization of RRM1

Table 2. Mean DTagg (uC) for dCK.

NAs 500 mM NA (+1 mM ATP) 500 mM NA (+0.1 mM ATP) 500 mM NA 100 mM NA

Emtricitabine 9.11 4.21 1.65 1.23

Lamivudine 8.32 3.39 0.93 0.97

Decitabine 7.29 4.73 4.33 2.56

Clofarabine 5.45 1.66 1.68 0.37

Cladribine 5.44 1.29 20,33 0.33

Gemcitabine 5.22 3.65 3.87 2.31

Cytarabine 4.93 2.98 2.74 1.33

Zalcitabine 0.95 20.22 20.61 20.15

Entecavir 0.83 21.29 21.33 20.97

Azacytidine 0.76 20.93 21.06 20.32

Vidarabine 0.63 21.02 22.44 20.11

Nelarabine 0.50 22.13 21.64 21.14

Fludarabine 0.12 0.38 0.95* 20.09

Tagg 53.8 54.4 54.0 53.8

The Mean DTagg was based on two samples within the screen. The average deviation from mean value was less than 60.5uC. The NAs were listed according to the
largest increase in thermal shifts (DTagg) in the presence of 500 mM NA and 1 mM ATP. Tagg for dCK in each screening is presented. * Indicate that the result is based on
one value.
doi:10.1371/journal.pone.0037724.t002
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with a negative DTagg value .5uC. Therefore, Concentration-

dependent (de)stabilization experiments were performed with

GART, GDA, UPP1, GMPR2, ITPA and RRM1 at 100, 200,

300, 500 and 1000 mM of the nucleoside analog to monitor

potential saturation effects. Significant concentration dependent

effects of the ligands were observed with UPP1, GDA and RRM1

and the detailed results are described below. Both GMPR2 and

ITPA showed significant shifts with many ligands but no

concentration-dependent stabilization was observed. In addition

ITPA, but not GMPR2, showed an unusual sensitivity to DMSO,

even small variations in the DMSO concentration induced

thermal shifts. Due to the lack of hits with concentration-

dependent stabilization these two enzymes were not investigated

further.

From the study of dCK and NAL, it is clear that addition of

ATP reveals interactions with additional ligands. This approach

was used in cases where the enzymes use ATP, PRPP, NADPH,

ribose-1-phosphate, free phosphate ion (Pi) or pyrophosphate as a

second substrate or product. PRTFDC1, UMPS (1), ITPA,

NUDT16, GMPR2, UPP1, UPP2, CMPK2, CTPS2 and PAICS

were all screened in the presence of a second substrate/product. A

significant effect was observed only with UPP1 (see below). In the

following section we will specifically describe and discuss the

results obtained with UPP1, GDA and RRM1.

Uridine Phosphorylase 1 (UPP1)
UPP1 catalyzes the reversible reaction of uridine and Pi into

uracil and ribose-1-phosphate. Human UPP1 follows a steady-

state ordered bi-bi kinetic mechanism. It is suggested that Pi binds

to the free enzyme followed by uridine. Uracil then leaves the

ternary complex, followed by dissociation of ribose-1-phosphate

[19].

It is well established that UPP1 can convert fluorouracil into

fluorouridine, which is subsequently phosphorylated into fluor-

ouridine monophosphate by uridine/cytidine kinase [20,21]. The

metabolites of fluorouracil can disrupt RNA synthesis or inhibit

thymidylate synthase activity, the latter which is essential for DNA

synthesis and repair [21]. Toxic effects on normal tissues exerted

by fluorouracil metabolites can be minimized by a high dose of

uridine. One alternative approach to raise the intracellular

concentrations of uridine is to inhibit UPP1 [22]. Benzylacyclour-

idine (BAU) is a potent inhibitor of UPP1, and has been

investigated in clinical trials [23]. Calabresi et al. showed that

BAU could reduce zidovudine-induced bone marrow toxicity in

mice [24].

