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Abstract: An inductive debris sensor can monitor a mechanical system’s debris in real time.
The measuring accuracy is significantly affected by the signal aliasing issue happening in the
monitoring process. In this study, a mathematical model was built to explain two debris particles’
aliasing behavior. Then, a cross-correlation-based method was proposed to deal with this aliasing.
Afterwards, taking advantage of the processed signal along with the original signal, an optimization
strategy was proposed to make the evaluation of the aliasing debris more accurate than that merely
using initial signals. Compared to other methods, the proposed method has fewer limitations in
practical applications. The simulation and experimental results also verified the advantage of the
proposed method.
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1. Introduction

Wear and friction are common phenomena in mechanical systems. Researchers have found that
the cumulative behaviors of wear and tear in mechanical systems are the primary causes of mechanical
failure [1,2]. Debris is generated continuously in the process of friction and wear, with many useful
characteristics that can reflect the health condition of a mechanical system [3,4]. For example, the size,
concentration and cumulation of debris reflect the rate of wearing and the shape, and the components
of the debris reflect the location of wear [5,6]. More previous research [7,8] also indicated that the size
and concentration of debris vary in different periods of wear. In normal conditions, the size of wear
debris is in the range of 1–20 µm; when abnormal wear begins, the size of the debris particles rises up
to 50–100 µm; in the meantime, there is an increase in the debris’ concentration; when the middle and
late periods of the lifetime of a machine are reached, a large number of debris particles over the size of
200 µm is generated [8,9]. Various methods have been developed to detect oil debris [10–12], among
which inductive debris sensors have shown great potential, with the advantages of online detection,
a simple structure and being insensitive to oil [13].

When oil debris in an oil pipe passes through the sensitive area of an inductive debris sensor,
it leaves electromagnetic disturbances in the output signal of the inductive debris sensor [14,15].
It is possible to trace the characteristics of debris by processing the output signal; the number of
the output signal waveforms can reflect the number of debris particles, and the peak value of the
output signal waveform can reflect the size of the debris. Earlier in 1988, Centers et al. designed an
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inductive sensor that is able to detect debris over the size of 250 µm [9]; at the same time, an inductive
sensor capable of measuring the cumulative size of debris was designed by Chambers et al. [16].
Hong et al. designed a radial magnetic field-based debris sensor that is able to detect ferromagnetic
debris over the size of 81 µm in a 12 mm-diameter pipe [17]. Specifically, we utilized this radial
magnetic field-based debris sensor in our experiment; the external and internal structure of this sensor
is shown in Figure 1. The external structure mainly includes a main body, signal output and tube
position for pipe. The internal structure mainly consists of an iron core, permanent magnet and
inductive coil [13].
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Figure 1. Radial magnetic field-based debris sensor: external (a) and internal (b) structure. 
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other, which leads to an inaccurate signal. At present, the practical methods for evaluating the 
number and size of debris particles depend on the number and the peak value of the signal waveform 
of the debris passing through the inductive sensor [14]. Meanwhile, after the aliasing, the features of 
the signal waveform, such as the number and peak value, can be influenced. When the peak values 
are heavily weakened by the aliasing, which can cause a no-detection scenario, this method does not 
work. Recently, Zhong et al. [18] tried to separate aliasing debris using two debris sensors, but they 
only focused on the special case of two debris particles located in the same radical direction of the 
sensor. After this, Li et al. carried out a degenerated unmixing estimation technique to separate 
aliasing signals [19], but many sophisticated assumptions are made using this method, which may 
not be applicable in practical systems. The aliasing error can be reduced by studying the debris 
signal’s aliasing behavior; a further solution to recover the undetected debris waveform can make the 
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two-stage de-noising scheme to eliminate vibration and background noise. Hong et al. [17] presented 
a hybrid method combining a band pass filter with a correlation algorithm to improve the SNR. 

In Hong‘s article [17], he used a correlation algorithm to eliminate random noise and enlarge a 
single debris signal’s peak value. By operating a correlation algorithm, the similarity (which is the 
debris’ waveform) between two series is enlarged as a larger peak value. While an aliasing signal can 
be seen as the mixing of several single debris signals, each single debris signal’s peak value is 
supposed to be enlarged, respectively, when correlation computing is operated. Inspired by this, we 
propose operating the cross-correlation of the aliasing signal using a standard debris signal. A 
mathematical model-based analysis was first performed to explain the aliasing phenomenon as well 
as the effective range for our proposed method. Afterwards, an optimization strategy was taken to 
perform a better evaluation of the affected signal’s peak value. In the simulation experiment, the 
effectiveness of our proposed method in dealing with two debris particles’ aliasing issue was tested; 
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experiment was performed to verify the efficiency of our method in practice. In both experiments, by 
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Figure 1. Radial magnetic field-based debris sensor: external (a) and internal (b) structure.

Most of the aforementioned research focused on improving the sensitivity of the inductive debris
sensor, in order to detect smaller debris. However, when two debris particles pass through the sensitive
area of an inductive sensor within a close distance of each other, their signals alias with each other,
which leads to an inaccurate signal. At present, the practical methods for evaluating the number
and size of debris particles depend on the number and the peak value of the signal waveform of the
debris passing through the inductive sensor [14]. Meanwhile, after the aliasing, the features of the
signal waveform, such as the number and peak value, can be influenced. When the peak values are
heavily weakened by the aliasing, which can cause a no-detection scenario, this method does not
work. Recently, Zhong et al. [18] tried to separate aliasing debris using two debris sensors, but they
only focused on the special case of two debris particles located in the same radical direction of the
sensor. After this, Li et al. carried out a degenerated unmixing estimation technique to separate
aliasing signals [19], but many sophisticated assumptions are made using this method, which may not
be applicable in practical systems. The aliasing error can be reduced by studying the debris signal’s
aliasing behavior; a further solution to recover the undetected debris waveform can make the results
more accurate.

