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Here we provide the state-of-the-art of bioelectronic interfacing between biological

neuronal systems and artificial components, focusing the attention on the potentiality

offered by intrinsically neuromorphic synthetic devices based on Resistive Switching (RS).

Neuromorphic engineering is outside the scopes of this Perspective. Instead, our focus

is on those materials and devices featuring genuine physical effects that could be sought

as non-linearity, plasticity, excitation, and extinction which could be directly and more

naturally coupled with living biological systems. In view of important applications, such

as prosthetics and future life augmentation, a cybernetic parallelism is traced, between

biological and artificial systems. We will discuss how such intrinsic features could reduce

the complexity of conditioning networks for a more natural direct connection between

biological and synthetic worlds. Putting together living systems with RS devices could

represent a feasible though innovative perspective for the future of bionics.

Keywords: cybernetics, bio-electronic systems, resistive switching devices, memristors, neuromorphic devices,

multielectrode arrays

INTRODUCTION

The brain is the most powerful and complex known computational system. A recent work evaluates
the memory capacity of the human brain to be in the order of 1015 Bytes (Bartol et al., 2016).
Unlike the hardware and software of a machine, the mind and brain are not distinct entities, feature
that resembles the so called firmware. How could we represent a neuronal synapse, a complex
structure containing hundreds of different proteins with a single line of code? We still do not know
the detailed circuitry of any region of the brain well enough to reproduce its structure and, as a
consequence, its behavior (Brooks et al., 2012).

The technological roadmap toward integration of synthetic and biological functions was
described in the past as cybernetics, in a definition given by N. Wiener (Wiener, 1961) that
recalls ancient Greek κυβερνητική τέχνη, the art of the pilot. This definition moves from the
hypothesis that there is a substantial analogy between self-regulation mechanisms in living beings
and machines, based on information flow and feedback/closed loop.

Putting the focus on silicon microdevices, we should trace a boundary between (Breslin and
O’Lenskie, 2001).

(1) extrinsic neuromorphic systems, based on CMOS circuits that enable processing of information
as occurs naturally in biological brains, including silicon based artificial synapses and artificial
neurons sorted in neural networks, that are outside the scopes of this review;
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(2) intrinsic neuromorphic systems, artificial synapses or arrays of
elements that inherently possess key figures such as plasticity,
non-linearity, spiking processing capabilities.

Giant projects / frameworks, such as the DARPA SyNAPSE
program (Systems of Neuromorphic Adaptive Plastic Scalable
Electronics) and the EU Human Brain Project deal with standard
extrinsic systems and therefore are outside the scopes of this
Perspective. Their paradigm is reproducing the configurational
complexity by emulating a simplified physical model in an
extremely high number of elements (at least 1010 neurons and
1014 synapses).

NEURONAL NETWORKS IN VITRO: A
SIMPLIFIED MODEL OF BRAIN CIRCUITS

The neuronal assembly, as defined by Hebb (1949) is “a group of
cells that share similar static and dynamic response properties,
constituting the simplest instance of a representative process.”
A network of sparsely coupled neurons from different brain
areas developing in vitro is a useful experimental model for a
generic assembly, since it has been proven to retain fundamental
properties of the original tissue and the same distribution of
cell types (Marom and Shahaf, 2002). Dissociated neurons can
be cultured in vitro for many months (Potter and DeMarse,
2001) as they form a new 2D network functionally connected
by synapses. This experimental model can be easily coupled
to substrate-integrated Micro-Electrode Arrays (MEAs). Planar
MEAs consists of glass or silicon over which a conductor
is patterned in order to design specific layout of electrodes
where electrogenic cells can grow and develop (Gross et al.,
1977; Maher et al., 1999; Berdondini et al., 2009). They were
first developed in the late 70’s thanks to the advancements in
micro-fabrication technologies. The lab of Prof. G. Gross at the
University of North Texas has pioneered in the development
of microelectrode arrays to be coupled to neuronal networks
(Gross et al., 1977; Gramowski et al., 2000). Nowadays these
devices allow in vitro (Jimbo and Kawana, 1992; Gross et al.,
1995; Massobrio et al., 2015) and also in vivo (Vassanelli et al.,
2012; Vassanelli, 2014) multi-site, long-term recordings of the
activity of neuronal populations and extracellular stimulation
from one or more electrodes of the array. Further, advancements
of this technique allow nowadays recording and stimulating from
hundreds/thousands of electrodes (Kaul et al., 2004; Heer et al.,
2006; Pearce and Williams, 2007; Frey et al., 2009; Thewes et al.,
2016), and simultaneously record electrical and optical signal
through transparent diamond electrodes (Ariano et al., 2005,
2009). Multiparametric measurements are suitable for research
devices and laboratory investigation while the biological electrical
activity and MEA-like devices appear, at a glance, the most
suitable technology that should be easily wearable and provide
comfort in addition to functionality (Stoppa and Chiolerio,
2014).

