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Abstract

Background: Lens regeneration in adult newts occurs via transdifferentiation of the pigment epithelial cells (PECs) of the
dorsal iris. The same source of cells from the ventral iris is not able to undergo this process. In an attempt to understand this
restriction we have studied in the past expression patterns of miRNAs. Among several miRNAs we have found that mir-148
shows an up-regulation in the ventral iris, while members of the let-7 family showed down-regulation in dorsal iris during
dedifferentiation.

Methodology/Principal Findings: We have performed gain- and loss-of–function experiments of mir-148 and let-7b in an
attempt to delineate their function. We find that up-regulation of mir-148 caused significant decrease in the proliferation
rates of ventral PECs only, while up-regulation of let-7b affected proliferation of both dorsal and ventral PECs. Neither
miRNA was able to affect lens morphogenesis or induction. To further understand how this effect of miRNA up-regulation is
mediated we examined global expression of miRNAs after up-regulation of mir148 and let-7b. Interestingly, we identified a
novel level of mirRNA regulation, which might indicate that miRNAs are regulated as a network.

Conclusion/Significance: The major conclusion is that different miRNAs can control proliferation in the dorsal or ventral iris
possibly by a different mechanism. Of interest is that down-regulation of the let-7 family members has also been
documented in other systems undergoing reprogramming, such as in stem cells or oocytes. This might indicate that
reprogramming during newt regeneration shares common molecular signatures with reprogramming in stem or germ cells.
On the other hand that miRNAs can regulate the levels of other miRNAs is a novel level of regulation, which might provide
new insights on their function.
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Introduction

Lens regeneration in adult newt is one of the most interesting

cases of organ regeneration. It also represents a clear case of

transdifferentiation. Specifically, after lentectony the pigment

epithelial cells (PECs) of the dorsal iris dedifferentiate and then

differentiate to lens cells. The same cells from the ventral iris

cannot undergo these events [1,2]. Nevertheless, ventral iris PECs

do re-enter the cell cycle and proliferate (but in lower levels) and

also are quite active in expressing regulatory genes at the dorsal iris

[3,4,5]. Thus, we have been entertaining the idea that the ventral

iris might initiate some of the events of dedifferentiation but then a

repression event stops it from further commitment that would lead

to regeneration. In an attempt to understand this phenomenon

and address the repression issue we have studied in the past

expression of miRNAs in both dorsal and ventral iris. miRNAs

(20–22 nt long) are know factors that suppress expression of many

genes by binding to target sequences in the 39UTR of many

mRNAs. We identified several miRNAs that were differentially

regulated in the dorsal and ventral iris [6]. Most notably we found

that mir-148 was upregulated in the ventral iris. Likewise members

of the let-7 family were found to be down-regulated during the

process of dedifferentiation in dorsal iris. In the present study we

undertook loss-and gain-of function experiments for mir-148 and

let-7b to delineate their function during the process of regener-

ation. We found that up-regulation of mir-148 most likely controls

specifically the rate of proliferation in ventral PECs, while let-7b

control proliferation of both dorsal and ventral PECs. Neither

miRNA affected lens morphogenesis. This is consistent with the

expression patterns of mir148 and indicates that control of

proliferation in dorsal and ventral iris might have different regu-

lators. We then examined global miRNA expression due to up-

regulation of mir-148 and let-7b. Interestingly we found a new

level of regulation: perturbations in the expression of miRNAs can

affect the expression of other miRNAs, indicating that miRNAs

might act as in networks.
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Methods

Iris pigment epithelial cell culture
Usage of animals has been approved by the Institutional Animal

Care and Use Committee (IACUC) of University of Dayton

(Assurance Number A 3092-01).

Newts were anesthetized with 0.1% ethyl 3-aminobanzoate

methanesulfonic acid salt, and animals were sacrificed immedi-

ately. Eyes were cut in half and iris was collected in Hank’s

solution, then remaining retinal tissues and marginal place of iris

were totally removed from them. Iris tissues were divided dorsal

and ventral parts and placed in culture medium (65% diluted L-15

with 10% FBS, containing 100 mg/mL kanamycin sulfate and

2.5 mg/mL Amphotericin B solution). Irises were treated with

dispase (GIBCO, ,5 mg/mL) for 2–3 hrs, followed by removal

of the stroma. Collected iris tissue/cell layer was treated by

2.5 mg/mL trypsin for 2 hrs, and then isolated cells were placed

on collagen I-coated plates. Cells were kept in culture for at least

one week before used.

