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Abstract

Alpine steppe is considered to be the largest grassland type on the Tibetan Plateau. This grassland contributes to the global
carbon cycle and is sensitive to climate changes. The allocation of biomass in an ecosystem affects plant growth and the
overall functioning of the ecosystem. However, the mechanism by which plant biomass is allocated on the alpine steppe
remains unclear. In this study, biomass allocation and its relationship to environmental factors on the alpine grassland were
studied by a meta-analysis of 32 field sites across the alpine steppe of the northern Tibetan Plateau. We found that there is
less above-ground biomass (MA) and below-ground biomass (MB) in the alpine steppe than there is in alpine meadows and
temperate grasslands. By contrast, the root-to-shoot ratio (R:S) in the alpine steppe is higher than it is in alpine meadows
and temperate grasslands. Although temperature maintained the biomass in the alpine steppe, precipitation was found to
considerably influence MA, MB, and R:S, as shown by ordination space partitioning. After standardized major axis (SMA)
analysis, we found that allocation of biomass on the alpine steppe is supported by the allometric biomass partitioning
hypothesis rather than the isometric allocation hypothesis. Based on these results, we believe that MA and MB will decrease
as a result of the increased aridity expected to occur in the future, which will reduce the landscape’s capacity for carbon
storage.
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Introduction

Biomass allocation was an important character for the process

of characterization of plant physiological ecology [1], moreover, it

also was the result of the plant long-term adapted to different

environmental conditions [2].The Biomass allocation also reflect

show photosynthates are allocated between above-ground and

below-ground biomass [3]. Biomass allocation above-ground and

below-ground affects plant growth as well as the overall function of

the ecosystem and biogeochemical cycles [4,5]. Therefore, the

mechanism by which plants respond to variations in the

availability of resources in their environment is a major question

in plant ecology [6]. Two important hypotheses regarding biomass

allocation of plants have been proposed: (i) optimal partitioning

and (ii) isometric allocation [2,7,8]. The optimal partitioning

hypothesis suggests that plants respond to variations in the

environment by partitioning biomass among various plant organs

to maximize the plants’ growth rate [9,10]. For example, plants in

arid regions are rooted deeper than those in humid environments

[11,12]. On the contrary, the isometric allocation hypothesis

predicts the net primary productivity of the roots vs the net

primary productivity of the shoots (BNPP:ANPP) isometrically

without considering the differences in plant species or community

types [13–15]. Thus far, biomass allocation has been widely

examined: investigations have focused on individual organisms as

well as whole ecosystems. However, no conclusion about biomass

allocation has yet been presented.

Optimal partitioning theory might explain the effect of

environmental factors on the allocation of plants’ photosynthetic

products, but this theory does not consider the size of the

individual plants [8,16]. The allometric biomass partitioning

theory, on the other hand, may resolve biomass allocation patterns

in terms of plant size by using standardized major axis (SMA)

regression [8,17]. However, this theory does not provide

quantitative descriptions about how environmental factors affect

biomass allocation. It also cannot explain the mechanism behind

how photosynthates are allocated to different organs [18].

Furthermore, it is still hotly debated whether a uniform biomass

allocation pattern is applicable to different ecosystems [19].

The alpine steppe is the largest grassland type in the Tibetan

Plateau, which contributes significantly to the global carbon cycle

[1]. In the alpine grassland ecosystem, few soil nutrients, aridity,

and low temperatures limit plant growth [20,21]. According to the

optimal partitioning hypothesis, environmental factors likely affect

how plant biomass is allocated. At the individual plant level, fewer

soil nutrients (particularly nitrogen and water) results in an

increase in root biomass. On the contrary, root biomass decreases

and shoot biomass increases as soil nutrients increase. This
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partition model is appropriate for different types of vegetation and

life forms of plants [22–26]. Studies have shown that plants

allocate more biomass to their roots when water and nutrients in

grassland ecosystems are limited [27,28]. Moreover, studies have

also suggested that plants allocate photosynthates to root in low-

temperature environments, which may increase the rate of

nutrient absorption and help the plants adapt to environmental

conditions [29–31]. However, Yang et al. (2009a) reported that on

the Tibetan alpine grasslands, the relationship between roots and

shoots supports the isometric allocation hypothesis [32]. They also

found that this isometric relationship is independent of soil

nitrogen and moisture [32]. These results indicate that the

mechanism of biomass allocation in the alpine steppe is still

misunderstood and unverified in alpine and arid environments.

Therefore, this subject requires further investigation. In the

present study, we investigated (i) the mechanism behind allocating

root and shoot biomass in the Tibetan alpine grassland and (ii) the

main factors that affect biomass allocation in the alpine steppe of

northern Tibet.