Dissociated neurons in culture show spontaneous electrical
activity that can be easily measured and evaluated through the
use of MEAs. The firing rate of the cells changes during the in
vitro development, related to the age of the network (Van Pelt

et al., 2004; Bologna et al., 2010). Starting from the secondweek in
culture, spikes tend to cluster into bursts, thus presenting a kind
of activity which persists for the whole life span and represents
a mature state of the network (Maeda et al., 1995; Bonifazi et al.,
2005; Chiappalone et al., 2006, 2007; Eytan and Marom, 2006;
Biffi et al., 2013; Bisio et al., 2014). The “bursting” mode of
activity can be also modulated in vitro by appropriate electrical
and/or chemical stimulation. In general, low frequency, sustained
electrical stimulation locks the phase of periodic bursts to the
applied stimuli (Maeda et al., 1995). Higher rates of stimulation
induce a transition from synchronized bursting activity into
a more sparse spiking behavior (Wagenaar et al., 2005). In
particular, in vitro experiments in different neural preparations
have shown that Hebbian plasticity, in the form of long-term
potentiation and depression, provides the basis of many models
of learning and memory (Shahaf and Marom, 2001; Chiappalone
et al., 2008; Le Feber et al., 2010; Stegenga et al., 2010, and for a
complete review see Massobrio et al., 2015).

For the above reasons, neuronal networks represent a very
powerful yet simple and easy accessible system that retains
important properties of the original brain tissue. Coupled to
electronic devices that can read, process and stimulate their
electrophysiological activity, they form the so called “bio-artificial
living systems.” These innovative hybrid systems are now paving
the way for next generation of neural interfaces and intelligent
neurally-inspired information processing systems.

HYBRID INTERFACES AND CLOSED-LOOP
SYSTEMS: TOWARD BIO-ELECTRONIC
COMPUTATIONAL SYSTEMS

A hybrid system is defined as the combination between a
biological and an artificial element (Figure 1A). Typically a
biological element is able to “talk” to an artificial one thanks to
specific algorithms that can translate the language of the cells
into commands or instructions (Mussa-Ivaldi et al., 2010). In
neuroscience in particular there has been a growing interest for
“closed-loop” experiments, in which recordings of various types
are used to modulate stimulation (Mavoori et al., 2005; Jackson
et al., 2006; Venkatraman et al., 2009). The underlying rationale
is that the dynamic and adaptive properties of neural systems can
be understood by looking at their interaction, in a bi-directional
closed-loop, with their external environment. Moreover, the
environment itself can be manipulated, and the changes in
dynamic behavior resulting from changes in the environment
provide useful information for understanding the neural systems
themselves. These experimental paradigms allow manipulations
of the neural system under study that once were only possible
with simulations on detailed computational models. “Biological”
closed-loop experiments (Figures 1B,C) have been performed at
single neuron level, by interfacing artificial and actual neurons
(Le Masson et al., 2002) at population level, by controlling the
dynamic regime of neuronal populations (Wagenaar et al., 2005),
and by investigating basic mechanisms of learning (Shahaf and
Marom, 2001; Le Feber et al., 2010) and at the level of a “kind of
whole organism,” in experiments in which portions of nervous
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tissue are connected to artificial or virtual (Reger et al., 2000;
DeMarse et al., 2001; Kositsky et al., 2009), or artificial/hybrid
animals (Novellino et al., 2007; Tessadori et al., 2012). It was
found that unidirectional (open-loop) periodic perturbation
mode resulted in entrainment loss, while bidirectional (closed-
loop) mode is able to maintain the phase-locked entrainment
(Jung et al., 2001). Closed-loop experiments are also relevant
to the technology of neural interfaces (Mussa-Ivaldi and Miller,
2003; Nicolelis, 2003; Berger et al., 2011; Bonifazi et al., 2013).
In fact, the latter implies the ability to monitor neural activity at
population level in real-time and, conversely, to generate patterns
of time- and space-varying stimuli, again in real-time.

