V = 2040.5 (5) Å³

Mo $K\alpha$ radiation

 $0.40 \times 0.20 \times 0.05 \text{ mm}$

9562 measured reflections

9562 independent reflections

5575 reflections with $I > 2\sigma(I)$

 $\mu = 0.53 \text{ mm}^-$

T = 173 K

Z = 4

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl 5-amino-3-(pyridin-4-yl)-1-(2,4,6trichlorophenvl)-1H-pyrazole-4-carboxylate dimethyl sulfoxide hemisolvate

Bassam Abu Thaher,^a Pierre Koch,^b Dieter Schollmeyer^c and Stefan Laufer^{b*}

^aFaculty of Science, Chemistry Department, Islamic University of Gaza, Gaza Strip, Palestinian Territories, ^bInstitute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany, and ^cDepartment of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, D-55099 Mainz, Germany Correspondence e-mail: stefan.laufer@uni-tuebingen.de

Received 22 February 2012; accepted 24 February 2012

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.011 Å; disorder in main residue; R factor = 0.068; wR factor = 0.133; data-to-parameter ratio = 18.2.

The asymmetric unit of the title compound, C₁₇H₁₃Cl₃N₄O₂.-0.5C₂H₆OS, contains two almost identical molecules and one dimethyl sulfoxide (DMSO- d_6) solvent molecule. The pyrazole ring forms dihedral angles of 54.6 (4) and 80.0 (4) $^{\circ}$ in one molecule, and dihedral angles of 54.2 (4) and 81.2 (4) $^{\circ}$ in the other molecule, with the directly attached pyridine and trichlorophenyl rings, respectively. The dihedral angles of the pyridine and trichlorophenyl rings are 51.2 (4) and $52.0 (4)^{\circ}$, respectively. The crystal packing is characterized by intra- and intermolecular hydrogen bonds. The crystal is a nonmerohedral twin with a contribution of 0.488 (1) for the minor twin component. The terminal ethyl group of one molecule and the S atom of DMSO are disordered over two sites.

Related literature

For pyridinyl-substituted five-membered heterocycles as $p38\alpha$ MAP kinase inhibitors, see: Abu Thaher et al. (2009); Peifer et al. (2006). For inhibitory activity and preparation of the title compound, see: Abu Thaher, Arnsmann et al. (2012). For related structures, see: Abu Thaher, Koch et al. (2012a,b).

Experimental

Crvstal data

 $C_{17}H_{13}Cl_3N_4O_2 \cdot 0.5C_2H_6OS$ $M_r = 450.73$ Monoclinic, P2 a = 13.501 (2) Å b = 10.3222 (15) Å c = 14.889 (2) Å $\beta = 100.453 \ (5)^{\circ}$

Data collection

Bruker APEXII diffractometer Absorption correction: multi-scan (TWINABS; Sheldrick, 2008b) $T_{\rm min}=0.818,\;T_{\rm max}=0.974$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.068$	H-atom parameters constrained
$wR(F^2) = 0.133$	$\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3}$
S = 0.98	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$
9562 reflections	Absolute structure: Flack (1983),
526 parameters	4289 Friedel pairs
19 restraints	Flack parameter: 0.61 (10)

Table 1

Hydrogen-bond	geometry ([A, °]).
---------------	------------	--------	----

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N12A - H12A \cdots O15A$	0.88	2.34	2.767 (8)	110
$N12A - H12A \cdots O14B^{i}$	0.88	2.10	2.957 (8)	164
$N12A - H12B \cdot \cdot \cdot N21A^{ii}$	0.94	2.15	2.906 (9)	137
$N12B - H12C \cdots O15B$	0.88	2.13	2.778 (8)	130
$N12B - H12C \cdots O14A^{iii}$	0.88	2.24	2.983 (8)	142
$N12B - H12D \cdots N21B^{ii}$	0.88	2.02	2.901 (9)	176

Symmetry codes: (i) x + 1, y, z; (ii) x, y - 1, z; (iii) x - 1, y - 1, z.

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008a); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

BAT thanks the Alexander von Humboldt Foundation for funding.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5829).

References

- Abu Thaher, B., Arnsmann, M., Totzke, F., Ehlert, J. E., Kubbutat, M. H. G., Schächtele, C., Zimmermann, M. O., Koch, P., Boeckler, F. M. & Laufer, S. A. (2012). J. Med. Chem. 55, 961–965.
- Abu Thaher, B., Koch, P., Schattel, V. & Laufer, S. (2009). J. Med. Chem. 52, 2613–2617.
- Abu Thaher, B., Koch, P., Schollmeyer, D. & Laufer, S. (2012a). Acta Cryst. E68, 0632.
- Abu Thaher, B., Koch, P., Schollmeyer, D. & Laufer, S. (2012b). Acta Cryst. E68, 0633.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Peifer, C., Wagner, G. & Laufer, S. (2006). Curr. Top. Med. Chem. 6, 113–149.
- Sheldrick, G. M. (2008a). Acta Cryst. A**64**, 112–122.
- Sheldrick, G. M. (2008b). TWINABS. University of Göttingen, Germany.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2012). E68, o917-o918 [doi:10.1107/S1600536812008264]

Ethyl 5-amino-3-(pyridin-4-yl)-1-(2,4,6-trichlorophenyl)-1*H*-pyrazole-4carboxylate dimethyl sulfoxide hemisolvate

Bassam Abu Thaher, Pierre Koch, Dieter Schollmeyer and Stefan Laufer

Comment

Pyridin-4-yl substituted five-membered heterocycles have been considered to be potential p38α MAP kinase inhibitors (Abu Thaher *et al.* 2009; Peifer *et al.* 2006). We showed that the regioisomeric switch from 3-(4-fluoro-phenyl)-4-(pyridin-4-yl)-1-(aryl)-1H-pyrazol-5-amine to 4-(4-fluorophenyl)-3-(pyridin-4-yl)-1-(aryl)-1H-pyrazol-5-amine completely changed the inhibitory profile from p38α MAP kinase to kinases releant in cancer (Abu Thaher, Arnsmann *et al.* 2012). Recently, we reported similar crystal structures (Abu Thaher, Koch *et al.* 2012*a,b*).