Transfection of cultured PECs
For transfection, Lipofection by Lipofectamine (invtrogen) with

plus reagent was performed. For down-regulation of micro RNA,

miRCURYTM LNA knockdown probes (EXIQON) were used,

and for up-regulation, Ambion Pre-miRTM miRNA Precursor

Molecule was used. For controls we used the following: Ambion’s

Pre-miR negative control #1 in the up-regulation experiments

and miRCURYTM knockdown scramble-miR for down-regula-

tion. The final concentration was 1.6 mM.

Cell aggregation and implantation
After transfection, cells were kept for 4 days, then treated by

1.5 mg/mL dispase for overnight. Cells were collected to 1.5 mL

tubes and washed with medium, then divided in aliquots

containing 3000–5000 cells each. After they aggregated well (2–

3 days), each aggregate was implanted into lentectomized eyes.

Animals were kept for 1 month to induce regeneration before they

eyes were examined for effects on the regeneration process. This

method can be used for transient expression of transfected genes

for induction of regeneration (3).

Immunohistochemistry
For immunohistochemistry, eyeballs were fixed in 4% Parafor-

maldehyde in PBS at 4uC, overnight. Then, tissues were

dehydrated and embedded in paraffin. 15 mm sections were

mounted on gelatin-coated slides. For a primary antibody, mouse

monoclonal anti-crystallin [7] was used at 4uC overnight. For

detection 1:100 Alexa 488 conjugated anti-mouse IgG (invitrogen).

For BrdU incorporation, 5 days after transfection, cells were

treated with 0.25 mg/mL BrdU for 24 hrs, then washed with PBS

and fixed with 3:1 mixture of Methanol: Acetic Acid 10 min. After

washing with 100% MetOH, they were dried-up and kept in

220uC until used. At that time cells were washed with 2x SSC,

treated with 0.5% saponin/0.5% Triton X-100 in 2x SSC, 1 hr,

followed by 1M HCl for 5 min. They were then immediately

washed with 2xSSC three times before the buffer was replaced to

TN-Buffer (0.1 M Tris-HCl pH 7.5+150 mM NaCl) for 10 min,

then blocked by TNB (TN-Buffer with 0.5% Blocking reagent)

(Perkin Elmer, FP1020) at room temperature. As primary

antibody, CHEMICON MAB3510, mouse anti-BrdU, 1:200 in

TNB was used at 4uC for overnight. Cells were washed with TNT

(TN-Buffer with 0.05% Tween 20), then treated with secondary

antibody, 1:100 Alexa 488 conjugated anti-mouse IgG (invitrogen)

in TNT, 90 min at room temperature. After washing with TNT,

wells were mounted by Vectashield with DAPI (Vector Labora-

tories) and then observed. Cells were counted for BrdU immu-

noreactivity and total cell number was counted by DAPI-stained

nuclei. The BrdU/DAPI ratio was calculated as percentage. On

average 5 samples were used. For statistics we used Student’s t-test.

miRNA microarrays
Lens tissue was homogenized in TRIzol Reagent (Invitrogen

Corp., Carlsbad, CA) from which total RNA was isolated

following the accompanying instructions [8]. Total RNA purity,

quantity, and quality were determined using a NanoDrop

spectrophotometer ND-1000 (Thermo Scientific, Waltham, MA)

Figure 1. Luciferase activity. Luciferase activity in ventral and dorsal PECs transfected with a luciferase vector containing target target sequences
for miR148. Note inhibition in cells that were co-transfected with miR-148. 3T3 cells were the untransfected control. The values are average of 20
measurements.
doi:10.1371/journal.pone.0012058.g001
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and Agilent Bioanalyzer 2100 (Agilent Technologies, Santa Clara,

CA). miRNA was isolated from the total RNA preparation using

the Flash PageTM gel system (Ambion, Austin, TX). The purified

miRNA was amplified using the NCodeTM miRNA Amplification

System (Invitrogen Corp., Carlsbad, CA) from which the sense

strand RNA was isolated using the PureLinkTM Micro kit

(Invitrogen Corp., Carlsbad, CA). The sense strand miRNA was

labeled with cyanine-3 and used for hybridization on mouse

miRNA microarray slides version 2 (Agilent Technologies, Santa

Clara, CA). To our knowledge and experience miRNA microarray

analysis, using arrays from other species is quite acceptable due to

the high degree of sequence conservation between miRNAs (6).