These results prove that a connection between biological and
artificial systems is possible creating a conditioning black box, in
other words a translator that adapts the time-, space-, amplitude,
and shape characteristics of electrical stimuli (Vassanelli and
Mahmud, 2016). Clearly the more intrinsically neuromorphic a
synthetic network is, the less complex this conditioning bottle-
neck will be. Hence Resistive Switching Devices (RSDs), that
possess unique properties in this respect, well represent to date
the most advanced condensed matter candidate for a direct
coupling with living neuronal systems. Nevertheless interfacing
living biological brains is still a though target to be achieved,
we are experiencing the first recent promising results (Gupta
et al., 2016a). Worth mentioning also the strong effort in finding
soft solutions for electrodes featuring a complete matching (not
yet announced) of mechanical properties with biological tissues
(Rogers et al., 2016), or the many attempts of interfacing the
peripheral nervous system for the control of neuroprostheses and
hybrid bionic systems (Navarro et al., 2005).

INTRINSIC NEUROMORPHIC PROPERTIES
OF RSDs AND COUPLING WITH LIVING
NEURONS

The best prototype of an intrinsic neuromorphic system is
perhaps the memristor, a promising solution for the beyond-
Moore era of nanoelectronics. In 1971, L. O. Chua predicted the
existence of a fourth fundamental device (meaning that it cannot
be realized using passive devices), which he called a “memristor,”
contraction of “memory resistor” (Chua, 1971). Since then, many
RSDs were developed exploiting the properties of a plethora of
nanoscale materials (Calzecchi-Onesti, 1884; Sawa, 2008; Strukov
et al., 2008; Pershin and Di Ventra, 2011; Yang et al., 2013, 2016;
Lin et al., 2014; Porro et al., 2015; Laurenti et al., 2017), even in
liquid form (Chiolerio et al., 2016).

Currently we talk about RSDs in place of memristors, as the
diverse mechanisms that enable device switching do not feature
the ideal properties required by Chua’s ideal bipole (Vonger and
Xiangkang, 2015).

RSDs were proposed as neuromorphic emulators (Snider,
2008; Pershin et al., 2009). Crossbar RSDs network can
potentially offer connectivity similar to neurons with RSDs
working as synapses. Moreover the function density (1010/cm2)
comparable to those of biological systems can be potentially
obtained with advanced lithography approaches. Regarding

neuromorphic functionalities that can be found in artificial
systems, RSDs were shown to possess:

1. short term plasticity (STP);
2. long term plasticity (LTP);
3. spike-timing dependent plasticity (STDP);
4. spike-rate dependent plasticity (SRDP).

STP is the temporal potentiation of synaptic connections, lasting
from seconds to minutes and then fading away with the ceasing
of the stimulus. LTP is a more prolonged potentiation, lasting
for years or even permanent. STDP is thought to be the most
important feature of synaptic plasticity in biological brains.
It implies that the synaptic weight varies according to the
timing of the pre- and post-synaptic spikes. If a post-synapse is
stimulated after a pre-synapse (1t < 0), the synaptic weight is
increased and produces a long-term effect (LTP). If the order is
reversed (1t > 0), the synaptic weight drops and there is a long
term depression (LTD). Furthermore, the strength of synaptic
plasticity is proportional to the pre-synaptic spiking rate (SRDP).
(Jo et al., 2010; Li S. et al., 2013; Chen et al., 2014).

The first confirmation of STDP was obtained from Jo et al.
(2010) using a metal/insulator/metal (MIM) RSD that works
by migration of silver ions with the formation of conductive
metallic filaments. Also Li S. et al. (2013) invoked the formation
of metallic filaments in this case the matrix was a conductive
polymer PEDOT-PSS. While the LTP is believed to be due to
the growth of the silver filaments, the PEDOT-PSS is responsible
for the STP, STDP, and SRDP (Figures 1D–G). The formation
of metallic filaments is believed to be hindered by the elastic
recovery of the polymer while a “high-rate stimulation with either
a high strength or high frequency will enhance ion movement,
suppress the elastic recovery and then result in the LTP.”