A severe aliasing influence will reduce the peak value to an extent that it becomes below the
threshold value or, even worse, below the noise value. Typically, there are three ways to deal with
this problem: reducing the threshold value, improving the signal-to-noise ratio (SNR), or improving
the affected peak value. Reducing the threshold value will bring in noise signals, which results in a
reduction in reliability. Improving the SNR has been frequently studied; Bozchalooi et al. [20] used a
two-stage de-noising scheme to eliminate vibration and background noise. Hong et al. [17] presented a
hybrid method combining a band pass filter with a correlation algorithm to improve the SNR.

In Hong‘s article [17], he used a correlation algorithm to eliminate random noise and enlarge a
single debris signal’s peak value. By operating a correlation algorithm, the similarity (which is the
debris’ waveform) between two series is enlarged as a larger peak value. While an aliasing signal can
be seen as the mixing of several single debris signals, each single debris signal’s peak value is supposed
to be enlarged, respectively, when correlation computing is operated. Inspired by this, we propose
operating the cross-correlation of the aliasing signal using a standard debris signal. A mathematical
model-based analysis was first performed to explain the aliasing phenomenon as well as the effective
range for our proposed method. Afterwards, an optimization strategy was taken to perform a better
evaluation of the affected signal’s peak value. In the simulation experiment, the effectiveness of
our proposed method in dealing with two debris particles’ aliasing issue was tested; factors such as
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the influence of noise were also considered in the simulation. At last, a real wax block experiment
was performed to verify the efficiency of our method in practice. In both experiments, by using our
proposed method, we expected to perform a more accurate evaluation of the affected debris’ peak
value than that using the initial unprocessed signal. While there is no need for extra sensors when
implementing or calculating the resources for sophisticated algorithms, the verification of our proposed
method will solve the debris aliasing issue of the inductive debris sensor in a more practical way.

The rest of the paper is organized as follows: In Section 2, the aliasing issue is analyzed based
on a mathematical model. In Section 3, a crossing-correlation algorithm for an aliasing signal is
built; a strategy to optimize the aliasing problem is formulated. In Section 4, the performance of the
simulation and experiment is presented. In Section 5, some conclusions and remarks are presented.

2. Model Analysis of Debris Aliasing Signal

2.1. Aliasing Signal Model of Debris Aliasing Behavior

Based on our previous research [10,13,21], when a single debris particle passes through the debris
sensor, it generates a sinusoid-like signal as shown in Figure 2a. Supposing a piece of debris is passing
through the sensor at a constant speed and the time it reaches the sensor is t = 0, the output signal of
the sensor mixed with noise at a specific frequency and random noise can be defined as

V(t) =
{

λ sin(ωt) + λx sin(ωnt) + n(t), (0 ≤ t ≤ 2π/ω)
λx sin(ωnt) + n(t), (t< 0 or 2π/ω >t)

(1)

where λ is the amplitude of the debris signal and is related to the size of the debris [21]; ω is the
frequency of the moving debris signal; λx and ωn are the amplitude and frequency of noise at a specific
frequency, respectively; and n(t) is the random noise.

Sensors 2020, 20, x FOR PEER REVIEW  3 of 18 

 

debris’ peak value than that using the initial unprocessed signal. While there is no need for extra 
sensors when implementing or calculating the resources for sophisticated algorithms, the verification 
of our proposed method will solve the debris aliasing issue of the inductive debris sensor in a more 
practical way. 

The rest of the paper is organized as follows: In Section 2, the aliasing issue is analyzed based 
on a mathematical model. In Section 3, a crossing-correlation algorithm for an aliasing signal is built; 
a strategy to optimize the aliasing problem is formulated. In Section 4, the performance of the 
simulation and experiment is presented. In Section 5, some conclusions and remarks are presented. 

2. Model Analysis of Debris Aliasing Signal 

2.1. Aliasing Signal Model of Debris Aliasing Behavior 

Based on our previous research [10,13,21], when a single debris particle passes through the 
debris sensor, it generates a sinusoid-like signal as shown in Figure 2a. Supposing a piece of debris 
is passing through the sensor at a constant speed and the time it reaches the sensor is 𝑡 = 0, the 
output signal of the sensor mixed with noise at a specific frequency and random noise can be  
defined as 𝑉(𝑡) = ൜𝜆 sin(𝜔𝑡) + 𝜆௫ sin(𝜔𝑡) + 𝑛(𝑡),     (0 ≤ 𝑡 ≤ 2𝜋/𝜔)𝜆௫ sin(𝜔𝑡) + 𝑛(𝑡),             (𝑡 < 0  or  2𝜋/𝜔 > 𝑡)  (1) 

where 𝜆 is the amplitude of the debris signal and is related to the size of the debris [21]; 𝜔 is the 
frequency of the moving debris signal; 𝜆௫ and 𝜔 are the amplitude and frequency of noise at a 
specific frequency, respectively; and 𝑛(𝑡) is the random noise. 

Since the aliasing phenomenon in the practical systems is the superposition of two or multiple 
two debris particles, it is fundamental to study the aliasing effect of two debris particles. 

Y
XO

Debris

t

V

O

 
(a) 

Y

XO

Debris B Debris A

t

V

O

xΔ

tΔ
 

(b) 

Figure 2. Debris passing the sensor and the signal generated under different situations: (a) Single 
debris particle passing through the sensor; (b) Two debris particles passing through the sensor. 

In an inductive debris sensor, the debris signal generation includes the process of 
electromagnetic induction and the process of electrical response. Since the superposition theorem is 
suitable for both processes, the output signal can be simplified as the superposition of the two 
independent debris signals. Figure 2b shows the process and output signal when Debris A and Debris 
B pass the debris sensor along the 𝑋 axis with a distance ∆𝑥. It is important to note that all debris 
moves with the oil and passes through the debris sensor at the same speed. By using the function 
defined in Equation (1) and ignoring the interference of noise (noise is not the main reason why 
aliasing occurs, and the SNR was also optimized based on the previous research), we can obtain the 
signal model for two aliasing debris particles as 

Figure 2. Debris passing the sensor and the signal generated under different situations: (a) Single
debris particle passing through the sensor; (b) Two debris particles passing through the sensor.