Screening of UPP1 with 500 mM NAL revealed several

potential ligands; vidarabine, trifluridine, idoxuridine, thioguanine

and cladribine. Addition of ribose-1-phosphate to the protein as a

second substrate identified zidovudine, fluorouracil and telbivu-

dine as additional potential ligands. Addition of ribose-1-

phosphate further stabilized UPP1 in the presence of following

ligands: vidarabine, trifluridine, zidovudine and telbivudine

(Table 3). To investigate saturation effects, concentration-depen-

dent stabilization of UPP1 was tested with floxuridine, thiogua-

nine, vidarabine, cladribine, idoxuridine, trifluridine, zidovudine,

telbivudine, fluorouracil and uridine. Uridine, the natural

substrate, was used as a reference. Concentration-dependent

stabilization of the enzyme was found with uridine, vidarabine,

trifluridine, idoxuridine and fluorouracil (Fig. 2A). In Figure 3, the

structures of ligands, as well as the DTagg values for the enzyme at

1 mM compound are shown. Vidarabine, an adenosine analog,

with a DTagg of 7.9uC at 1 mM, is the ligand that most efficiently

stabilizes UPP1 and it is clearly superior to the natural substrate

uridine that gave a DTagg of 3.7uC. Idoxuridine and trifluridine

stabilized the enzyme to the same extent as uridine. Concentra-

tion-dependent stabilization curves for telbivudine, zidovudine,

floxuridine and thioguanine exhibited the same degree of

stabilization as fluorouracil. Cladribine did not stabilize the

enzyme in a concentration-dependent manner, and is therefore

not regarded as a ligand.

Vidarabine, the ligand stabilizing UPP1 the most; was further

studied to determine the nature of vidarabine interaction with

UPP1, whether it is a substrate, activator or inhibitor of the

enzyme. When vidarabine was incubated with the enzyme, no

conversion of vidarabine to adenine was observed by reverse phase

HPLC analysis even after prolonged incubation. Therefore, a

further characterization of vidarabine as an inhibitor of UPP1 was

carried out. Three different vidarabine concentrations were used

in the presence of five different uridine concentrations. The rates

of substrate conversions to uracil as a function of uridine

concentration (Fig. 4) revealed a mixed-type inhibition with a Ki

value of 390 mM and a Ki/Km of 4.88. Thus, vidarabine have a

relatively high affinity for the UPP1 enzyme. These kinetic data

suggested that vidarabine binds independently of the natural

substrate but altered the affinity of the enzyme for uridine,

resulting in the observed mixed-type inhibition. We have not been

able to determine a structure of this complex so we cannot

conclude whether this is an allosteric effect or direct effect.

To our knowledge the interactions between UPP1 and the

ligands revealed in this study, i.e. those involving vidarabine,

idoxuridine, trifluridine, telbivudine, zidovudine and thioguanine

have not been reported earlier, except for fluorouracil and

floxuridine [20]. Further detailed studies of their mode of binding

and effect on enzyme catalysis, such as those performed for

vidarabine, should shed further light on their mode of action.

Together the identification of these novel UPP1 ligands may have

implications for the mechanism of activation and side effects of

NAs, as well as aid in future development of nucleoside analogs.

Guanine Deaminase (GDA)
GDA catalyzes the irreversible deamination of guanine to

xanthine [25]. The enzyme is highly expressed in liver, brain,

kidney and placenta [26,27]. Furthermore, GDA is also involved

in the regulation of dendrite development as a positive regulator

by modulating guanine concentrations [26]. The presence of GDA

activity in serum has been used as a diagnostic marker for liver

disease [28]. The structure of human GDA was solved in complex

with xanthine in 2007 at SGC (Pdb id: 2UZ9). Since GDA is

involved in purine metabolism, as well as in the regulation of

dendrite formation, it has been suggested as a potential drug target

for example in the treatment of cognitive disorders [29].

All compounds exhibiting a DTagg value greater than 0.5uC
were further evaluated. Thioguanine, ganciclovir, aciclovir,

penciclovir, valaciclovir, flucytosine and idoxuridine showed

concentration-dependent stabilization of GDA similar to guanine

(Fig. 2B), however, flucytosine and idoxuridine did not give a dose-

dependent stabilization of GDA. Both valaciclovir and guanine

exhibited a positive DTagg < 7uC at 1000 mM concentration,

followed in decreasing order by thioguanine, acyclovir, penciclo-

vir, ganciclovir and mercaptopurine. The chemical structures and

DTagg values of these compounds are shown in Figure 5.

In order to elucidate the molecular mechanism for the thermal

shift data the structure of GDA with valaciclovir bound within the

active site was determined at 2Å resolution from crystals where

GDA was co-crystallized in the presence of valaciclovir (Table S1).