The asymmetric unit of the title compound contains two almost identical molecules and DMSO-*d*6 (Fig. 1). In molecule A the pyrazole ring forms dihedral angles of 54.6 (4)° and 80.0 (4)° with the directly attached pyridine and trichlorophenyl rings, respectively. In molecule B the pyrazole ring forms dihedral angles of 54.2 (4)° and 81.2 (4)° with the pyridine and trichlorophenyl rings, respectively. The dihedral angle of the pyridine and trichlorophenyl rings in molecules A and B are 51.1 (4)° and 52.0 (4)°, respectively.

The crystal packing (Fig. 2) shows that the amino function (N12) acts as a hydrogen bond donor forming an intramolecular hydrogen bond to the oxygen atom (O15) and two intermolecular hydrogen bonds to the nitrogen atom of the pyridine ring (N21) (A—A/B—B) and to the carbonyl oxygen atom (O14) of the ester moiety of two different molecules (A—B/B—A) resulting in a double chain along the *b* axis.

Experimental

4 mmol of *N*-(2,4,6-trichlorophenyl)-4-pyridinecarbohydrazonoyl chloride and 1.5 equiv. of ethyl cyanoacetate were dissolved in 20 ml dry ethanol and cooled to 273 K in an ice bath. 2.0 equiv. of sodium ethoxide solution (21% ethanol) was added dropwise and the reaction was stirred over night. The precipitate was filtered from the reaction mixture, washed with water and recrystallized from hot ethanol. Yield: 56%. Suitable crystals for X-ray were taken from the NMR-tube in DMSO- d_6 .

Refinement

Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (*sp*³ C-atom). All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the U_{eq} of the parent atom). Obtained crystals were twinned. Using the twin matrix -1 0 0, 0 - 1 0, -.4 0 1 with BSAF 0.488 (2) the structure refinement was successful. The solvent molecule and the ethyl group are disorderd with site occupation factors of 0.55 and 0.737 (6) for the major occupied site. The displacement ellipsoids of the atoms C17A, C17C and C2B were restrained to an isotropic behaviour with an effective esd of 0.01 for C17A and C17C and 0.005 for C2B.

Computing details

Data collection: *APEX2* (Bruker, 2006); cell refinement: *APEX2* (Bruker, 2006); data reduction: *APEX2* (Bruker, 2006); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008*a*); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *PLATON* (Spek, 2009).

Figure 1

View of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are depicted as circles of arbitrary size.

Figure 2

Crystal structure of the title compound with view along the *a*-axis. Hydrogen bonding is shown with dashed lines. Molecule A coloured in black, B in red and DMSO in green.

Ethyl 5-amino-3-(pyridin-4-yl)-1-(2,4,6-trichlorophenyl)-1*H*-pyrazole-4- carboxylate dimethyl sulfoxide hemisolvate

100.453 (5)°
= 2040.5 (5) Å ³
= 4
900) = 924
$= 1.467 \text{ Mg m}^{-3}$
$\lambda K\alpha$ radiation, $\lambda = 0.71069$ Å
l parameters from 3021 reflections

 $\theta = 2.2-23.0^{\circ}$ $\mu = 0.53 \text{ mm}^{-1}$ T = 173 K

Data collection

Bruker APEXII diffractometer Radiation source: sealed tube Graphite monochromator CCD scan Absorption correction: multi-scan (TWINABS; Sheldrick, 2008*b*) $T_{min} = 0.818, T_{max} = 0.974$

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.068$ H-atom parameters constrained $wR(F^2) = 0.133$ $w = 1/[\sigma^2(F_o^2) + (0.0523P)^2]$ *S* = 0.98 where $P = (F_o^2 + 2F_c^2)/3$ 9562 reflections $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3}$ 526 parameters 19 restraints $\Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}$ Primary atom site location: structure-invariant Absolute structure: Flack (1983), 4289 Friedel direct methods pairs Secondary atom site location: difference Fourier Flack parameter: 0.61 (10) map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Plate, colourless

 $R_{\rm int} = 0.000$

 $h = -17 \rightarrow 17$

 $k = -13 \rightarrow 13$

 $l = 0 \rightarrow 19$

 $0.40 \times 0.20 \times 0.05 \text{ mm}$

9562 measured reflections

 $\theta_{\text{max}} = 27.9^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$

9562 independent reflections

5575 reflections with $I > 2\sigma(I)$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional ator	nic coordinates	and isotropi	ic or eauivalen	t isotropic dis	splacement	parameters ($(Å^2)$
1				i iboii opie in	proce en rente	pen ennerens (/

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cl1A	0.57064 (17)	0.5279 (2)	0.01572 (14)	0.0392 (6)	
Cl2A	0.24394 (15)	0.23473 (19)	0.01947 (15)	0.0345 (5)	
Cl3A	0.36624 (16)	0.57334 (18)	0.29128 (14)	0.0359 (6)	
C1A	0.4591 (6)	0.5412 (6)	0.1481 (5)	0.0198 (18)	
C2A	0.4709 (6)	0.4823 (8)	0.0664 (5)	0.0243 (18)	
C3A	0.4067 (6)	0.3860 (7)	0.0270 (5)	0.0253 (19)	
H3A	0.4169	0.3436	-0.0272	0.030*	
C4A	0.3279 (5)	0.3533 (7)	0.0685 (5)	0.0211 (18)	
C5A	0.3104 (6)	0.4107 (7)	0.1489 (5)	0.0230 (19)	
H5A	0.2540	0.3874	0.1754	0.028*	
C6A	0.3784 (6)	0.5025 (7)	0.1882 (5)	0.024 (2)	
N7A	0.5286 (5)	0.6360 (6)	0.1898 (4)	0.0204 (16)	