The data analysis was carried out by performing loess normali-

zation [9] without background correction to pre-process the image

files from the Agilent Feature Extraction software [10] and an

intensity-based, modified t-test [11] to characterize the significance

level of each feature using limma R packages from Bioconductor

[12].

Results and Discussion

Tranfection and Luciferase Activity
To ensure that transfections of miRNAs can specifically regulate

mRNAs containing their target sequences, we tranfected PECs

with a luciferase construct containing mir-148 target sequences.

Luciferase activity was very high when compared with untrans-

fected 3T3 cells (figure 1). Interestingly the activity in the ventral

PECs was lower than the activity in the dorsal PECs. This is

consistent with our previous finding that there is more mir-148 in

the ventral iris than the dorsal. However, when the plasmid was

co-transfected with mir-148 as well, luciferase activity was signifi-

cantly decreased.

Gain- and loss-of-function of miRNAs in dorsal and
ventral iris

To delineate the function of mir-148 and let-7b during lens

regeneration we performed gain- and loss-of-function experiments.

For this dorsal or ventral PECs were transfected with pre-miR

constructs (gain-of-function) or with antisense LNAs (loss-of-

function). We followed the standard protocol to examine their

effects on lens morphogenesis. After transfection, the cells remained

in culture for two weeks. They were then aggregated and placed in a

lentectomized eye. This transplantation procedure recapitulates the

normal in vivo conditions. Only the dorsal aggregates transdiffer-

entiate to lens, while the ventral ones do not [13]. Thus any effect on

either dorsal or ventral iris can be assessed 30 days after

transplantation. The overall results are shown in Table 1. Generally

without any treatment, the transplantation protocol that we use will

induce lens transdifferentiation in 75–100% of the dorsal aggre-

gates, while there is never a case of ventral iris transdifferentiating to

lens (0%). As can be seen from the results in none of the cases the

ventral iris was induced to transdifferentiate. Also in all cases but the

dorsal mir148 up-regulation, the percentage of transdifferentiation

from the dorsal aggregates was within the normal range. Of interest

is the fact that when dorsal cells were up-regulated with mir-148

there was only 50% of transdifferentiation. This seems somehow

low, but we do not think is a significant effect. In Figure 2 we present

cases of lens transdifferentiation from the dorsal aggregates with up-

regulated mir-148 and let-7b and in Figure 3 cases of lens

transdifferentiation from dorsal aggregates with down-regulated

mir-148 and let-7b. In all induced cases the lens seems to be of

normal morphology.

Table1. Ratio of lens regeneration from gain or loss of
function of miRNAs in PECs.

Untreated miR-148a up let-7b up

Dorsal 9/12 4/8 8/9

Ventral 0/10 0/9 0/9

Untreated miR-148a down let-7b down

Dorsal 9/12 3/3 3/4

Ventral 0/10 0/8 0/8

doi:10.1371/journal.pone.0012058.t001

Figure 2. Gain of function. Effects of miR-148 and let-7b up-regulation on the capability of dorsal and ventral PECs to transdifferentiate to lens.
Cells were transfected as described in methods and after they were aggregated they were implanted in lentectomized eyes. The eyes were examined
30 days later. A, B: dorsal PECs and E, F: ventral PECs, transfected with miR-148. C, D: dorsal PECs and G, H: ventral PECs transfected with let-7b. Note
that only dorsal aggregates differentiated to lens (left panels are phase contrast and left panels stained with a crystallin antibody). Arrowheads
indicate the induced lens from the dorsal aggregates or the un-induced ventral PECs aggregate.
doi:10.1371/journal.pone.0012058.g002
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Effects of mir148 and let-7b on PEC proliferation
Since both miRNAs were not able to induce the ventral PECs to

transdifferentiate we hypothesized that maybe their effect is in

controlling earlier events of regeneration. As mentioned in the

introduction, the ventral iris initiates events of proliferation and

gene expression. Since only the dorsal iris is able to proceed to

Figure 3. Loss of function. Effects of miR-148 and let-7b down-regulation on the capability of dorsal and ventral PECs to transdifferentiate to lens.
Same description as in Figure 2 legend.
doi:10.1371/journal.pone.0012058.g003

Figure 4. Proliferation experiments. Examples of proliferating cells transfected with miR-148 or let-7b. Top panels are dorsal PECs and low panels
are ventral PECs.
doi:10.1371/journal.pone.0012058.g004
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transdifferentiate to lens there could be a differential effect on

control of cell proliferation in dorsal and ventral iris. We,

therefore, examined the effect on PEC proliferation after gain-

and loss-of-function experiments. The results were quite interest-

ing. We found that up-regulation of mir-148 had a significant

inhibitory effect on ventral PECs only, while up-regulation of let-

7b inhibited both ventral and dorsal PEC proliferation (figure 4,5).