The structure of GDA in complex with its product, xanthine, has

previously been determined and is available in the Protein Data

Bank (pdb-id: 2UZ9). When the GDA-xanthine structure is
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compared to the GDA-valaciclovir structure, no large rearrange-

ment in the overall fold of GDA was observed. However, a

hydrophobic patch (including residues Leu99, Trp102 and

Leu103) in the GDA-valaciclovir structure is slightly displaced in

order to accommodate the long hydrophobic tail of valaciclovir

(Fig. 6). The guanine base of valaciclovir makes similar interac-

tions as the xanthine base in the GDA-xanthine structure.

The relative DTagg values highlight on the importance of

different functional groups in these compounds. When comparing

the thermal shift for thioguanine and mercaptopurine, it is evident

that the loss of the amino group at the 2-position of the purine ring

of mercaptopurine, leads to less stabilization of GDA. Further-

more, replacement of O with S at 6-position also decreases the

binding of thioguanine and mercaptopurine to the enzyme,

suggesting that the loss of hydrogen bonds between the guanine

ring and Arg213 and Gln87 is the cause of weaker binding of the

analogs to GDA (Fig. 6). The thermal shifts obtained with acyclic

guanosine analogs suggest that both the length and hydrophobicity

of the sugar mimic play an important role in binding. As

demonstrated in the GDA-valaciclovir structure, the chain length

of valaciclovir matched the hydrophobic path enhancing the

stability of GDA, and the shorter chain length in acyclovir,

penciclovir and ganciclovir were associated with smaller thermal

shifts. The increased hydrophilicity of ganciclovir most likely

explained the decreased thermal shifts as compared with that of

penciclovir (Fig. 5).

The finding that valaciclovir and other acyclic guanosine

analogs are ligands for GDA may have significant implication in

the metabolism of guanine, since GDA is responsible for the

catabolism of guanine and in regulation of guanine nucleotide

pools. About 80% of xanthine produced in mammals occurs via

guanine deamination. Valaciclovir and other acyclic guanosine

analogs may act as substrates or inhibitors of GDA, and thus,

affect GDA activity. Further studies are needed in order to clarify

the effect of these analogs on GDA activity and the role of GDA in

the metabolism of acyclic guanosine analogs.

Thioguanine, but not mercaptopurine, has previously been

reported as a weak substrate for GDA [30,31]. Whether side

effects observed in treatment of various herpes virus infections

could be due to altered guanine metabolism require further

investigation. The knowledge gained in this study may stimulate

drug development programs designed to find new substrates or

inhibitors for GDA.

Fernández et al. performed in silico screening with human GDA

(PDB id: 2UZ9) and 188 guanine analogs [32]. A number of

potential ligands, including caffeine, were identified, and some of

them were tested in biochemical assays using rabbit GDA as a

model enzyme. Many compounds tested exhibited good inhibitory

effects in the mid-micromolar range. It was suggested that longer

extensions at position C2 of the purine ring would increase affinity,

due to additional hydrophobic interactions [32]. In our study,

caffeine had no effect on the thermal stability of human GDA. Our

TSA assay and structural analysis instead demonstrated that a

longer unbranched chain at position N9 of the purine base

increased the thermal stability. Only a few overlaps between the

list of 188 guanine analogs and our NAL are present. One

example was thioguanine, which was identified as a ligand using

TSA. By using in silico screening, this compound only ranked at

position 17 out of the 188 guanine analogs [32]. An explanation

for this is that the in silico approach do not allow for

conformational modulations of the proteins upon ligand binding,

whereas this might be required as exemplified by the structure of

GDA-valaciclovir in this study.

Figure 2. Concentration-dependent stabilization of UPP1 (A) in
the presence of uridine, vidarabine, idoxuridine, trifluridine
and fluorouracil; GDA (B) in the presence of guanine,
valaciclovir, aciclovir, thioguanine, penciclovir, ganciclovir
and mercaptopurine; and concentration dependent destabili-
zation of RRM1 (C) in the presence of azathioprine.
doi:10.1371/journal.pone.0037724.g002
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Ribonucleotide Reductase Large Subunit (RRM1)
Human ribonucleotide reductase (RR) plays an important role

in the de novo pathway of nucleotide metabolism. RR synthesizes

four deoxyribonucleoside diphosphates (dNDPs) by reducing

NDPs into their dNDP forms [33]. RR in humans is composed

of R1 and one of the two R2 subunits [34]. The expression of the

R2 subunit is tightly regulated both at the transcriptional and post-

translational levels. RR is able to maintain a balanced dNTP pool

within the cell, based on its sophisticated allosteric regulation.