C8A	0.6213 (6)	0.6166 (7)	0.2412 (5)	0.0212 (18)	
C9A	0.6617 (6)	0.7376 (7)	0.2642 (5)	0.0214 (18)	
C10A	0.5858 (6)	0.8265 (7)	0.2234 (5)	0.0213 (18)	
N11A	0.5045 (5)	0.7670 (5)	0.1782 (4)	0.0253 (17)	
N12A	0.6581 (5)	0.4979 (6)	0.2602 (5)	0.0293 (18)	
H12A	0.7170	0.4757	0.2924	0.044*	
H12B	0.6059	0.4439	0.2307	0.044*	
C13A	0.7543 (6)	0.7689 (7)	0.3268 (5)	0.0219 (18)	
O14A	0.7867 (4)	0.8752 (5)	0.3480 (4)	0.0295 (13)	
O15A	0.8009 (4)	0.6589 (5)	0.3602 (3)	0.0332 (14)	
C16A	0.8971 (6)	0.6727 (8)	0.4209 (6)	0.040(2)	
H16A	0.9339	0.7481	0.4021	0.048*	0.55
H16B	0.9385	0.5942	0.4176	0.048*	0.55
H16E	0.9145	0.7656	0.4289	0.048*	0.45
H16F	0.9503	0.6295	0.3939	0.048*	0.45
C17A	0.8798 (15)	0.6913 (19)	0.5162 (13)	0.058 (5)	0.55
H17A	0.9446	0.7011	0.5575	0.087*	0.55
H17B	0.8442	0.6159	0.5346	0.087*	0.55
H17C	0.8390	0.7693	0.5190	0.087*	0.55
C17C	0.892 (2)	0.614 (2)	0.5099 (16)	0.061 (7)	0.45
H17G	0.9576	0.6248	0.5507	0.091*	0.45
H17H	0.8765	0.5220	0.5019	0.091*	0.45
H17I	0.8399	0.6575	0.5366	0.091*	0.45
C18A	0.5858 (6)	0.9701 (8)	0.2227 (5)	0.026 (2)	
C19A	0.6629 (6)	1.0401 (7)	0.1920 (5)	0.0244 (19)	
H19A	0.7186	0.9979	0.1739	0.029*	
C20A	0.6530(7)	1.1752 (8)	0.1895 (5)	0.027 (2)	
H20A	0.7033	1.2239	0.1674	0.033*	
N21A	0.5786 (6)	1.2395 (6)	0.2158 (4)	0.0310 (18)	
C22A	0.5073 (7)	1.1693 (8)	0.2450 (6)	0.035 (2)	
H22A	0.4530	1.2137	0.2641	0.043*	
C23A	0.5086 (6)	1.0385 (8)	0.2487 (6)	0.030(2)	
H23A	0.4556	0.9935	0.2695	0.036*	
Cl1B	-0.06420 (16)	0.0303 (2)	0.01822 (15)	0.0411 (6)	
Cl2B	0.26316 (15)	-0.26448 (18)	0.01878 (15)	0.0345 (5)	
Cl3B	0.25295 (17)	0.0682 (2)	0.29378 (16)	0.0446 (7)	
C1B	0.0994 (6)	0.0406 (7)	0.1511 (5)	0.0200 (18)	
C2B	0.0545 (5)	-0.0170(7)	0.0693 (5)	0.0222 (18)	
C3B	0.1029 (6)	-0.1110 (7)	0.0272 (5)	0.026 (2)	
H3B	0.0713	-0.1502	-0.0284	0.031*	
C4B	0.2012 (6)	-0.1465 (7)	0.0700 (5)	0.0231 (19)	
C5B	0.2481 (6)	-0.0938 (7)	0.1505 (5)	0.026 (2)	
H5B	0.3139	-0.1201	0.1783	0.031*	
C6B	0.1961 (6)	-0.0005 (7)	0.1902 (5)	0.023 (2)	
N7B	0.0500 (5)	0.1350 (6)	0.1943 (4)	0.0226 (16)	
C8B	-0.0235 (6)	0.1154 (7)	0.2442 (5)	0.0234 (19)	
C9B	-0.0555 (5)	0.2384 (7)	0.2654 (5)	0.0194 (18)	
C10B	0.0031 (5)	0.3242 (7)	0.2249 (5)	0.0183 (18)	
N11B	0.0673 (4)	0.2660 (5)	0.1808 (4)	0.0218 (16)	

N12B	-0.0504 (5)	-0.0043 (6)	0.2651 (4)	0.0339 (19)	
H12C	-0.0959	-0.0024	0.3007	0.051*	
H12D	-0.0345	-0.0845	0.2525	0.051*	
C13B	-0.1254 (5)	0.2666 (7)	0.3257 (5)	0.0211 (18)	
O14B	-0.1505 (4)	0.3747 (4)	0.3467 (3)	0.0260 (13)	
O15B	-0.1612 (4)	0.1577 (4)	0.3584 (3)	0.0269 (12)	
C16B	-0.2347 (6)	0.1699 (8)	0.4178 (5)	0.030 (2)	
H16C	-0.2828	0.0967	0.4068	0.036*	
H16D	-0.2732	0.2513	0.4036	0.036*	
C17B	-0.1852 (7)	0.1706 (12)	0.5147 (6)	0.070 (3)	
H17D	-0.1473	0.0899	0.5289	0.105*	
H17E	-0.2363	0.1778	0.5535	0.105*	
H17F	-0.1390	0.2445	0.5260	0.105*	
C18B	0.0028 (6)	0.4676 (7)	0.2232 (5)	0.019 (2)	
C19B	-0.0840 (6)	0.5390 (8)	0.1929 (5)	0.0244 (19)	
H19B	-0.1467	0.4962	0.1742	0.029*	
C20B	-0.0789 (7)	0.6697 (8)	0.1900 (5)	0.036 (2)	
H20B	-0.1392	0.7162	0.1685	0.044*	
N21B	0.0062 (6)	0.7378 (7)	0.2158 (4)	0.0343 (18)	
C22B	0.0891 (7)	0.6710 (7)	0.2461 (5)	0.026 (2)	
H22B	0.1503	0.7165	0.2659	0.031*	
C23B	0.0897 (6)	0.5364 (7)	0.2499 (5)	0.0227 (19)	
H23B	0.1510	0.4919	0.2712	0.027*	
S 1	0.5410 (2)	0.3311 (3)	0.5460 (2)	0.0470 (10)	0.737 (6)
S1A	0.5038 (7)	0.3249 (8)	0.4509 (6)	0.052 (3)	0.263 (6)
O4L	0.5551 (5)	0.1999 (6)	0.5035 (5)	0.082 (2)	
C2L	0.5902 (7)	0.4454 (8)	0.4825 (7)	0.071 (3)	
H2LA	0.5829	0.5327	0.5066	0.106*	0.737 (6)
H2LB	0.5547	0.4409	0.4189	0.106*	0.737 (6)
H2LC	0.6619	0.4264	0.4850	0.106*	0.737 (6)
H2LD	0.6482	0.4298	0.4526	0.106*	0.263 (6)
H2LE	0.6122	0.4438	0.5490	0.106*	0.263 (6)
H2LF	0.5609	0.5304	0.4638	0.106*	0.263 (6)
C3L	0.4116 (6)	0.3696 (9)	0.5097 (7)	0.071 (3)	
H3LA	0.3731	0.2897	0.4944	0.106*	0.737 (6)
H3LB	0.4039	0.4257	0.4558	0.106*	0.737 (6)
H3LC	0.3865	0.4147	0.5590	0.106*	0.737 (6)
H3LD	0.3658	0.2965	0.5121	0.106*	0.263 (6)
H3LE	0.3738	0.4430	0.4788	0.106*	0.263 (6)
H3LF	0.4423	0.3950	0.5720	0.106*	0.263 (6)