The retention of RSDs based on metal oxides decays
exponentially, Chang et al. compare the memory decay of
tungsten oxide RSDs to human memory loss (Chang et al.,
2011). Wang et al. worked on amorphous indium gadolinium
zinc oxides (Wang et al., 2012) demonstrating essential synaptic
functions including SRDP, STDP, LTP/STP, and “learning-
experience” behavior. The STP decay is explained with the
relaxation processes determined by the back-diffusion of oxygen
ions. The LTP is enhanced through high-rate stimulation
with short time interval and repetitive stimulation training
demonstrating thus SRDP and STDP. Subramaniam et al.
integrated two different devices in the same circuit: TFT
nanoparticles were used to produce STP and SRDP by reacting
to pre-synaptic spike signals while metal oxide RSDs based on
hafnium oxide was used as memristive device to simulate LTP
(Subramaniam et al., 2013). This kind of system is now very
popular and synapses analogs were fabricated using different
types of metal oxides RSDs as reported in Table 1.

Krzysteczko et al. demonstrate that MTJ (Magnetic
Tunnelling Junction) RSDs intrinsically exhibit the features
of biological synapses and neurons (Pershin and Di Ventra,
2008). Repeated treatment with voltage pulses led to a gradual,
non-volatile change in MTJ resistance emulating LTP and
LTD. Voltage-induced resistance variation is described by
flux providing the scope for the emulation of STDP. Similar
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FIGURE 1 | Hybrid systems. (A) A cartoon of a neural hybrid system, which is typically composed by a neural element (the brain or a simplified model of it) and an

artificial one (a computational device, in general). The two elements communicate through a bi-directional interaction realized through the acquisition of the

“biosignals” from the neural element to the artificial one and, after data processing, a specific stimulation pattern is fed back to the neural element. (B) An example of

neurorobotic system where a culture of dissociated neurons is able to bi-directional interact through a signal processing block (Multi-Unit-Activity, MUA, detection) with

either a physical or a virtual robot (modified from Tessadori et al., 2012). (C) An example of bidirectional interaction between a biological network coupled to a MEA

and a computational model of a neural network: this experimental framework can be exploited for medical applications such as innovative cognitive/brain prostheses

(modified from Bonifazi et al., 2013). The communication between the artificial element and its neuronal counterpart is accomplished by the “Coding” and “Decoding”

blocks in both panels (C,D). (D) Analogy between a multilayered hybrid memristor and a biological synapse: structural analogy in a Ag/PEDOT:PSS/Ta stack and

biological synapse. (E) IV curves obtained after multiple consecutive scans. Panels (D,E) reprinted with permission from Li S. et al. (2013). (F) Comparison between

synthetic and biological STDP measurements: synaptic weight as a function of the synchronization timing between pre and post-synaptic signals in a network of

memristive devices. (G) STDP effect in living biological neurons. Panels (F,G) reprinted with permission from Jo et al. (2010). (H) Communication to real physical

neurons established through micro –nanoelectronic components. (I) Memristive synapse: a physical plasticity component is developed to emulate natural synapse

behavior. (L) Synaptors: signal transmission between artificial and natural neurons. Panels (H–L) adapted from http://www.rampproject.eu/project-objectives, last

accessed May 26th 2016.

results were obtained from Wang et al. (2014) while this kind
of RSD was used to build an on-chip pattern recognition of a
multishaded grayscale image in a neural network circuit with
multiple neurons (Kaneko et al., 2014).

The charge transferred under pulsed operation to an RSD
compared with the amount exchanged by synapses is usually
quite high. Also the electric potential of the spike is typically
at least one order of magnitude higher. Yet, recent findings
demonstrate that soft materials are able to set and reset in a
narrow voltage range comprised between 50 and 100 mV (Rajan
et al., 2016) with On currents as low as 40 µA and Off currents

of 600 nA (Rajan et al., 2017), that could easily be matched to
induce living neurons through an impedance load connected
in parallel. The main problem in coupling RSDs networks with
living neurons is the higher range of power used to change
RSD state, in the range of 250 µJ (Gupta et al., 2016b) and the
low energy and power density of neurons. Indeed up to now
there are two reports showing the first experimental realization
of an hybrid network of living neuronal cells connected to a
layer of artificial spiking neurons (Gater et al., 2014; Gupta
et al., 2016a). Quite similar systems were shown to result in
a multistate resistive switching, hence reducing the distance
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TABLE 1 | Resistive Switching Devices intrinsic neuromorphic properties

in a comparison table, according to existing literature.