RRM1 (name for the R1 subunit) contains three nucleotide

binding sites; the catalytic site and two allosteric sites. One

allosteric site is the activity site, which binds either ATP or dATP,

and functions as an on-off switch. The specificity site is the other

allosteric site, where ATP, dATP, dTTP or dGTP binds and alter

the activity of the enzymes for the four substrates, CDP, UDP,

GDP or ADP. The activity site is located in the N-terminus formed

by four a-helices [33–35]. Since RRM1 investigated here is a

truncated version, missing the first 74 amino acid residues, the

activity site is absent.

No significant positive stabilization of RRM1 was seen from any

member of the NAL. The destabilization of RRM1 by azathio-

prine, however, was concentration-dependent (Fig. 2C). We have

Figure 3. Ligands of UPP1 and mean DTagg with 1000 mM NA.
doi:10.1371/journal.pone.0037724.g003
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earlier noted with other enzymes that concentration-dependent

destabilization may be due to specific binding of the ligand

(Larsson and Nordlund, unpublished). Azathioprine is a prodrug

of mercaptopurine with an imidazole ring attached to the 6-thiol

group. Mercaptopurine destabilized RRM1 also, but only to a

lesser degree. Mercaptopurine-diphosphate is a substrate for

ribonucleotide reductase where it is activated to the deoxy form

before incorporation into DNA. It is possible that the azathioprine

precursor also interacts with the enzyme although this interaction

remains to be confirmed in further detail.

Conclusions
Few cross reactivities were observed between the 23 enzymes

investigated within the nucleotide pathway and the 45 FDA-

approved NAs. However, we identified interactions between

vidarabine, trifluridine, idoxuridine, zidovudine, telbivudine,

fluorouracil, floxuridine, thioguanine and UPP1. Furthermore,

vidarabine was found to be a mixed-type inhibitor of UPP1, which

is suggestive of an independent binding of both the uridine

substrate and the vidarabine ligand to the enzyme. Interactions

were detected between GDA and valaciclovir, aciclovir, penciclo-

vir, ganciclovir, thioguanine and mercaptopurine. UPP1 and

GDA bind nucleoside and nucleobase, respectively. This is

probably one reason why we were able to identify interactions

with these two enzymes, since our NAL consists of both

nucleosides and nucleobase analogs.

In order to make more comprehensive screen toward enzymes

within the nucleotide pathway, we suggest that a full library of all

enzymes in nucleoside and nucleotide metabolism and a complete

library of NAs, NAMPs, NADPs and NATPs should be used. If a

second substrate is necessary, as a first binder or activator, the

enzyme should be screened in the presence of this, thereby

obtaining the ‘‘full fingerprint’’ of the enzyme, as observed in case

of dCK and ATP. This approach would probably generate a more

extensive view of the cross-reactivities between nucleotide metab-

olism pathway enzymes and NAs and probably reveal additional

binding of phosphorylated nucleoside adducts to these enzymes.

Materials and Methods

Nucleoside Analog Library
The following compounds for the NAL screening were

purchased from Sigma: adefovir dipivoxil, adenosine, allopurinol,

azacytidine, azathioprine, caffeine, clofarabine, cytarabine, deci-

Table 3. Mean DTagg (uC) for UPP1.

NA DTagg (NA+R1P) DTagg (NA only)

Vidarabine 6.17 4.10

Trifluridine 3.78 1.26 *

Idoxuridine 1.72 1.31 *

Thioguanine 0.86 0.65

Zidovudine 0.64 20.39

Fluorouracil 0.59 0.42

Telbivudine 0.29 20.52

Tagg 56.7 57.0

The average deviation from mean value is less than 60.5uC.
*Indicates that deviation is greater than 60.5uC. Tagg of UPP1 in the absence of
NA is listed. The concentration of NA was 500 mM and R1P (ribose-1-phosphate)
was 1 mM.
doi:10.1371/journal.pone.0037724.t003

Figure 4. Kinetic analysis of UPP1 using Lineweaver-Burk plots. Uridine was used as substrate (50 to 375 mM) and vidarabine was as inhibitor
at 500 mM (?), 250 mM (?), and 100 mM (m) and 0 mM (X).
doi:10.1371/journal.pone.0037724.g004
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tabine, dyphylline, flucytosine, fluorouracil, idoxuridine, nelar-

abine, theobromine, theophylline, thioguanine, trifluridine, vala-

ciclovir, vidarabine and zalcitabine. Cladribine and floxuridine

were purchased from Calbiochem. Abacavir sulfate, capecitabine,

famciclovir, penciclovir, pemetrexed and telbivudine were ob-

tained from Toronto Research Chemicals. Emtricitabine, enteca-

vir, tenofovir and valganciclovir were supplied by Moravek

Biochemicals Inc. Mercaptopurine was purchased from Fischer

Scientific and cidofovir was purchased from Bosche Scientific.