Alomic displacement parameters (A	Atomic	displacement	parameters	$(Å^2)$
-----------------------------------	--------	--------------	------------	---------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Cl1A	0.0387 (13)	0.0396 (13)	0.0439 (14)	-0.0159 (12)	0.0199 (12)	-0.0048 (10)
Cl2A	0.0275 (12)	0.0305 (12)	0.0457 (14)	-0.0121 (10)	0.0072 (11)	-0.0151 (10)
Cl3A	0.0334 (14)	0.0387 (12)	0.0377 (13)	-0.0066 (10)	0.0120 (11)	-0.0170 (9)
C1A	0.019 (5)	0.010 (4)	0.027 (5)	-0.004 (4)	-0.006 (4)	0.003 (3)
C2A	0.024 (5)	0.019 (4)	0.032 (4)	0.002 (4)	0.009 (4)	0.008 (3)

C3A	0.027 (5)	0.022 (4)	0.029 (5)	0.002 (4)	0.009 (4)	-0.001 (3)
C4A	0.013 (4)	0.014 (4)	0.037 (5)	-0.001 (3)	0.006 (4)	-0.004(4)
C5A	0.018 (5)	0.022 (4)	0.030 (5)	-0.006 (4)	0.007 (4)	0.000 (3)
C6A	0.022 (5)	0.022 (5)	0.029 (5)	0.003 (4)	0.006 (4)	0.004 (4)
N7A	0.020 (4)	0.011 (4)	0.030 (4)	-0.005 (3)	0.003 (3)	-0.002 (3)
C8A	0.016 (5)	0.025 (4)	0.026 (5)	0.005 (4)	0.009 (4)	-0.004 (4)
C9A	0.021 (5)	0.017 (4)	0.025 (4)	0.007 (4)	0.003 (4)	0.002 (3)
C10A	0.024 (5)	0.013 (4)	0.027 (4)	-0.006 (4)	0.006 (4)	-0.005 (3)
N11A	0.025 (4)	0.009 (3)	0.041 (4)	0.001 (3)	0.001 (3)	-0.002 (3)
N12A	0.014 (4)	0.013 (4)	0.056 (5)	0.007 (3)	-0.005 (4)	0.003 (3)
C13A	0.021 (5)	0.027 (5)	0.018 (4)	-0.001 (4)	0.004 (4)	0.001 (3)
014A	0.023 (3)	0.019 (3)	0.044 (4)	-0.010 (3)	0.001 (3)	-0.004 (3)
015A	0.025 (3)	0.023 (3)	0.045 (3)	0.002 (3)	-0.011 (3)	0.002 (3)
C16A	0.018 (5)	0.042 (5)	0.056 (6)	-0.006 (4)	-0.005 (4)	0.004 (5)
C17A	0.053 (9)	0.068 (9)	0.051 (9)	-0.009(7)	0.006 (7)	0.005 (7)
C17C	0.063 (10)	0.068 (10)	0.050 (9)	-0.009 (8)	0.007 (8)	0.008 (8)
C18A	0.027 (6)	0.018 (4)	0.029 (5)	0.000 (4)	-0.005 (4)	0.002 (4)
C19A	0.021 (5)	0.020 (4)	0.032 (5)	0.008 (4)	0.005 (4)	-0.005 (4)
C20A	0.030 (6)	0.024 (5)	0.024 (5)	-0.012 (4)	-0.007 (4)	0.007 (4)
N21A	0.033 (5)	0.016 (4)	0.039 (5)	0.000 (4)	-0.007 (4)	0.004 (3)
C22A	0.027 (6)	0.021 (5)	0.054 (6)	0.005 (4)	-0.005 (5)	0.005 (4)
C23A	0.025 (6)	0.021 (5)	0.043 (6)	0.000 (4)	0.004 (4)	-0.006 (4)
Cl1B	0.0287 (12)	0.0421 (14)	0.0483 (14)	0.0136 (12)	-0.0044 (12)	-0.0069 (11)
Cl2B	0.0289 (12)	0.0296 (12)	0.0467 (14)	0.0048 (11)	0.0115 (11)	-0.0152 (10)
Cl3B	0.0312 (14)	0.0560 (15)	0.0439 (15)	0.0066 (11)	-0.0003 (11)	-0.0287 (11)
C1B	0.012 (4)	0.018 (4)	0.032 (5)	-0.006 (3)	0.007 (4)	-0.001 (3)
C2B	0.016 (4)	0.021 (3)	0.030 (4)	0.010 (3)	0.004 (3)	0.002 (3)
C3B	0.028 (5)	0.022 (4)	0.031 (5)	0.003 (4)	0.013 (4)	-0.003 (3)
C4B	0.031 (5)	0.012 (4)	0.031 (5)	0.005 (4)	0.018 (4)	0.001 (3)
C5B	0.021 (5)	0.030 (5)	0.027 (5)	-0.003 (4)	0.007 (4)	-0.005 (3)
C6B	0.032 (6)	0.014 (4)	0.022 (5)	-0.010 (4)	0.004 (4)	-0.012 (3)
N7B	0.023 (4)	0.009 (3)	0.040 (4)	-0.007 (3)	0.017 (3)	-0.004 (3)
C8B	0.026 (5)	0.018 (4)	0.029 (5)	-0.003 (4)	0.012 (4)	0.000 (4)
C9B	0.009 (4)	0.016 (4)	0.034 (5)	0.009 (3)	0.005 (4)	-0.002 (4)
C10B	0.014 (5)	0.012 (4)	0.027 (5)	-0.005 (4)	0.001 (4)	-0.005 (3)
N11B	0.022 (4)	0.011 (3)	0.033 (4)	-0.006 (3)	0.007 (3)	-0.004 (3)
N12B	0.044 (5)	0.015 (4)	0.049 (5)	0.001 (3)	0.025 (4)	-0.003 (3)
C13B	0.016 (5)	0.017 (4)	0.029 (5)	-0.006 (3)	-0.001 (4)	-0.003 (3)
O14B	0.025 (3)	0.017 (3)	0.038 (3)	0.003 (2)	0.012 (3)	0.001 (2)
O15B	0.029 (3)	0.016 (3)	0.040 (3)	0.001 (2)	0.019 (3)	0.004 (2)
C16B	0.027 (5)	0.028 (4)	0.042 (5)	0.003 (4)	0.025 (4)	0.005 (4)
C17B	0.044 (6)	0.121 (10)	0.052 (7)	0.009 (6)	0.024 (5)	0.005 (7)
C18B	0.025 (6)	0.015 (4)	0.019 (5)	0.003 (4)	0.008 (4)	0.003 (3)
C19B	0.028 (5)	0.023 (4)	0.023 (5)	0.004 (4)	0.009 (4)	0.001 (4)
C20B	0.047 (7)	0.022 (5)	0.039 (6)	0.013 (5)	0.002 (5)	0.005 (4)
N21B	0.047 (5)	0.026 (4)	0.035 (5)	0.001 (4)	0.019 (4)	-0.001 (3)
C22B	0.029 (5)	0.019 (4)	0.032 (5)	-0.004 (4)	0.009 (4)	-0.011 (4)
C23B	0.024 (5)	0.010 (4)	0.038 (5)	0.004 (4)	0.016 (4)	0.001 (4)
S 1	0.059 (2)	0.0423 (18)	0.043 (2)	0.0101 (15)	0.0180 (17)	0.0031 (14)