Family STP LTP STDP SRDP Type References

Metal filament X Array Jo et al., 2010

X X X X Single Li S. et al., 2013

Metal oxide X X Single Chang et al., 2011

X X X X Single Wang et al., 2012

X X Single Williamson et al., 2013

X X X Array Subramaniam et al., 2013

X X Single He et al., 2014

X X Single Kim et al., 2015

X Array Wang Y.-F. et al., 2015

X Single Du et al., 2015

X Array Wang Z. et al., 2015

X Array Matveyev et al., 2016

X Array Prezioso et al., 2016

Spintronic X X Single Krzysteczko et al., 2012

X Single Wang et al., 2014

X Array Kaneko et al., 2014

Chalcogenide X X X Array Ohno et al., 2011

X X X Single Nayak et al., 2012

X Array Kuzum et al., 2012

X Single Li Y. et al., 2013

X X Single Li et al., 2014

between neuromorphic devices and biological brains (Sandouk
et al., 2016). Closed-loop systems may be realized by modulating
the compliance current given as input to the RSDs network using
as template the action potential of the biological synapse network,
realizing a point-to-point spatial equivalence between the two
networks and obtaining a dynamically coupled pair of non-linear
oscillator networks (Jung et al., 2001).

We conclude that it is natural to expect a wide integration
between the biological and the synthetic worlds (Demin et al.,
2015; Wu et al., 2015; Feali and Ahmadi, 2016). Funding
and research efforts are currently experiencing a slow shift
from the focus on neuromorphic engineering and an extrinsic
paradigm of emulation of biological processes (to cite some,
project CORONET http://cordis.europa.eu/project/rcn/97109_
en.html) belonging to FP7, EU), to more open frameworks
where the use of RSDs could help in closing the loop (such as
RAMP project, http://www.rampproject.eu, EU, Figures 1H–L).
Referring to this, we read “Artificial neural networks in the form
of software run on conventional von Neumann computers appear
incomparable to the biological systems in terms of speed, energy
efficiency, adaptability, and robustness. The challenge is to build a
physical neural network where elements overcome this deficiency
by merging data storage and processing into single electronic
devices [...] we aim to create a new biohybrid architecture of
tightly coupled natural and artificial neurons endowed with
plasticity properties. [...] Adaptation properties of the artificial
network will rely on memristive nanoelectronic devices with
synaptic-like plasticity and on activity-dependent rearrangement
of neuronal connectivity. As such, the biohybrid system will

provide new and unique adaptive, self-organizing and evolving
properties deriving from the fusion of natural and artificial
neuronal elements into a new plastic entity” The RAMP project
reports the specific target that this Perspective is addressing: the
“Development of physical components with plastic properties
based on nano-scale memristors in combination with CMOS
circuitry emulating the function of a biological synapse.”
Nevertheless we see, once more, that CMOS emulators are
required to achieve the so called Synaptor, a new biohybrid signal
transmission unit that couples together one natural and one
artificial neuron.

We may also imagine that the direct coupling between
two perfectly compliant neuromorphic systems could lead to
spontaneous adaptation, locking and growth of the networks,
that will behave as a single super-network and exchange freely
information.

CONCLUSIONS

After being theorized 40 years ago, it is only in the last decade
that the fabrication of intrinsically neuromorphic devices was
demonstrated. Following this milestone, in the latest years
relevant efforts in the scientific community was directed toward
the development of new materials for RSDs as well as theoretical
algorithms for their use. One of the most promising applications
of RSDs is in developing neuronal networks.

On the other hand in the recent years it was possible to grow
neurons over artificial substrates and new methodologies for
the activity recording allowed the study of signals in neuronal
networks and direct interaction with bio-artificial circuits, with
a specific care in the simultaneous recording of signals from a
complex network of neurons, in place of a single and isolated cell.

Coupling RSDs with neuronal networks is still a distant
objective. Nowadays we are at the edge of a new era where it
will be possible to conceive and develop systems with reliable
electrical interfaces between the brain and RSD-based neuronal
networks, with the possibility of integrating them in wearable
and comfortable devices. Neural prosthetics will be interfaced
directly without any computer translation and used to fight
serious neurological conditions resulting from disease, aging, or
injury. And what about enhancing cognitive capacities of healthy
people? The logical next step.
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