Interestingly, down-regulation of the two miRNAs did not affect

cell proliferation. The interpretation of these results leads to the

conclusion that proliferation of ventral iris PECs is regulated in a

different way than in the dorsal iris PECs. mir-148 is ventral-

specific. And we find that it affects proliferation only in ventral

PECs. Therefore we believe that higher levels in the ventral iris

must correlate with control of cell proliferation in these cells only.

Down-regulation of mir-148 does not interfere with proliferation,

but because the dorsal PECs were not affected with either mir-148

treatment it seems that they are indifferent to its presence. On the

other hand, let-7b, which is down-regulated in the dorsal iris

Figure 5. Quantitation of proliferation. Effects of gain or loss of function of miR-148 and let-7b on PEC proliferation.
doi:10.1371/journal.pone.0012058.g005

Table 2. Cell proliferation related miRNAs, which were regulated by miR-148a.

miRNA cells/tissues Function reference

miR-1 myoblasts; human-derived cardiomyocyte progenitor cells muscle differntiation; NF-kappaB regulation [20,22]

miR-10a human ovarian granulosa cells; megakaryocytic progenitors;
chronic myeloid leukemia

reduces PCNA IR; be down-regulated during megakaryocytic
differentiation; DR proliferation of CML

[23,24,25]

miR-21 liver regeneration; mesangial cells UR in proliferative phase, targets Pellino-1, and inhibits NF-kappaB
signaling; Over-expression of miR-21 inhibited proliferation

[30,31]

miR-30c hepatic organogenesis, connective tissue growth factor required for hepatobiliary development, decreases CTGF levels,
which was accompanied by decreased production of collagens

[17,18]

miR-130b Transformed human T-cell NR of TP53INP1(cell growth factor) [32]

miR-146a cancer cells; megakaryocytosis; Myogenesis negative regulation of NF-kappaB; decrease proliferation by NR
of CXCR; NR of Numb

[26,27,28,29]

miR-203 Mouse skin tumor suppressor; repress stemness [51,52,53,54]

miR-206 rhabdomyosarcoma myoblasts; breast cancer cells, suppresses c-Met expression; reduced cell proliferation and
enhanced apoptosis; promotes muscle differentiation

[19,20,21]

miR-211 oral carcinoma cells Enforced miR-211 increases the proliferation [33]

doi:10.1371/journal.pone.0012058.t002
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during dedifferentiation, does inhibit proliferation of the dorsal

PECs, when up-regulated in these cells. In other words experi-

mental up-regulation of let-7b brings its levels to an intact iris

(non-proliferative) state. That could also explain why proliferation

of the ventral iris PECs is also seen by let-7b up-regulation.

Control of cell proliferation has been reported before for let-7 in

breast cancer cell lines [14]. In fact similarly to our results over-

expression of let-7 resulted in reduction of proliferation. Other

miRNAs, such as miR-24, inhibit proliferation [15](see also below).

Their up-regulation targets mostly cell cycle regulatory genes

[15,16]. Target genes for newt let-7 and miR-148 have not been

identified due to lack of extensive sequence information. Because of

that we decided to examine whether up-regulation of let-7b and

miR-148 is able to regulate other miRNAs. Since target genes in

other animals are known such regulation could allow us to make

useful comparison and understand their function in regeneration.