supplementary materials

S1A	0.060 (6)	0.043 (5)	0.057 (7)	-0.005 (4)	0.025 (5)	-0.008(4)	
O4L	0.083 (5)	0.039 (4)	0.140 (7)	0.005 (4)	0.066 (5)	0.004 (4)	
C2L	0.067 (7)	0.037 (5)	0.114 (9)	0.012 (5)	0.031 (7)	0.005 (5)	
C3L	0.060 (6)	0.072 (7)	0.093 (8)	0.016 (6)	0.049 (6)	0.009 (6)	

Geometric parameters (Å, °)

Cl1A—C2A	1.724 (7)	C3B—C4B	1.412 (11)
Cl2A—C4A	1.736 (7)	C3B—H3B	0.9500
Cl3A—C6A	1.735 (8)	C4B—C5B	1.363 (9)
C1A—C6A	1.393 (10)	C5B—C6B	1.386 (10)
C1A—C2A	1.395 (10)	C5B—H5B	0.9500
C1A—N7A	1.419 (9)	N7B—C8B	1.358 (9)
C2A—C3A	1.378 (10)	N7B—N11B	1.394 (7)
C3A—C4A	1.365 (10)	C8B—N12B	1.340 (9)
СЗА—НЗА	0.9500	C8B—C9B	1.396 (9)
C4A—C5A	1.394 (9)	C9B—C10B	1.394 (9)
C5A—C6A	1.373 (10)	C9B—C13B	1.445 (9)
C5A—H5A	0.9500	C10B—N11B	1.324 (8)
N7A—C8A	1.357 (9)	C10B—C18B	1.480 (10)
N7A—N11A	1.394 (8)	N12B—H12C	0.8816
C8A—N12A	1.333 (9)	N12B—H12D	0.8840
C8A—C9A	1.381 (10)	C13B—O14B	1.223 (7)
C9A—C10A	1.426 (10)	C13B—O15B	1.349 (8)
C9A—C13A	1.454 (10)	O15B—C16B	1.450 (8)
C10A—N11A	1.330 (9)	C16B—C17B	1.475 (10)
C10A—C18A	1.482 (11)	C16B—H16C	0.9900
N12A—H12A	0.8811	C16B—H16D	0.9900
N12A—H12B	0.9422	C17B—H17D	0.9800
C13A—O14A	1.203 (8)	C17B—H17E	0.9800
C13A—O15A	1.349 (8)	C17B—H17F	0.9800
O15A—C16A	1.448 (9)	C18B—C23B	1.368 (10)
C16A—C17C	1.47 (2)	C18B—C19B	1.389 (10)
C16A—C17A	1.49 (2)	C19B—C20B	1.352 (11)
C16A—H16A	0.9900	C19B—H19B	0.9500
C16A—H16B	0.9900	C20B—N21B	1.342 (10)
C16A—H16E	0.9900	C20B—H20B	0.9500
C16A—H16F	0.9900	N21B—C22B	1.321 (9)
C17A—H17A	0.9800	C22B—C23B	1.390 (10)
C17A—H17B	0.9800	C22B—H22B	0.9500
C17A—H17C	0.9800	C23B—H23B	0.9500
C17C—H17G	0.9800	S1—O4L	1.521 (7)
С17С—Н17Н	0.9800	S1—C2L	1.720 (10)
C17C—H17I	0.9800	S1—C3L	1.777 (9)
C18A—C23A	1.372 (11)	S1—H2LE	1.5047
C18A—C19A	1.409 (10)	S1A—O4L	1.600 (11)
C19A—C20A	1.400 (11)	S1A—C3L	1.711 (12)
C19A—H19A	0.9500	S1A—C2L	1.711 (12)
C20A—N21A	1.321 (10)	S1A—H2LB	1.5006
C20A—H20A	0.9500	C2L—H2LA	0.9813