Since the aliasing phenomenon in the practical systems is the superposition of two or multiple
two debris particles, it is fundamental to study the aliasing effect of two debris particles.

In an inductive debris sensor, the debris signal generation includes the process of electromagnetic
induction and the process of electrical response. Since the superposition theorem is suitable for both
processes, the output signal can be simplified as the superposition of the two independent debris
signals. Figure 2b shows the process and output signal when Debris A and Debris B pass the debris
sensor along the X axis with a distance ∆x. It is important to note that all debris moves with the oil
and passes through the debris sensor at the same speed. By using the function defined in Equation (1)
and ignoring the interference of noise (noise is not the main reason why aliasing occurs, and the SNR
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was also optimized based on the previous research), we can obtain the signal model for two aliasing
debris particles as

V(t) =


λ1 sin(ωt), t ∈ [0, ∆t)
λ1 sin(ωt) + λ2 sin[ω(t− ∆t)], t ∈ [∆t, 2π/ω)
λ2 sin[ω(t− ∆t)], t ∈ [2π/ω, 2π/ω+ ∆t]

(2)

where we divided the function into three segments (I, II and III), as shown in Figure 3.
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Figure 3. The three segments of the signal model for two aliasing debris.

Segment I represents the normal signal part of Debris A. Segment II represents the aliasing part of
Debris A and B. Segment III represents the normal signal part of Debris B. In Equation (2), λ1 is the
amplitude of the Debris A signal, λ2 is the amplitude of the Debris B signal, and ∆t is the time delay of
Debris B. If T is set as the time a single debris particle passes through the sensitive area of the sensor,
then T = 2π/ω.

2.2. Analysis of the Aliasing Signal Model

In threshold-based debris detection, the peak values of the detected waveform play an important
role in indicating the existence of debris as well as evaluating the debris’ size [5,12], while the peak
value is heavily influenced when aliasing happens. In the following step, focusing on figuring out
the peak value (here, we only focused on the maximum value) using Equation (2), the behavior of
debris aliasing and mechanism behind it is discussed. Considering the number and magnitude of
Equation (2)’s maximum value varies with the change in ∆t, we divided the superposition results into
four different states as shown in Figure 4.

• When ∆t ∈ [0, T/4)

This case as shown in Figure 4a represents the situation in which the distance between two debris
particles is very narrow. It can be calculated that V′(t) > 0 when in Segment I and V′(t) < 0 when in
Segment III, so it is obvious that the peaks are not in these two segments. The peak exists in Segment II.

In Segment II, let V′(t) = ωλ1 cosωt+ωλ2 cosω(t− ∆t) = 0; two peaks can be obtained. The time
index of the maximum is

t0 =
π
ω
−

1
ω

arctan
λ1 + λ2 cos(ω∆t)
λ2 sin(ω∆t)

(3)

Then, the value of the maximum at t0 can be calculated as

V(t0) =
√
λ2

1 + λ2
2 + 2λ1λ2 cos(ω∆t) (4)

Make k = λ1/λ2, then

V(t0) = λ2

√
k2 + 2k cos(ω∆t) + 1 (5)

• When ∆t ∈ [T/4, T/2)
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In this case, as illustrated in Figure 4b, the distance between two debris particles is not very
narrow. In Segment I, let

V′(t) = ωλ1 cos(ω t) = 0 (6)

We have
t1 = π/2ω (7)

indicating a maximum of V(t1) = λ1 in Segment I. Correspondingly, there is a minimum in Segment III.
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Figure 4. Four typical superposition states: under different situations: (a) ∆t ∈ [0, T/4); (b) ∆t ∈
[T/4, T/2) ; (c) ∆t ∈ [T/2, 3 T/4) ; (d) ∆t ∈ [3T/4, T) .

In Segment II, let
V′(t) = ωλ1 cos(ω t) +ωλ2 cos[ω(t− ∆t)] = 0 (8)

having two extreme values. The time index of the maximum is

t0 =
π
ω
−

1
ω

arctan
λ1 + λ2 cos(ω∆t)
λ2 sin(ω∆t)

(9)

as well as the value of the maximum being

V(t0) = λ2

√
k2 + 2k cos(ω∆t) + 1 (10)

• When ∆t ∈ [T/2, 3T/4)

In this case, as shown in Figure 4c, the extreme values in Segments I and III still exist and the
maximum in Segment I is still V(t1) = λ1. The maximum in Segment II is at t1 = 2π/ω, and we have

V(t1) = −λ2 sin(ω∆t) (11)

• When ∆t ∈ [3T/4, T)

In this case, as shown in Figure 4d, there is a maximum λ1 in Segment I and a maximum λ2 in
Segment III.
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According to the analysis above, we can conclude that the aliasing affects the shape of the debris
signal, especially Debris B’s peak. To help analyze the effect of aliasing, we focused on analyzing three
of the waveforms’ features: the value of each detected maximum, number of detected maximums and
sum value of the overall detected maximums; correspondingly, these features can indicate the size,
number and cumulative weight of the debris particles. Furthermore, to help evaluate the severity of
the aliasing, the relative size (RS) is proposed to replace size. Specifically,

RS =
λA
λN

(12)

where λN is the normal value of the signal’s maximum without aliasing; λA is the value of the maximum
after aliasing. Furthermore, the RS of the overall size can be defined as RSO. As in the case of Equation
(5), V(t0) is the result after aliasing; it represents the sum value of overall maximum. Then, RSO is

RSO =
V(t0)

λ1 + λ2
=

√√
1 +

2 cos(ω∆t) − 2
λ1
λ2

+ λ2
λ1

+ 2
, ∆t ∈ [0, T/4) (13)