A miRNA network?
Because up-regulation of miR-148 or let-7b affected prolifera-

tion we collected cells after transfection, isolated RNA and probed

a microarray containing all mouse miRNAs. Interestingly, we

found that sets of miRNAs were regulated due to miRNA up-

regulation (Table S1). More notable several of these miRNAs have

been shown in other studies to be involved in the control of cell

proliferation. Specifically, miR-30c [17,18], miR-206 [19,20,21],

miR-1 [20,22], miR-10a [23,24,25], miR-146a [26,27,28,29],

miR-21 [30,31], miR-130b [32] and miR-211 [33] (regulation by

miR-148) have been shown to affect proliferation in various cell

types and miR-203 to be involved in repression of stemness

(Table 2). Likewise, miR-1 [20,22], miR-200a [34,35], let-7g

[36,37,38,39,40], miR-9 [41] and miR-197 [42] (regulated by let-

7b) have also been shown to affect proliferation (Table 3). Thus,

we have identified another level of miRNA regulation, which

indicated that miRNAs might act members of a network. This

exciting idea needs of course to be verified in other systems as well.

miRNAs, reprogramming, and dedifferentiation
An interesting connection between miRNAs and reprogramming

of stem cells and of oocytes has been reported recently that might

bear significance for the process of dedifferentiation during lens

regeneration. Expression of let-7 in mammalian stem cells is evident

before cells differentiate [43,44]. In other words induction of let-7

prevents stemness and induces differentiation, while reduction up-

regulates stemness factors and stemness. Likewise, during repro-

gramming of oocyte growth miRNA function is globally suppressed

[45]. Among the suppressed miRNAs all members of the let-7

family are included. Interestingly, such a down-regulation of all let-

7 members has also been seen during the dedifferentiation process

of PECs as well as during repair of zebrafish retina [6,46]. In

addition, several pluripotency-maintaining factors, such as Sox-2,

Klf4 and c-myc are expressed in the dorsal iris during dedifferen-

tiation [47]. It has been suggested before that similar mechanisms

could be involved in reprogramming of mammalian cells and their

induction to iPSCs and reprogramming during regeneration in

newts or zebrafish. The let-7 story is yet another interesting

similarity between these two events.

miRNAs and regeneration
Our previous study on the expression of miRNAs during lens

and hair cell regeneration in newts was the first to indicate a

possible involvement and regulation. The present study shows

that, indeed, miRNAs can have a role in regeneration. Other

recent reports support this as well. During zebrafish fin

regeneration it has been shown that miR-203 regulates the Wnt

signaling pathway transcription factor Lef1 [48]. Down-regulation

of Lef1 by miR-203 blocks regeneration, while loss of miR-203

results in up-regulation of Lef1 and fin overgrowth. In another

study it was found that depletion of miR-133 promotes fin

regeneration and that this is FGF-dependent [49]. In a different

study it was shown that miR-196 is involved in axolotl tail

regeneration. Inhibition of miR-196 blocks regeneration by acting

up-stream BMP4 and Pax-7 [50].

In this paper we describe the effects of two miRNAs on newt

lens regeneration. We conclude that they differentially control cell

proliferation in dorsal and ventral iris. Further, we identified that

up-regulation of these two miRNAs results in regulation of other

miRNAs. This is the first time that such regulation is reported and

uncovers yet an unsuspected mode of miRNAs regulation as a

network. Interestingly, many of the regulated miRNAs are

associated with proliferation, which was the most prominent effect

of miR-148 and let-7b. Our findings open new avenues in the

study of miRNAs in cell proliferation, as is related to differenti-

ation and regeneration.

Supporting Information

Table S1 miRNA microarrays. The files present raw data on

miRNA microarrays. Ventral PECs were up-regulated with let-7b

or miR-148 by transfection and isolated RNA was used to probe

microarrays. Control samples were PECs transfected with

scrambled miRNAs (see Methods).

Found at: doi:10.1371/journal.pone.0012058.s001 (0.04 MB

XLS)
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Table 3. Cell proliferation related miRNAs, which were regulated by let-7b.

miRNA cells/tissues Function reference

miR-1 myoblasts; human-derived cardiomyocyte progenitor cells muscle differntiation; NF-kappaB regulation [20,22]

miR-9 human gastric adenocarcinoma; inhibits NF-kappaB1 [41]

miR-197 follicular thyroid carcinoma cells overexpression causes cell proliferation [42]

miR-200a nasopharyngeal carcinoma cell; brain tumor cells inhibits cell growth, migration and invasion; inhibits
translation and blocking Wnt/beta-catenin signaling

[34,35]

let-7g cencer cells; hepatocellular carcinoma Cells; inhibits proliferation by down-regulation of c-Myc and
Up-regulation of p16(INK4A)

[36,37,38,39,40]

doi:10.1371/journal.pone.0012058.t003
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