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INTRODUCTION

The brain is a metabolically demanding organ and its health directly depends on maintaining tissue
oxygen that is sufficiently high to prevent hypoxia. Focal increases in oxygen demand, in response to
sensory signals, motor output, etc., are supported by transient increases in cerebral blood flow via the
hemodynamic response (Aksenov et al., 2016). Traditionally, specific products of glutamatergic and
astrocytic pathways (i.e., nitric oxide (NO), arachidonic acid metabolites, calcium (Ca2+) and
potassium (K+) ions) have been proposed as mechanistic contributors to the hemodynamic
response (Archer et al., 1994; Attwell et al., 2010; Ross, 2012; Nippert et al., 2018). However,
these mechanisms may not be sufficient drivers of the hemodynamic response. For example, a recent
review (Nippert et al., 2018) concluded that, although NO must be present for vasodilation to occur
in the cerebral cortex, it is not the active signaling molecule, arteriole vasodilation can occur in the
absence of astrocyte Ca2+ increases, Ca2+ signals are characterized by long latencies occurring after
the initiation of vasodilation and K+ siphoning through astrocytes does not always play a major role
in neurovascular coupling. Moreover, hemodynamic modulatory pathways can have differing levels
of influence across various structures. For instance, studies have shown that NO can be an active
signaling molecule in the cerebellum (Akgoren et al., 1996; Yang and Iadecola 1997) and
hippocampus (Lourenco et al., 2014).

A possible addition to this conventional approach are chloride channel-dependent
mechanisms of neurovascular coupling, which may participate in neurovascular deficiency
and neurodegeneration. Prominent pathways which employ such chloride channels are gamma
aminobutyric acid (GABA) ergic interneuron pathways, which operate via GABA-gated chloride
channels (GABAA receptors) and provide a means of rapid signaling. The role of GABAergic
interneurons and GABAA receptors in inhibition of neuronal activity is well-known.
Interneurons suppress excessive neuronal activity and spatially limit neuronal responses by
instigating the hyperpolarization of the cell membrane which has the added benefit of decreasing
local oxygen consumption. Additionally, GABA-gated chloride channels can directly participate
in regulating cerebral blood flow. GABAA receptors can be found along arterioles (Vaucher et al.,
2000) where interneurons make direct morphological connections (Cauli et al., 2004; Tremblay
et al., 2016). These chloride channels on brain vessels are functionally active and are able to
facilitate substantial vasodilation in response to stimulation, attributable to the
hyperpolarization of arteriolar smooth muscles with their subsequent relaxation. Multiple
studies have shown that GABAergic interneurons are essential for the full expression of the
hemodynamic response in the presence of chemical or electrical stimulation (Kocharyan et al.,
2008), during epileptiform discharges (Saillet et al., 2016) as well as in response to both sensory
(Aksenov et al., 2019) and optogenetic stimulation (Anenberg et al., 2015). Arteriolar GABA-
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gated chloride channels, can therefore play an important role
in the hemodynamic response due to their fast and profound
effect on vasodilation.

In essence, GABA-gated chloride channels can function to
prevent hypoxia by both upregulating oxygen supply and
downregulating oxygen consumption. Thus, it is our
perspective that if the number of these channels or their main
biochemical properties are affected, the combination of decreased
inhibition and a weakened hemodynamic response can induce
local hypoxia, which will alter the intracellular and extracellular
environment with neurodegeneration evident thereafter. In
support of this perspective, we will briefly review chloride
channel dysfunction and neurodegeneration in different
diseases, and then provide our interpretation regarding the
role of neurovascular deficiency as a medium between chloride
channel dysfunction and neurodegeneration.