When the sizes of the debris particles approach each other in a certain stage of wearing, we assume
the two debris particles are of similar size in the aliasing, that is, k = 1. Then, Equation (13) can be
simplified as

RSO =

√
1 +

cos(ω∆t) − 1
2

, ∆t ∈ [0, T/4) (14)

Expanding, we have

RSO =



√
1 + cos(ω∆t)−1

2 , ∆t ∈ [0, T/4)
1+
√

2+2 cos(ω∆t)
2 , ∆t ∈ [T/4, T/2)

1−sin(ω∆t)
2 , ∆t ∈ [T/2, 3T/4)
1, ∆t ∈ [3T/4, T)

(15)

Similarly, we define the RS of Debris B as

RSB =


√

2 cos(ω∆t) + 2, ∆t ∈ [T/4, T/2)
− sin(ω∆t), ∆t ∈ [T/2, 3T/4)

1, ∆t ∈ [3T/4, T)
(16)

Based on the analysis above, a further summary can be made. In Table 1, three selected features of
the aliasing signal are used to present the performance of the two similar debris particles’ aliasing
signals when ∆t is moving at different intervals. The symbol ↓means the value of RS decreases with
an increase in ∆t’s value, while the symbol ↑ means the value of RS increases with an increase in
∆t’s value.

Table 1. Performance of two similar debris particles’ aliasing.

∆t Number of Detected Debris RSO (Overall Size) RSB (Debris B)

[0, T/4) 1 ↓ ——
[T/4, T/2) 2 ↓ ↓

T/2 1 1/2 0
(T/2, 3T/4) 2 ↑ ↑

[3T/4, T) 2 1 1

From Table 1, when ∆t belongs to the interval of [0, T/4), only one maximum can be detected;
the overall size is available but affected more severely with an increase in ∆t. In this case, it is
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impossible to distinguish whether the signal is from a large size debris particle or two small-size
debris particles. When ∆t is moving from [T/4, T/2) to [T/2, 3T/4) , the information of Debris A is
unaffected; the information of Debris B becomes worse when ∆t increases in the interval of [T/4, T/2) ,
reaching the worst situation in which Debris B’s information vanishes when ∆t = T/2, and then
becomes better with an increase in ∆t in the interval of (T/2, 3T/4). When ∆t moves to the next interval,
the aliasing phenomenon disappears. It is obvious that the aliasing is more serious when ∆t is in the
interval around T/2 than in other intervals. The second severe area is in the interval of [0, T/4).

3. Cross-Correlation Algorithm-Based Optimization

A cross-correlation (CC) algorithm means the infinite integrals of two functions that are the
complex conjugate and inverse translation are multiplied, or the infinite integration of the first function
is the complex conjugate, which is translated in turn and then multiplied by a second function.
The calculation formula for cross-correlation is Equations (16) or (17):

Rfh(x) =
∫
∞

−∞

f ∗(t) h(t + τ)dt (17)

Rfh(x) =
∫
∞

−∞

f ∗(t− τ) h(t)dt (18)

Physically, the result of cross-correlation reflects the measure of similarity between two signals.
Based on this and the aliasing signal model built in Section 2, the potential of a sliding correlation in
dealing with two similar debris particles’ aliasing problem is studied in this section.

3.1. Cross-Correlation Analysis of Aliasing Signal

In our algorithm, as illustrated in Figure 5, there is a sliding window moving from the beginning
of the aliasing signal to the end. In the sliding window, the integration of two functions is operated by
each moving step. The result in a whole term can be expressed as follows

c(τ) =
∫
∞

−∞

x(t− τ)·V(t)dt (19)

where c(τ) is the result of the algorithm, τ is the moving distance of the sliding window, and x(t− τ)
represents the waveform of a single debris particle’s normal signal like in Figure 2a. According to
Figure 3, where V(t) is the linear addition of two single signals, the process in Figure 5a can be
separated into b and c; the result of a is then the linear addition of the results from b and c as illustrated
in the right side of Figure 5.

The process in Figure 5b can be expressed as

cA(τ) =

∫
∞

−∞

xA(t)·x(t− τ)dt (20)

where xA(t) represents the waveform of Debris A. Equation (19) has a different expression when τ
belongs to different intervals.

• When τ ∈ [−2π/w, 0)

cA(τ) =

∫ τ+2π/ω

0
λ1 sin(ωt)· sinω(t− τ)dt (21)

• When τ ∈ [0, 2π/w)

cA(τ) =

∫ 2π/ω

τ+2π/ω
λ1 sin(ωt)· sinω(t− τ)dt (22)
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According to the result of Equations (21) and (22), we have

cA(τ) =


0, τ< − 2π

ω or τ > 2π
ω

1
2λ1

(
τ+ 2π

w

)
cos(ωτ) − λ1

2w sin(ωτ), τ ∈
[
−

2π
ω , 0

)
1
2λ1

(
−τ+ 2π

w

)
cos(ωτ) + λ1

2w sin(ωτ), τ ∈
[
0, 2π

ω

) (23)
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Similarly, the process in Figure 5c can be expressed as

cB(τ) =

∫
∞

−∞

1
k
·xA(t− ∆t)·x(t− τ)dt (24)

A further transformation of Equation (24) can produce

cB(τ) =
1
k

∫
∞

−∞

x(t1)·x(t1 + ∆t− τ)dt1=
1
k

cA(τ− ∆t) (25)

where t1 = t− ∆t. Then, the process in Figure 5a can be expressed as

c(τ) = cA(τ) + cB(τ) = cA(τ) +
1
k

cA(τ− ∆t) (26)

According to the analysis above, we can obtain the function of c(τ) as follows:

c(τ) =



0, τ < − 2π
ω or τ ≥ 2π

ω + ∆t
c1(τ), τ ∈

[
−

2π
ω ,− 2π

ω + ∆t
)

c1(τ) +
1
k c1(τ− ∆t), τ ∈

[
−

2π
ω + ∆t, 0

)
c2(τ) +

1
k c1(τ− ∆t), τ ∈ [0, ∆t)

c2(τ) +
1
k c2(τ− ∆t), τ ∈

[
∆t, 2π

ω

)
1
k c2(τ− ∆t), τ ∈

[
2π
ω , 2π

ω + ∆t
)

(27)
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where c1(τ) = 1
2λ1

(
τ+ 2π

w

)
cos(ωτ) − λ1

2w sin(ωτ), c2(τ) = 1
2λ1

(
−τ+ 2π

w

)
cos(ωτ) + λ1

2w sin(ωτ) and 0
≤ ∆t ≤ 2π/w.