N21A—C22A	1.339 (10)	C2L—H2LB	0.9814
C22A—C23A	1.352 (11)	C2L—H2LC	0.9814
C22A—H22A	0.9500	C2L—H2LD	0.9818
C23A—H23A	0.9500	C2L—H2LE	0.9815
Cl1B—C2B	1.715 (7)	C2L—H2LF	0.9813
Cl2B—C4B	1.730 (7)	C3L—H3LA	0.9800
Cl3B—C6B	1.744 (7)	C3L—H3LB	0.9800
C1B—C2B	1.392 (10)	C3L—H3LC	0.9800
C1B—C6B	1.395 (10)	C3L—H3LD	0.9800
C1B—N7B	1.401 (9)	C3L—H3LE	0.9800
C2B—C3B	1.382 (9)	C3L—H3LF	0.9800
C6A—C1A—C2A	118.1 (7)	C8B—N7B—N11B	112.4 (6)
C6A—C1A—N7A	121.2 (7)	C8B—N7B—C1B	127.1 (6)
C2A—C1A—N7A	120.7 (7)	N11B—N7B—C1B	120.2 (6)
C3A—C2A—C1A	121.5 (7)	N12B—C8B—N7B	121.3 (7)
C3A—C2A—Cl1A	119.5 (6)	N12B—C8B—C9B	132.7 (8)
C1A—C2A—Cl1A	119.0 (6)	N7B—C8B—C9B	106.0 (6)
C4A—C3A—C2A	117.9 (7)	C10B—C9B—C8B	104.9 (6)
С4А—С3А—НЗА	121.0	C10B—C9B—C13B	128.8 (7)
С2А—С3А—НЗА	121.1	C8B—C9B—C13B	126.0 (7)
C3A—C4A—C5A	123.4 (7)	N11B—C10B—C9B	113.6 (6)
C3A—C4A—Cl2A	119.1 (6)	N11B—C10B—C18B	116.4 (7)
C5A—C4A—Cl2A	117.4 (6)	C9B—C10B—C18B	130.0 (7)
C6A—C5A—C4A	117.0 (7)	C10B—N11B—N7B	103.1 (6)
С6А—С5А—Н5А	121.5	C8B—N12B—H12C	111.5
C4A—C5A—H5A	121.5	C8B—N12B—H12D	136.8
C5A—C6A—C1A	122.0 (7)	H12C—N12B—H12D	111.7
C5A—C6A—Cl3A	120.3 (6)	O14B—C13B—O15B	122.3 (7)
C1A—C6A—Cl3A	117.7 (6)	O14B—C13B—C9B	125.8 (7)
C8A—N7A—N11A	112.6 (6)	O15B—C13B—C9B	112.0 (6)
C8A—N7A—C1A	127.8 (6)	C13B—O15B—C16B	118.5 (6)
N11A—N7A—C1A	119.6 (6)	O15B—C16B—C17B	111.0 (6)
N12A—C8A—N7A	121.7 (7)	O15B—C16B—H16C	109.4
N12A—C8A—C9A	131.5 (8)	C17B—C16B—H16C	109.4
N7A—C8A—C9A	106.8 (6)	O15B—C16B—H16D	109.4
C8A—C9A—C10A	104.8 (7)	C17B—C16B—H16D	109.4
C8A—C9A—C13A	128.0 (7)	H16C—C16B—H16D	108.0
C10A—C9A—C13A	126.7 (7)	C16B—C17B—H17D	109.5
N11A—C10A—C9A	112.5 (7)	C16B—C17B—H17E	109.5
N11A—C10A—C18A	117.3 (7)	H17D—C17B—H17E	109.5
C9A—C10A—C18A	130.2 (7)	C16B—C17B—H17F	109.5
C10A—N11A—N7A	103.4 (6)	H17D—C17B—H17F	109.5
C8A—N12A—H12A	128.3	H17E—C17B—H17F	109.5
C8A—N12A—H12B	103.1	C23B—C18B—C19B	116.6 (7)
H12A—N12A—H12B	128.6	C23B—C18B—C10B	121.0 (7)
O14A—C13A—O15A	123.3 (7)	C19B—C18B—C10B	122.4 (7)
O14A—C13A—C9A	126.9 (7)	C20B—C19B—C18B	119.7 (8)
O15A—C13A—C9A	109.8 (6)	C20B—C19B—H19B	120.2