NEURODEGENERATION AND CHLORIDE
CHANNEL DEFICIENCY

Chloride channel deficiency accompanies many
neurodegenerative diseases. For example, in Alzheimer’s
disease, which is characterized by progressive
neurodegeneration starting in hippocampus and entorhinal
cortex, the neurotransmission of GABA and GABAergic
terminals have been shown to be significantly disrupted in
areas neighboring beta-amyloid plaques (Li et al., 2016).
Subsequent analysis has shown abnormal upregulation and
downregulation of the α2, β1, γ1, and α1, γ2 subunits of
GABAA receptors respectively (Limon et al., 2012). Another
example is Parkinson’s disease. This progressive
neurodegenerative disorder is strongly associated with
neuronal cell loss in the substantia nigra and striatum (Fahn
and Sulzer, 2004). Although Parkinson’s disease mostly
corresponds with the loss of dopaminergic neurons, GABA
and GABAA receptor deficiency has also been shown to play
an important role in the early and non-motor symptoms of
Parkinson’s disease (Murueta-Goyena et al., 2019). These
changes in GABAergic pathways are different from those
observed in Huntington’s disease. In Huntington’s disease
GABAergic interneurons undergo specific morphological
alterations (i.e., reduced somatic areas and dendritic field
complexity) which accompanies aggressive neurodegeneration
in the striatum (Bano et al., 2011).

The etiologies of Alzheimer’s, Parkinson’s and particularly
Huntington’s diseases, are often attributed to genetics, however,
some diseases (for example, epilepsy) can be independent of such
substantial genetic factors. Distinctly, Drug-Resistant Epilepsy
(DRE), which occurs in 40% of people with epilepsy (Engel,
2016), has been shown to cause neurodegeneration, often in the
temporal lobe. Evidence has elucidated the association between
the increased internalization of GABAA receptors and symptoms
in DRE (Goodkin et al., 2005; Naylor et al., 2005; Goodkin et al.,
2007).

Even complex psychiatric disorders can present with chloride
channel affiliated neurodegeneration. For instance, patients with

schizophrenia exhibit progressive bilateral neurodegeneration in
the grey matter of the temporal and parietal lobes (Whitford et al.,
2006), and can exhibit significant under-expression of the α5
subunit of GABAA receptors, the degree of which is correlated
with the symptom severity (Marques et al., 2020). Furthermore,
autism spectrum disorder (ASD) has demonstrated similar
patterns of neurodegeneration to that of schizophrenia.
Individuals with ASD have exhibited reduced grey matter
volumes in the mirror neuron system (Hadjikhani et al., 2006;
Marques et al., 2020). The severity of grey matter thinning in this
area was further correlated with the severity of symptoms
experienced by those with ASD. Moreover, genetic studies
have identified copy number variations and entire locus
duplications of the 15p11-q13 chromosomal region in patients
with ASD, which lead to under and dysfunctional expression of
the β3, α5, and γ3 subunits of GABAA receptors (Hadjikhani
et al., 2006). This indicates the potential of chloride channel
deficiency to both precede cases of ASD, and have further
downstream consequences of neurodegeneration.

Chloride channel dysfunction and neurodegeneration can also
occur as an acquired iatrogenic condition; the most notable
example of which is neonatal exposure to anesthesia (Aksenov
et al., 2020a). Anesthetics that are classified as GABA agonists and
glutamate antagonists (Aksenov et al., 2019), have consistently
been shown to produce significant neuroapoptosis that is directly
correlated with dosage and duration of the anesthesia delivery
(Hadjikhani et al., 2006; Zheng et al., 2015; Liu et al., 2018).
Moreover, the severity of apoptosis can create a loss of cortical
neurons, of which a significant proportion are GABAergic
inhibitory interneurons (Istaphanous et al., 2013), and a
further study has shown general anesthesia to directly disturb
chloride channels (Cabrera et al., 2020) thereby broadening the
known contributory effects of anesthesia on neurodegeneration
(Aksenov, 2021). These neurodegenerative and apoptotic
processes can alter the delicate excitatory/inhibitory balance of
cortical networks (Aksenov et al., 2020a). This imbalance can
account for, at least in part, the negative developmental changes
(Johnston et al., 2002; Aksenov et al., 2020a; Aksenov et al.,
2020b) and impeded GABAergic system development (Young
et al., 2012; Nisimov et al., 2018) following neonatal anesthesia.
This disproportionate cell death leading to a shift in the
excitatory/inhibitory balance requires further research in terms
of occurrence of the local chronic hypoxia in later years, and how
this shift caused by anesthesia, adapts throughout development.