Assuming the two debris particles are of a similar size, which is k = 1, Equation (27) can be
simplified. Under this situation, the waveform’s shape is symmetrical, respecting τ = ∆t/2. With the
moving of ∆t, there are two kinds of c(τ) waveform as depicted in Figure 6b,c. With an increase in ∆t,
c(τ)’s shape will turn from (b) to (c).
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Both situations have a peak when τ = ∆t/2, while only Situation c presents two maximums.
While the peak in Figure 6c is a minimum, it must satisfy the following function{

c′(τ) = 0
c′′ (τ) > 0

(28)

After dealing with the above function, we have a satisfactory answer for ∆t > 9π/10w.

• When 0 < ∆t < 9π/10w

As shown in Figure 6b, there is only one maximum at τ = ∆t/2, and its value is

c
(1

2
∆t

)
= λ1

(2π
ω
−

1
2

∆t
)

cos
(1

2
ω∆t

)
+

1
w
λ1 sin

(1
2
ω∆t

)
(29)

• When ∆t > 9π/10w

The peak at τ = ∆t/2 is a minimum, as shown in Figure 6c; the maximums are at around τ = 0
and τ = ∆t:

c(0) = c(∆t) =
πλ1

ω
+

1
2
λ1

(2π
ω
− ∆t

)
cosω∆t +

λ1

2ω
sinω∆t (30)

Similarly to in Section 2, we select the characteristics of the number of detected maximums,
the relative size of Debris B’s CC maximum RSB

′, and the relative size of the overall maximums.
While the CC result of one debris signal along is λ1π

w , we have

RS′O =


c(∆t/2)
2λ1π/ω =

(
1− ω

4π∆t
)

cos
(

1
2ω∆t

)
+ 1

2π sin
(

1
2ω∆t

)
, 0 < ∆t < 9π/10w

c(0)+c(∆t)
2λ1π/ω = 1 +

(
1− ω∆t

2π

)
cosω∆t + sinω∆t

2π , ∆t > 9π/10w
(31)

and

RSB
′ =

c(∆t/2)
πλ1/ω

= 1 +
(
1−

ω∆t
2π

)
cosω∆t +

sinω∆t
2π

, ∆t > 9π/10w (32)

Similarly to in Section 2, a table is made to sum up the performance of the aliasing signal’s three
selected characteristics after a CC. To sum up, a table can be obtained such as Table 2.
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Table 2. Performance of two similar debris particles’ aliasing after CC.

∆t Number of Detected Debris RS
′

O (Overall Size) RSB
′

(Debris B)

[0, 9T/20) 1 ↓ ——
[9T/20, T) 2 ↑ ↑

3.2. Optimization Strategy for Aliasing Signal Processing

From the above analysis, we have the function of RSO and RS′O, RSB and RSB
′. As the value of

these functions reflects the aliasing signal’s information, a comparation between them can help to
determine the most optimized strategy for evaluating the affected debris’ peak value.

As depicted in Figure 7, the values of the different RS change successively with the moving of ∆t
from 0 to T; the more the values of RS approach 0, the worse the situation; contrarily, the more the
values of RS approach 1, the better the situation. Here, we can find again the severest cases figured out
in Section 2, which are when ∆t is in the interval around T/2 and interval of [0, T/4). From Figure 7a,
the RS after CC (RSB

′) around T/2 is above the RS without processing (RSB), apparently. However,
the values of RSB

′ at other intervals are not closer to 1 than the values of RSB. From Figure 7b,
the overall RS after CC (RS′O) at the interval of [0, T/4) is a little above the overall RS without
processing (RSO). Similarly, the values of RS′O at other intervals are not closer to 1 than the values
of RSO. The result of the comparison proves the advantage of CC in optimizing the severe cases
of aliasing.
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In order to make a comparison easier, the interval of Δ𝑡 can be divided into four segments. In 
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In order to make a comparison easier, the interval of ∆t can be divided into four segments.
In Segment I, ∆t belongs to [0, T/4); in Segment III, ∆t is around the interval of T/2; Segment II
is between Segment I and Segment III; Segment IV is after Segment III and ends in T. In Table 3,
a summary of the comparison is given. We use “OS” to represent the original aliasing signal without
processing and “SC” to represent the signal after CC. In Segment III, while the CC can help to detect
Debris B, the maximum representing Debris A is also affected, thus making RS′O < RSO; the preferred
strategy is combining Debris A’s signal from OS and Debris B’s information from SC.

Based on the study above, we can adopt the following strategy as shown in Figure 8.
When the sensor has detected two closing maximums (within one cycle T), the original signal is

used. When there is only one maximum detected (within one cycle T), the CC will be operated. If there
are two maximums detected after CC, the value of Debris B’s maximum λ2 can be evaluated by

λ2 = λ1·
c2

c1
(33)
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where λ1 is the value of the maximum detected from the original signal, c1 is the first value of the
detected SC’s maximums and c2 is the second value of the detected SC’s maximums.

Table 3. Detailed comparison between the original aliasing signal (OS) and signal after CC (SC).