Aciclovir, didanosine, fludarabine, ganciclovir, gemcitabine,

lamivudine, pentoxyfylline, ribavirin, stavudine and zidovudine

were purchased from the European Directorate for the Quality of

Medicines.

Enzyme Preparations
Genes were obtained from the National Institutes of Health

Mammalian Gene Collection (for accession numbers, see Table 1)

except for the dCK construct, which was a kind gift from Drs. Liya

Wang and Elena Sjuvarsson, SLU, Sweden [36]. Each gene was

amplified and inserted into an appropriate vector, contained either

an N- or C-terminal His-tag. Vectors containing the correct insert

were transformed into an E. coli expression host and stored at

280uC until further use.

Figure 5. Ligands of GDA and mean DTagg with 1000 mM NA.
doi:10.1371/journal.pone.0037724.g005
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Cells from glycerol stocks were inoculated into either TB or LB

medium containing antibiotics and grown overnight at 37uC. Cells

from overnight cultures were used to inoculate TB or LB medium

(750 ml to 4.5 l) supplemented with antibiotics. Approximately

50 ml of Breox antifoam (Cognis Performance Chemical UK Ltd)

was added to each flask. Cultures were grown at 37uC until an

OD600 of 1.2 to 1.5 was obtained; this was followed by a cooling

period of 1 h at 18uC in a water bath. Expression was induced by

addition of 0.5 mM isopropyl-?-D-galactoside and incubation

overnight at 18uC. The cells were harvested the following morning

by centrifugation (55006g, 20 min, 4uC). The resulting cell pellet

was stored at 280uC.

Cells were disrupted either by sonication or high-pressure

homogenization (TC5-0612W-332 from Stansted fluid power Ltd)

and cell debris removed by centrifugation (49 0006g, 20 to

60 min, 4uC). The supernatant was decanted and filtered through

a 0.45 mm syringe filter. Proteins were purified on an ÄKTAprime

system (GE Healthcare) in a two-step process, including an IMAC

Ni-charged column (1 to 5 ml HiTrap Chelating HP (GE

Healthcare) and gel filtration column (Superdex 75 or 200). The

IMAC column was equilibrated with IMAC wash buffer 1

(20 mM HEPES, 500 mM NaCl, 10% glycerol, 10 mM imidaz-

ole, 0.5 mM TCEP, pH 7.5). Protein was applied and washed

with IMAC wash buffer 1 and 2 (20 mM HEPES, 500 mM NaCl,

10% glycerol, 25 mM imidazole, 0.5 mM TCEP, pH 7.5). Bound

protein was eluted from the IMAC column with IMAC elution

buffer (20 mM HEPES, 500 mM NaCl, 10% glycerol, 500 mM

imidazole, 0.5 mM TCEP, pH 7.5) and automatically loaded onto

the gel filtration column, which had been equilibrated with gel

filtration buffer (20 mM HEPES, 300 mM NaCl, 10% glycerol,

0.5 mM TCEP, pH 7.5). Fractions were analyzed by SDS-PAGE

and those containing the target proteins were pooled and

concentrated using a centrifugal filter device with a 10,000

molecular weight cut off (MWCO). The identity of each protein

was confirmed by mass spectrometry. Additional information can

be obtained from http://www.thesgc.org/structures.

Thermal Shift Assay Using Differential Static Light
Scattering

All compounds were dissolved in 100% dimethylsulfoxide

(DMSO) as 20 mM stocks, except for cidofovir which was

solubilized in buffer A (20 mM HEPES pH 7.5, 300 mM NaCl,

1 mM MgCl2) and stored at 220uC. The compounds were diluted

in buffer A at final concentrations of 100 and 500 mM in 96-well

screening plates and stored at 280uC, and thawed immediately

before use.