DISCUSSION

We suggest that, in the absence of normal GABAA receptor
functioning, neurovascular deficiency could manifest where a
weakened hemodynamic response, in combination with
decreased inhibition, would be insufficient to support the
present metabolic demand. Although this type of
neurovascular deficiency does not result in actual ischemic
stroke, it engenders chronic intermittent hypoxia which
produces neurodegeneration. This clear sequence of events
explains the importance of normal chloride channel
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functioning for preventing chronic hypoxia. Therefore,
dysfunctional chloride channels could be a contributory factor
to the neurodegeneration in the aforementioned diseases which
are epiphenomenal with chloride channel dysfunction.

Indeed, the dangers of hypoxia on the intracellular and
extracellular compositions of brain tissue have been well
documented. It is known that insufficient oxygen for basic
metabolic processes can lead to cell death (Mariotti et al.,
2016). Although the neuronal damage is especially severe in
sudden onset hypoxia–ischemia, such as in the case of an
ischemic stroke, it can also occur as a result of chronic
hypoxia (Dheer et al., 2018; Mahakizadeh et al., 2020).
Depending on the severity, hypoxia has been shown to
increase the production of reactive oxygen species which can
accumulate beyond the protective abilities of anti-oxidative
systems, causing oxidative stress (Chen et al., 2018). Oxidative
stress has a high propensity to interact with macromolecules
within cells (e.g., DNA/RNA oxidation, protein oxidation,
nitration of tyrosine residues, and lipid peroxidation), leading
to cell debilitation (Moreira et al., 2005). Other consequences of
hypoxia include a reduction in intracellular and extracellular pH
(Rolett et al., 2000; Yao and Haddad, 2004), phosphocreatine
(Rolett et al., 2000), inorganic phosphate (Nioka et al., 1990;
Rolett et al., 2000) and a buildup of NADH (Rolett et al., 2000;
Shetty et al., 2014). These distinct alterations to the intracellular
and extracellular environment significantly impair normal
cellular functioning and have been shown to be biochemical
indicators of neuroapoptosis. Such hypoxia-related events not
only demonstrate the ability of insufficient cerebral blood flow to
produce neurodegeneration in the immediate undersupplied
tissues, but that it can also harmfully affect neighboring tissues
as well.

Brain functioning and its metabolic support is a highly
integrated process, and embedded within this complex system
are GABAergic interneurons and the hemodynamic response.
When neurodegeneration is present, determining if
neurovascular deficiency precedes this process and exacerbates
the neurodegeneration, or suffers as a direct consequence of an
unbalanced excitatory/inhibitory system, remains a challenge.
These two possibilities are accompanied by respective
hypotheses and can therefore be examined by future studies in
a controlled environment. A possibility of how one may address

this issue includes in vivo studies providing longitudinal
measurement of chloride channel and interneuron deficiencies
in association with subsequent hemodynamic function and
neurodegeneration.

Further interrogation into chloride channel subunit
functioning may provide a bottom-up approach to more
accurately describe their role in neurodegeneration. A family
of genes have been identified (regions CLC2-7) to transcript
chloride channels in the brain (Jentsch et al., 1999). These loci
represent specific areas of potential genetic manipulation that
could identify the discrete contribution of chloride channels and
their subunits in degenerative diseases. In addition, the local
modulation of chloride channel expression with a viral vector
could be used. This type of methodology has proven effective in
animal translational models (Miah et al., 2019). Unfortunately,
little work has been done to use viral vectors to modulate chloride
channel expression in the brain. However, in reference to GABAA

receptors, certain benzodiazepine derivatives have shown to
allosterically bind to individual subunits. Namely, TPA023
(Atack et al., 2006), HZ166 (Di Lio et al., 2011) and SL651498
(Griebel et al., 2003) are reported to act as α2 and α3 agonists,
while CGS 9865 binds to the β+α− interface (Maldifassi et al.,
2016). Genetic and subunit-related research may provide further
insights into chloride channel dysfunction and lead to
etiologically-specific pharmacological solutions to both protect
chloride channels, and prevent neurovascular deficiency, in the
previously discussed diseases and conditions.
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