∆t

Number of Detected
Debris Particles RS of Overall Size RS of Debris B

Preferred
OS SC RSO RS

′

O RSB RSB
′

I 1 1 RS′O > RSO - - SC
II 2 1 RS′O < RSO >50% - OS
III 1 2 RS′O < RSO - >50% SC and OS
IV 2 2 RS′O < RSO 1 <1 OS

Sensors 2020, 20, x FOR PEER REVIEW  11 of 18 

 

Based on the study above, we can adopt the following strategy as shown in Figure 8. 

Sensor
Signal

Detect two closing 
maximums

Using OS

Operating SC
algorithm

Detect two 
maximums

Using SC 
combining OS Using SC

yes no

yes no

Signal preprocessing 
level

Algorithm 
level

Strategy 
level

 
Figure 8. Aliasing signal processing strategy. 

When the sensor has detected two closing maximums (within one cycle T), the original signal is 
used. When there is only one maximum detected (within one cycle T), the CC will be operated. If there 
are two maximums detected after CC, the value of Debris B’s maximum 𝜆ଶ can be evaluated by 𝜆ଶതതത = 𝜆ଵ ∙ 𝑐ଶ𝑐ଵ (33) 

where 𝜆ଵ is the value of the maximum detected from the original signal, 𝑐ଵ is the first value of the 
detected SC’s maximums and 𝑐ଶ is the second value of the detected SC’s maximums. 

4. Experiment Validation 

4.1. Simulation Experiment 

This section describes a simulated experiment that was carried out first. As in a practical system, 
the debris signal is accompanied by various kinds of interferences [22]; we built the original signal 
by combining an aliasing signal as described in Section 2, an interference of specific frequency and 
random noise. The specific parameters are provided in Table 4. 

Table 4. Simulation parameters. 

Parameter Value 
Frequency of debris signal w 100 Hz 

Amplitude of inference 0.5 
Amplifier of noise 0.2 

Length of correlation T 0.01 s 
Sampling frequency 10 kHz 

The efficiency of our method in dealing with the worst situation (in which Δ𝑡 is in the interval 
around 𝑇 2⁄ ) was then verified by a simulation experiment. There are three sets of experiments 
corresponding to Figures 9–11. In each figure, there are three pictures, which are Picture (a), Picture (b) 
and Picture (c), representing three different values of Δ𝑡 around 𝑇 2⁄ , which are 0.5𝑇, 0.48𝑇 and 0.6𝑇, correspondingly. In Pictures (a), (b) and (c), the OS of each represents the original signal without 

Figure 8. Aliasing signal processing strategy.

4. Experiment Validation

4.1. Simulation Experiment

This section describes a simulated experiment that was carried out first. As in a practical system,
the debris signal is accompanied by various kinds of interferences [22]; we built the original signal
by combining an aliasing signal as described in Section 2, an interference of specific frequency and
random noise. The specific parameters are provided in Table 4.

Table 4. Simulation parameters.

Parameter Value

Frequency of debris signal w 100 Hz
Amplitude of inference 0.5

Amplifier of noise 0.2
Length of correlation T 0.01 s

Sampling frequency 10 kHz

The efficiency of our method in dealing with the worst situation (in which ∆t is in the interval
around T/2) was then verified by a simulation experiment. There are three sets of experiments
corresponding to Figures 9–11. In each figure, there are three pictures, which are Picture (a), Picture (b)
and Picture (c), representing three different values of ∆t around T/2, which are 0.5T, 0.48T and 0.6T,



Sensors 2020, 20, 5949 12 of 19

correspondingly. In Pictures (a), (b) and (c), the OS of each represents the original signal without
processing; the SC of each represents the result after a cross-correlation algorithm; the Optimization
Result of each shows both debris signals’ evaluation results after the optimization strategy.
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to be 0.4, 0.43 and 0.49, corresponding to Figure 9a–c, which are 80%, 86% and 98% (calling this value 
the evaluating accuracy, which ranges from 0% to 100%; the larger, the more accurate) of their real 
amplitudes (which are 0.5). Correspondingly, the evaluation of the overall sizes (which are the sums 
of two debris particles’ amplitudes) accounts for 90%, 97% and 99% of the overall evaluating 
accuracy. The result indicates that the distance from the most severe aliasing situation (Δ𝑡 = 𝑇/2) has 
a positive effect on the evaluating accuracy. 
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Figure 9. Method’s performance for signals of low signal-to-noise ratio (SNR) while k = 1. (a) ∆t = 0.5T.
(b) ∆t = 0.48T. (c) ∆t = 0.6T.
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Firstly, we experimented on cases of signals with low signal-to-noise ratios (SNRs; the signals’
amplitudes were set to be 0.5) as shown in Figures 9 and 10. In Figure 9, we consider the situation of
k = 1 (k = λ1/λ2, which is the ratio between Debris A’s and Debris B’s amplitude), which indicates
two aliasing debris particles of the same size. In Figure 10, we consider the situation of k = 1,
which indicates two aliasing debris particles of different sizes.
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(c) ∆t = 0.6T.

In Figure 9a–c, only one maximum was detected and unaffected from OS, which means the
information of the second debris particle was totally lost. After CC processing, two maximums were
detected in SC. Then, after the optimization strategy, both debris particles’ sizes could be evaluated
and shown in the optimization results. Only by OS, it is obvious that no sign of other debris can be
found. By using the above method, the missing debris was found, and its amplitudes were evaluated
to be 0.4, 0.43 and 0.49, corresponding to Figure 9a–c, which are 80%, 86% and 98% (calling this value
the evaluating accuracy, which ranges from 0% to 100%; the larger, the more accurate) of their real
amplitudes (which are 0.5). Correspondingly, the evaluation of the overall sizes (which are the sums of
two debris particles’ amplitudes) accounts for 90%, 97% and 99% of the overall evaluating accuracy.
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The result indicates that the distance from the most severe aliasing situation (∆t = T/2) has a positive
effect on the evaluating accuracy.