C13A—O15A—C16A	116.9 (6)	C18B—C19B—H19B	120.2
O15A—C16A—C17C	110.0 (12)	N21B-C20B-C19B	124.0 (8)
O15A—C16A—C17A	109.2 (10)	N21B-C20B-H20B	118.0
O15A—C16A—H16A	109.8	C19B—C20B—H20B	118.0
C17A—C16A—H16A	109.8	C22B—N21B—C20B	116.9 (7)
O15A—C16A—H16B	109.8	N21B—C22B—C23B	122.2 (8)
C17A—C16A—H16B	109.8	N21B—C22B—H22B	118.9
H16A—C16A—H16B	108.3	C23B—C22B—H22B	118.9
O15A—C16A—H16E	109.7	C18B—C23B—C22B	120.6 (7)
C17C—C16A—H16E	109.7	C18B—C23B—H23B	119.7
O15A—C16A—H16F	109.7	C22B—C23B—H23B	119.7
C17C—C16A—H16F	109.7	O4L—S1—C2L	107.0 (4)
H16E—C16A—H16F	108.2	O4L—S1—C3L	105.3 (5)
C16A—C17A—H17A	109.5	C2L—S1—C3L	97.8 (5)
C16A—C17A—H17B	109.5	O4L—S1—H2LE	125.0
H17A—C17A—H17B	109.5	C3L—S1—H2LE	115.1
C16A—C17A—H17C	109.5	O4L—S1A—C3L	104.9 (6)
H17A—C17A—H17C	109.5	O4L—S1A—C2L	103.9 (6)
H17B—C17A—H17C	109.5	C3L—S1A—C2L	100.8 (7)
C16A—C17C—H17G	109.5	O4L—S1A—H2LB	128.1
С16А—С17С—Н17Н	109.5	C3L—S1A—H2LB	111.4
H17G—C17C—H17H	109.5	S1A—C2L—H2LA	131.2
C16A—C17C—H17I	109.5	S1—C2L—H2LA	110.7
H17G—C17C—H17I	109.5	S1—C2L—H2LB	109.1
H17H—C17C—H17I	109.5	H2LA—C2L—H2LB	109.5
C23A—C18A—C19A	118.1 (7)	S1A—C2L—H2LC	118.9
C_{23A} $-C_{18A}$ $-C_{10A}$	120.8 (8)	S1—C2L—H2LC	108.6
C19A—C18A—C10A	121.0 (8)	$H_2LA - C_2L - H_2LC$	109.5
C20A— $C19A$ — $C18A$	116.6 (8)	H2LB—C2L—H2LC	109.4
C20A—C19A—H19A	121.7	S1A—C2L—H2LD	108.4
C18A—C19A—H19A	121.7	S1—C2L—H2LD	123.8
N21A—C20A—C19A	124.5 (8)	H2LA—C2L—H2LD	117.3
N21A—C20A—H20A	117.8	S1A—C2L—H2LE	109.3
C19A - C20A - H20A	117.8	H^2LB — C^2L — H^2LE	168.0
C_{20A} N21A C_{22A}	117.0 (7)	H^2LD C^2L H^2LE	109.5
N21A—C22A—C23A	123.3 (8)	S1A—C2L—H2LF	110.7
N21A—C22A—H22A	118.4	S1—C2L—H2LF	126.4
$C_{23}A - C_{22}A - H_{22}A$	118.4	H2LC—C2L—H2LF	122.3
C22A— $C23A$ — $C18A$	120.5 (8)	H^2LD C^2L H^2LF	109.5
C22A— $C23A$ — $H23A$	119.7	H2LE - C2L - H2LF	109.5
C18A - C23A - H23A	119.7	S1—C3L—H3LA	109.5
C2B-C1B-C6B	117.4 (7)	SI-C3L-H3LB	109.5
C2B— $C1B$ — $N7B$	122.0(7)	H3LA—C3L—H3LB	109.5
C6B-C1B-N7B	120.5(7)	SIA-C3I-H3LC	153.4
C3B-C2B-C1B	120.0(7)	SI-C3L-H3LC	109.5
C3B-C2B-C11B	118.7 (6)	H3LA_C3L_H3LC	109.5
C1B-C2B-C11B	1193(6)	H3LB-C3L-H3LC	109.5
C2B $C2B$ $C4B$	117.5 (7)	SIA_C3I_H3ID	109.5
C2B—C3B—H3B	121.3	SI_C3I_H3I D	114 1
	141.5		117,1

C4B—C3B—H3B	121.3	H3LB—C3L—H3LD	120.7
C5B—C4B—C3B	122.8 (7)	S1A—C3L—H3LE	109.5
C5B—C4B—C12B	118.9 (6)	S1—C3L—H3LE	135.6
C3B—C4B—C12B	118.3 (6)	H3LA—C3L—H3LE	109.4
C4B—C5B—C6B	117.5 (7)	H3LD—C3L—H3LE	109.5
C4B—C5B—H5B	121.2	S1A—C3L—H3LF	109.5
C6B—C5B—H5B	121.2	H3LA—C3L—H3LF	124.1
C5B—C6B—C1B	122.8 (7)	H3LB—C3L—H3LF	125.5
C5B—C6B—Cl3B	118.9 (6)	H3LD—C3L—H3LF	109.5
C1B—C6B—Cl3B	118.3 (6)	H3LE—C3L—H3LF	109.5
C6A—C1A—C2A—C3A	-1.8 (11)	C2B—C3B—C4B—C5B	1.1 (11)
N7A—C1A—C2A—C3A	177.1 (7)	C2B—C3B—C4B—Cl2B	179.8 (5)
C6A—C1A—C2A—Cl1A	-179.6 (5)	C3B—C4B—C5B—C6B	-0.8 (12)
N7A—C1A—C2A—Cl1A	-0.7 (10)	Cl2B—C4B—C5B—C6B	-179.4 (6)
C1A—C2A—C3A—C4A	2.9 (11)	C4B—C5B—C6B—C1B	-0.1 (12)
Cl1A—C2A—C3A—C4A	-179.3 (6)	C4B—C5B—C6B—Cl3B	179.4 (6)
C2A—C3A—C4A—C5A	-1.2 (12)	C2B—C1B—C6B—C5B	0.6 (11)
C2A—C3A—C4A—Cl2A	178.7 (5)	N7B—C1B—C6B—C5B	179.8 (7)
C3A—C4A—C5A—C6A	-1.5 (12)	C2B—C1B—C6B—Cl3B	-178.9 (6)
Cl2A—C4A—C5A—C6A	178.7 (6)	N7B—C1B—C6B—Cl3B	0.3 (10)
C4A—C5A—C6A—C1A	2.6 (11)	C2B—C1B—N7B—C8B	77.2 (10)
C4A—C5A—C6A—Cl3A	-176.8(6)	C6B—C1B—N7B—C8B	-101.9 (9)
C2A—C1A—C6A—C5A	-1.0 (11)	C2B—C1B—N7B—N11B	-96.2 (8)
N7A—C1A—C6A—C5A	-179.9(7)	C6B—C1B—N7B—N11B	84.7 (9)
C2A—C1A—C6A—Cl3A	178.4 (6)	N11B—N7B—C8B—N12B	-179.4(7)
N7A—C1A—C6A—Cl3A	-0.5(10)	C1B—N7B—C8B—N12B	6.7 (12)
C6A - C1A - N7A - C8A	99.6 (9)	N11B—N7B—C8B—C9B	-0.6(9)
C_{2A} C_{1A} N_{7A} C_{8A}	-79.3(10)	C1B - N7B - C8B - C9B	-1744(7)
C6A - C1A - N7A - N11A	-81.7(9)	N12B - C8B - C9B - C10B	178 8 (9)
C2A— $C1A$ — $N7A$ — $N11A$	99.4 (8)	N7B-C8B-C9B-C10B	0.2(8)
N11A - N7A - C8A - N12A	179 9 (7)	N12B = C8B = C9B = C13B	5.5(14)
C1A = N7A = C8A = N12A	-13(12)	N7B-C8B-C9B-C13B	-1731(7)
$\frac{111}{1000} = \frac{1000}{1000} = \frac{1000}{1000}$	-0.6(0)	$C^{\text{R}}_{\text{C}} C^{\text{R}}_{\text{C}} C^{\text{R}}_{\text{C}} C^{\text{R}}_{\text{C}} C^{\text{R}}_{\text{C}} N^{1}_{\text{C}} R$	173.1(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	178.2(7)	C13B C9B C10B N11B	1733(7)
$\frac{12}{12} \frac{11}{12} 11$	170.2(7) 170.8(8)	$C_{13} = C_{13} = C_{10} = C$	173.3(7) 179.4(7)
N12A = C8A = C9A = C10A	179.0(0)	$C_{12} = C_{10} = C$	-7.6(12)
$N/A = C \delta A = C \delta A = C 1 \delta A$	-8.1(14)	C13D - C7D - C10D - C10B	-0.6(8)
NIZA = COA = COA = CI3A	-6.1(14)	$C_{PD} = C_{10D} = N_{11D} = N_{PD}$	-0.0(8)
$N/A = C \delta A = C \delta A = C \delta A$	1/2.3(7)	$C_{10} = C_{10} = M_{11} = M_{10} = M_{10}$	-1/9.8(0)
$C_{0A} = C_{0A} = C_{10A} = N_{11A}$	-0.1(9)	$C_{0}D = N/D = N_{11}D = C_{10}D$	0.7(6)
CI3A - C9A - C10A - NIIA	-1/2.3(7)	C10P $C0P$ $C12P$ $O14P$	1/3.1(0)
$C_{A} = C_{A} = C_{A$	-1/8.8(8)	C10B - C9B - C13B - O14B	5.5(12)
CIA = CIA = VIIA = VIA	9.0 (15)	$C_{0}D = C_{1}D = C_{1}D = C_{1}D$	1/1.2(8)
$C_{A} = C_{A} = N_{A} = N_{A$	-0.3(8)	$C_{0}D = C_{0}D = C_{1}D = O_{1}D$	-1/4.0(/)
CIA - CIUA - NIIA - N/A	1/8.6 (6)	CAR-CAR-CI3R-OI2B	-2.3(10)
CA - N/A - NIIA - CI0A	0.5 (8)	U14B— $U13B$ — $U15B$ — $U16B$	2.3 (10)
CIA—N/A—NIIA—CI0A	-1/8.4 (6)	C9B—C13B—O15B—C16B	-17/8.2(6)
C8A—C9A—C13A—O14A	-177.7 (8)	C13B—O15B—C16B—C17B	-93.4 (9)
C10A—C9A—C13A—O14A	-7.2 (13)	N11B—C10B—C18B—C23B	-53.7 (10)