Before measuring protein aggregation using the TSA and

differential static light scattering (DSLS), proteins were centrifuged

for 5 min in order to remove possible protein aggregates. Protein

was added to each well to a final concentration of 0.2 mg/ml

(assuming a molecular weight of 35 kDa , 6 mM), and transferred

to 384-well optical bottom plates (#242764; Nunc, Rochester,

NY, USA). The samples were run in duplicate on each screening

plate. The experiments were performed using a Stargazer-384

(Harbinger Biotechnology and Engineering Corporation, Toron-

to, Canada) with an assay volume of 50 ml per well. 45 ml of

mineral oil (#M1180, Sigma-Aldrich) was added to each well, to

prevent evaporation. The plates were heated at 1uC?min-1, and

images were taken every 0.5uC in the range 25 to 80uC.

Intensities, as a measure of light scattering from protein

aggregation, were converted from the images and plotted as a

function of temperature. The midpoint of transition, the aggre-

gation temperature (Tagg) [10,15], was calculated using the

manufacturer’s software (Harbinger Biotech). DTagg represents

the calculated difference between Tagg of a protein in the presence

of a compound and under control conditions without the

compound. In some cases, proteins were screened in the presence

of a co-substrate/product, which was added to the protein solution

before adding it to the screening plate.

Kinetic Studies of UPP1 with Vidarabine as Inhibitor
Reaction mixtures containing different concentrations of

uridine (50, 100, 175, 250 and 375 mM), vidarabine (0, 100,

250 and 500 mM) and 1.6 ng recombinant UPP1 in a total

volume of 100 ml reaction buffer (10 mM Tris–HCl pH 7.6,

300 mM NaCl, 1 mM EDTA, 2 mM KH2PO4/K2HPO4) were

incubated at room temperature. After 10 min, the reaction

mixtures were heated at 95uC for 3 min to inactivate the

enzyme. The reaction products were separated on a reverse-

phase RP-8 column (Merck Chemicals Ltd) and quantified by

HPLC analysis (Alliance 2690, Waters). The separation of

uridine from uracil was performed by a linear gradient from

100% separation buffer (50 mM NaH2PO4, 5 mM heptane

sulfonic acid pH 3.2) to 60% separation buffer plus 40%

acetonitrile (3 min 100% separation buffer; 6 min linear gradient

of 100% separation buffer to 60% separation buffer plus 40%

acetonitrile; 6 min 60% separation buffer plus 40% acetonitrile,

followed by equilibration at 100% separation buffer). UV-based

detection of uridine and uracil was performed at 253 nm and the

retention time was 3.17 min (uridine), 2.50 min (uracil) and

10.15 min (vidarabine), respectively.

The data were fitted into Michealis-Menten equation using

double reciprocal plots and regression lines were made for each set

of data points. Mode of inhibition was deduced by Lineweaver-

Burk plots.

Crystallization, Data Collection and Structure
Determination of GDA

Crystals were obtained by the sitting drop vapor diffusion

method using a 96-well plate. Protein solution (15 mg/ml, 0.1 ml)

Figure 6. GDA in complex with valaciclovir. Amino acids that form
hydrogen bonds to the guanine base of valaciclovir are shown. The a-
helix containing the hydrophobic patch is superimposed with the
corresponding residues of the GDA-xanthine structure (black).
doi:10.1371/journal.pone.0037724.g006
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containing 2 mM valaciclovir was mixed with precipitant solution

(0.1 ml) containing 20% PEG 6000, 100 mM HEPES pH 7.0 and

200 mM MgCl2 and the drops were equilibrated at 4uC. A

crystal was dipped into a cryo solution (100 mM HEPES pH 7.0,

200 mM MgCl2, 21% PEG 6000, 20% glycerol, 300 mM NaCl

and 1.8 mM valaciclovir) and flash-frozen in liquid nitrogen.

Data was collected at the Bessy beamline BL14-2 and processed

with XDS [37] and Scala [38]. For molecular replacement,

protein data bank (PDB) entry 2UZ9 was used as an input for

MOLREP [38]. Model building and refinement were performed

with COOT [39], REFMAC5 [40] and Phenix [41] (Table S1).

Superpositions were made using the SSM superposition algo-

rithm in COOT [39,42]. Structural representations were made

using PyMOL [43].

The coordinates and structure factors have been deposited to

the Protein Data Bank with the accession code 4AQL. All data

collection and refinement statistics are shown in Table S1.

Supporting Information

Table S1 Data and refinement statistics for GDA in complex

with valaciclovir.

(DOC)

Table S2 Common names and IUPAC names for NAs included

in the NAL.

(DOC)
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