Then, making k = 1.2 in the following simulation, ∆t had the same values as above, which were
0.5T, 0.48T and 0.6T. The result is shown in Figure 10. Similarly, the second debris was detected and
its size was evaluated with an evaluating accuracy of 60%, 73.5% and 77% as well as overall evaluating
accuracy of 80%, 86.7% and 88.5%. Compared to when k = 1, the evaluation result was less accurate
when k = 1.2, which indicates the difference between the aliasing debris particles’ sizes has a negative
effect on the evaluation results.

Next, we experimented on cases of signals with high signal-to-noise ratios (the signals’ amplitudes
were set to be 2). Making k = 1.2 in the following simulation, the simulation result when ∆t was
around T/2 is shown in Figure 11. Similarly, the second debris was detected and its size was evaluated
with an evaluating accuracy of 70.6%, 74.5% and 83.3% as well as evaluating accuracy of 85.3%,
87.3% and 91.6%. Compared to Figure 10, there was an improvement in the evaluation’s accuracy.
The result indicates noise has a negative effect on the evaluation result. Figures 10 and 11 also indicate
again the distance from the most severe aliasing situation (∆t = T/2) has a positive effect on the
evaluating accuracy.

4.2. Wax Block Experiment

From the above simulation analysis, we have the aliasing issue effect existing in the conditions
of both high and low SNR; the effectiveness of our method was verified; our method also has high
reliability in a noisy condition. Next, we discuss a real system as shown in Figure 12; the experimental
system generally included an inductive debris sensor designed by Hong, a signal acquisition circuit,
a signal processing system and the corresponding components. The main parameters were decided as
shown in Table 5.
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Table 5. Parameters of the experimental system.

Parameter Value

Velocity of debris particle 5 m/s
Size of particle 200 µm

Amplifier magnification 900 times
Space between two debris particles 3 cm/6 cm

Sampling frequency 10 kHz

Meanwhile, in the real experiment, many factors were uncontrollable. In order to create a favorable
environment, many factors were considered. For example, the air pump was used to create an air flow
of fixed velocity in the air tube; the wax block was used to fix the location of the debris particles so that
the distance between the two signals was controllable; the single debris’ signal was acquired with a
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signal acquisition from single debris; to avoid the interface of other noise, debris of a large size was
used in the experiment; the amplifier magnification was chosen to be 900 times (maximum, 4000) so as
to increase the amplitude of the debris signal while avoiding excessive power frequency interference.
The system schematic of the experiment is shown in Figure 13.
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The experimental result is shown in Figure 14. In both Figure 14a,b, the first picture of each is the
original signal, and the second picture of each is the result after a CC. In Figure 14a, the space between
two debris wax blocks was set to be 3 cm, while it was 6 cm in Figure 14b. A detailed view of the
dashed boxes a and b is shown in Figure 15.
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In Figure 15a, the original signal is mixed with two debris particles’ signals, a wax block’s signal
and some other interference. Besides the interference’s signal, there is only one maximum detected,
which means a typical aliasing problem as mentioned earlier. After a CC, two maximums are detected,
which indicates the second debris, while at the same time, the interference’s signal and wax block’s
signal are also decreased; that is because similarity between the debris’ signal and these signals is very
rare, so a peak will not present when a CC is operating through them. In Figure 15b, there are several
maximums detected from the original signal, which is not a traditional situation. This may result from
an untraditional aliasing or other interferences, while the result from CC is satisfied.

5. Conclusions

This paper mainly focuses on two parts of work. Firstly, we used a sinewave-based mathematical
model to analyze a debris signal’s aliasing behavior. The value of the aliasing model’s maximum
was studied in detail, and three corresponding features, which are the number, size and cumulative
size of the debris particles, were used to evaluate the severity of the aliasing problem. On this basis,
the most severe situation was figured out based on two similar debris particles’ aliasing analysis.
Next, the potential of using a cross-correlation algorithm in dealing with aliasing’s severest situation
was studied. While operating a cross-correlation algorithm, the debris’ signal was emphasized in its
progress. The emphasizing will come out as a maximum every time it encounters a debris signal,
which is a solution to the debris aliasing signal’s severest situation. After this, a comparison between
the original signal and a cross-correlation-processed signal was made, on which an optimization
strategy was based. The simulation and experimental results also verified the efficiency of our method.
In a following study, we will consider expanding our method to more complex conditions, such as the
aliasing of more than two debris particles, and then experiment in a more practical system, such as a
mechanical system with an oil pipe.

Author Contributions: X.W. and S.W. designed the aliasing signal processing method and strategy. H.S. performed
the experiments. H.S. and W.H. wrote the paper. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grants No. 51675019 and
51575019) and the National Science and Technology Major Project (Nos. 2017-V-0010-0060 and 2017-V-0010-0062).

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2020, 20, 5949 18 of 19

References

1. Amiri, M.; Khonsari, M. On the Thermodynamics of Friction and Wear—A Review. Entropy 2010, 12,
1021–1049. [CrossRef]

2. Wu, T.; Peng, Y.; Wu, H.; Zhang, X.; Wang, J. Full-life dynamic identification of wear state based on on-line
wear debris image features. Meas. Sci. Technol. 2014, 42, 404–414. [CrossRef]

3. Wang, X.; Lin, S.; Wang, S.; He, Z.; Zhang, C. Remaining useful life prediction based on the Wiener process
for an aviation axial piston pump. Chin. J. Aeronaut. 2016, 29, 779–788. [CrossRef]

4. Dwyer-Joyce, R.; Williams, J.A.; Roylance, B.J. Wear debris and associated wear phenomena-fundamental
research and practice. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2000, 214, 79–105.

5. Seifert, W.W.; Westcott, V.C. A method for the study of wear particles in lubricating oil. Wear 1972, 21, 27–42.
[CrossRef]

6. Zhu, X.; Zhong, C.; Zhe, J. Lubricating oil conditioning sensors for online machine health monitoring—A
review. Tribol. Int. 2017, 109, 473–484. [CrossRef]

7. Edmonds, J.; Resner, M.S.; Shkarlet, K. Detection of precursor wear debris in lubrication systems.
In Proceedings of the 2000 IEEE Aerospace Proceedings, Big Sky, MT, USA, 25–25 March 2000; Volume 76,
pp. 73–77.