C8A—C9A—C13A—O15A	1.7 (11)	C9B—C10B—C18B—C23B	127.2 (9)
C10A—C9A—C13A—O15A	172.2 (7)	N11B-C10B-C18B-C19B	124.8 (8)
O14A—C13A—O15A—C16A	-3.2 (11)	C9B-C10B-C18B-C19B	-54.3 (11)
C9A—C13A—O15A—C16A	177.4 (6)	C23B—C18B—C19B—C20B	0.8 (12)
C13A—O15A—C16A—C17C	120.8 (13)	C10B—C18B—C19B—C20B	-177.8 (7)
C13A—O15A—C16A—C17A	86.6 (11)	C18B—C19B—C20B—N21B	-0.5 (13)
N11A—C10A—C18A—C23A	53.4 (10)	C19B—C20B—N21B—C22B	-0.4 (12)
C9A—C10A—C18A—C23A	-128.0 (10)	C20B—N21B—C22B—C23B	1.2 (11)
N11A—C10A—C18A—C19A	-124.0 (8)	C19B—C18B—C23B—C22B	-0.1 (11)
C9A—C10A—C18A—C19A	54.6 (11)	C10B—C18B—C23B—C22B	178.5 (6)
C23A—C18A—C19A—C20A	-0.8 (12)	N21B-C22B-C23B-C18B	-1.0 (12)
C10A—C18A—C19A—C20A	176.7 (6)	C2L—S1—O4L—S1A	-52.1 (5)
C18A—C19A—C20A—N21A	1.7 (12)	C3L—S1—O4L—S1A	51.3 (5)
C19A—C20A—N21A—C22A	-1.4 (11)	C3L—S1A—O4L—S1	-54.0 (5)
C20A—N21A—C22A—C23A	0.2 (12)	C2L—S1A—O4L—S1	51.3 (5)
N21A—C22A—C23A—C18A	0.6 (13)	O4L—S1A—C2L—S1	-47.9 (5)
C19A—C18A—C23A—C22A	-0.2 (13)	C3L—S1A—C2L—S1	60.5 (5)
C10A—C18A—C23A—C22A	-177.7 (7)	O4L—S1—C2L—S1A	52.5 (5)
C6B—C1B—C2B—C3B	-0.2 (11)	C3L—S1—C2L—S1A	-56.2 (6)
N7B—C1B—C2B—C3B	-179.4 (7)	O4L—S1A—C3L—S1	49.0 (5)
C6B—C1B—C2B—C11B	-179.8 (6)	C2L—S1A—C3L—S1	-58.7 (5)
N7B—C1B—C2B—C11B	1.1 (10)	O4L—S1—C3L—S1A	-52.7 (5)
C1B—C2B—C3B—C4B	-0.6 (11)	C2L—S1—C3L—S1A	57.5 (6)
C11B—C2B—C3B—C4B	179.0 (6)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N12A—H12A…O15A	0.88	2.34	2.767 (8)	110
N12 A —H12 A ···O14 B^{i}	0.88	2.10	2.957 (8)	164
N12A—H12B…N21A ⁱⁱ	0.94	2.15	2.906 (9)	137
N12 <i>B</i> —H12 <i>C</i> ···O15 <i>B</i>	0.88	2.13	2.778 (8)	130
N12 <i>B</i> —H12 <i>C</i> ···O14 <i>A</i> ⁱⁱⁱ	0.88	2.24	2.983 (8)	142
$N12B$ — $H12D$ ··· $N21B^{ii}$	0.88	2.02	2.901 (9)	176

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*, *y*-1, *z*; (iii) *x*-1, *y*-1, *z*.