8. Tucker, J.E.; Reintjes, J.; Galie, T.R.; Schultz, A.; Lu, C.; Tankersley, L.L.; Sebok, T.; Holloway, C.; Howard, P.L.
Lasernet fines optical wear debris monitor: A Navy shipboard evaluation of CBM enabling technology. In
Proceedings of the 54th Meeting of the Society for Machinery Failure Prevention Technology, Virginia Beach,
VA, USA, 1–4 May 2000.

9. Centers, P.W.; Price, F.D. Real time simultaneous in-line wear and lubricant condition monitoring. Wear 1998,
123, 303–312. [CrossRef]

10. Hong, W.; Wang, S.; Tomovic, M.M.; Liu, H.; Shi, J.; Wang, X. A Novel Indicator for Mechanical Failure and
Life Prediction Based on Debris Monitoring. IEEE Trans. Reliab. 2017, 66, 161–169. [CrossRef]

11. Kumar, P.; Hirani, H.; Agrawal, A.K.; Gachot, C. Online condition monitoring of misaligned meshing gears
using wear debris and oil quality sensors. Ind. Lubr. Tribol. 2018, 70, 645–655. [CrossRef]

12. Gorritxategi, E.; García-Arribas, A.; Aranzabe, A. Innovative on-Line Oil Sensor Technologies for the
Condition Monitoring of Wind Turbines. Key Eng. Mater. 2015, 644, 53–56. [CrossRef]

13. Hong, W.; Wang, S.; Tomovic, M.M.; Han, L.; Shi, J. Radial inductive debris detection sensor and performance
analysis. Meas. Sci. Technol. 2013, 24, 125103. [CrossRef]

14. Miller, J.L.; Kitaljevich, D. In-line oil debris monitor for aircraft engine condition assessment. In Proceedings
of the 2000 IEEE Aerospace Proceedings, Big Sky, MT, USA, 25 March 2000; Volume 76, pp. 49–56.

15. Kempster, R.W.; George, D.B. Detection and Discrimination between Ferromagnetic and Non-Ferromagnetic
Conductive Particles in a Fluid. U.S. Patent 5,315,243, 24 May 1994.

16. Chambers, K.W.; Arneson, M.C.; Waggoner, C.A. An on-line ferromagnetic wear debris sensor for machinery
condition monitoring and failure detection. Wear 1988, 128, 325–337. [CrossRef]

17. Hong, W.; Wang, S.; Tomovic, M.M.; Liu, H.; Wang, X. A new debris sensor based on dual excitation sources
for online debris monitoring. Meas. Sci. Technol. 2015, 26, 095101. [CrossRef]

18. Zhong, Z.; Wang, S.; Hong, W.; Tomovic, M. Aliasing signal separation of oil debris monitoring. In Proceedings
of the 2016 IEEE 11th Conference on Industrial Electronics and Applications, Hefei, China, 5–7 June 2016;
pp. 1682–1687.

19. Li, T.; Wang, S.; Zio, E.; Shi, J.; Hong, W. Aliasing signal separation of superimposed abrasive debris based
on degenerate unmixing estimation technique. Sensors 2018, 18, 866. [CrossRef] [PubMed]

20. Bozchalooi, I.S.; Liang, M. In-line identification of oil debris signals: An adaptive subband filtering approach.
Meas. Sci. Technol. 2010, 21, 015104. [CrossRef]

http://dx.doi.org/10.3390/e12051021
http://dx.doi.org/10.1016/j.ymssp.2013.08.032
http://dx.doi.org/10.1016/j.cja.2015.12.020
http://dx.doi.org/10.1016/0043-1648(72)90247-5
http://dx.doi.org/10.1016/j.triboint.2017.01.015
http://dx.doi.org/10.1016/0043-1648(88)90146-9
http://dx.doi.org/10.1109/TR.2016.2628412
http://dx.doi.org/10.1108/ILT-05-2016-0106
http://dx.doi.org/10.4028/www.scientific.net/KEM.644.53
http://dx.doi.org/10.1088/0957-0233/24/12/125103
http://dx.doi.org/10.1016/0043-1648(88)90067-1
http://dx.doi.org/10.1088/0957-0233/26/9/095101
http://dx.doi.org/10.3390/s18030866
http://www.ncbi.nlm.nih.gov/pubmed/29543733
http://dx.doi.org/10.1088/0957-0233/21/1/015104


Sensors 2020, 20, 5949 19 of 19

21. Liu, H.; Wang, S.; Hong, W.; Zhang, C.; Wang, X.; Haokuo, L.; Shaoping, W.; Wei, H.; Chao, Z.; Xingjian, W.
Design and experimental test of an on-line particle detection sensor based on symmetrical magnetic field.
In Proceedings of the 2015 International Conference on Fluid Power and Mechatronics (FPM), Harbin, China,
4–6 August 2015; pp. 241–245. [CrossRef]

22. Podobnik, B.; Stanley, H.E. Detrended Cross-Correlation Analysis: A New Method for Analyzing Two
Non-stationary Time Series. Phys. Rev. Lett. 2008, 100, 084102. [CrossRef] [PubMed]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/FPM.2015.7337119
http://dx.doi.org/10.1103/PhysRevLett.100.084102
http://www.ncbi.nlm.nih.gov/pubmed/18352624
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Model Analysis of Debris Aliasing Signal 
	Aliasing Signal Model of Debris Aliasing Behavior 
	Analysis of the Aliasing Signal Model 

	Cross-Correlation Algorithm-Based Optimization 
	Cross-Correlation Analysis of Aliasing Signal 
	Optimization Strategy for Aliasing Signal Processing 

	Experiment Validation 
	Simulation Experiment 
	Wax Block Experiment 

	Conclusions 
	References