Figure 1. Spatial distribution of the sampling sites in S. Purpurea alpine steppe in northern Tibet.
doi:10.1371/journal.pone.0081986.g001

Table 1. Site description of S. purpurea alpine steppe.

Site County Dominant species
Mean annual
precipitation (MAP,mm)

Mean annual temperature

(MAT,6C)

S1 Nakchu S. purpurea Kobre siahumilis 428.1 –1.5

S2–S7 Baingoin S. purpurea Carex moorcroftii 321.7 –0.8

S8 Xainza S. purpurea C.moorcroftii 304.5 –0.4

S9–S17 Nyima S. purpurea C.m oorcroftii 200 –0.4

S18–S24 Gêrzê S. purpurea 170.1 0.10

S25–S30 Gêgyai S. purpurea 120 0.45

S31–S32 Gar S. purpurea 72.1 0.7

doi:10.1371/journal.pone.0081986.t001

Biomass Partitioning at the Alpine Steppe
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Materials and Methods

Collecting Biomass and Soil Samples
In August 2012, 32 sites were selected on Stipa purpurea alpine

steppe from Nagqu County to Gar County in northern Tibet.

Sampling sites were established at intervals of 30 km (Fig. 1,

Table 1). In each site, no specific permits were required for

collecting samples and the field studies did not involve endangered

or protected species. We selected flat sites with well-protected

vegetation. We harvested the aboveground biomass (MA) and the

belowground biomass (MB) from three blocks of 0.5 m60.5 m in

each site. We collected MB from soil depths of 0 cm to 15 cm,

where most of belowground biomass is located [33,34].The root

samples obtained from the blocks were immediately placed in a

cloth bag and then soaked in water to remove the residual soil

using a 0.5 mm sieve. Biomass was oven-dried at 65uC until a

constant weight was reached, and then it was weighed to the

nearest 0.01 g.

Soil samples were collected from two different depths (0–15 cm

and 15–30 cm), air-dried, and sieved (2 mm mesh). The fine roots

were extracted by hand picking for physical and chemical analyses.

The total nitrogen content (TN; TN1:0–15 cm, TN2:15–30 cm)

of the soil was determined using the micro-Kjeldahl digestion

method. The available nitrogen content (AN; AN1:0–15 cm,

AN2:15–30 cm) of the soil was determined using the alkaline

hydrolysis diffusion method. All of the element concentrations

were expressed as mg?g21 on a dry weight basis.

Data Analysis
MA in grasslands can be considered as annual aboveground net

primary productivity (ANPP). Blow-ground net primary produc-

tivity (BNPP) was calculated using Gill’s method:

BNPP ~ MB |
liveMB

MB

� �
| turnover ð1Þ

where (live MB/MB) = 0.6 and turnover = 0.0009(g?m22)6MA

+0.25 [35,36]. In the present study, the value for (live MB/MB)

was 0.79, which was measured by Zhou (2001) in the Qinghai

region [37]. The relationship between log ANPP and log BNPP

was constructed using Model II regression [14,15]. The slope (a)

and y-intercept (log b) of the allocation function were determined

by standardized major axis (SMA) tests [38]. The heterogeneity

between slopes was determined by performing a permutation test

and was rejected if P.0.05 [15]. We analyzed the correlations

between environmental factors and the measured MA, MB, and

root-to-shoot ratios (R:S) using the Pearson correlation. We also

examined relationships between MA, MB, R:S, and environmental

factors using regression and ordination space partitioning to find

the main environmental factors that affected MA, MB, and R:S.

Analyses were performed using SPSS software version 16.0 (IBM;

Armonk, NY).

Results

Variations in the Chemical Properties of the Soil as well as
MA, MB, and R:S

Small variations in the chemical properties of the soil along the

sampled transect were found. There also was not significance in

available nitrogen and total nitrogen between the two soil layers

(Table 2). We found large variations in MA, MB, and R:S along the

sampled transects (Fig. 2). MA ranged from 2.32 g?m22 to

73.6 g?m22, while MB ranged from 22.40 g?m22 to

587.32 g?m22. R:S ranged from 6.19 to 29.15 (Table 3). The

median values of MA, MB, and R:S in S. purpurea alpine steppe were

17.16 g?m22, 233 g?m22, and 11.83, respectively (Table 3).

Biomass Allocation for S.purpurea Alpine Steppe
The slope (a) of the plotted relationship between log ANPP and

log BNPP of S. purpurea alpine grasslands was 0.87 with 95%

confidence intervals of 0.75 and 1.01 (Fig. 3). The slope (a) was

significantly different from the slope obtained from SMA analysis

when the isometric hypothesis was used.

Figure 2. Frequency distributions of (a) above-ground biomass (MA), (b) below-ground biomass (MB), and (c) root-to-shoot ratio
(R:S) in S. purpurea alpine steppe.
doi:10.1371/journal.pone.0081986.g002

Table 2. Chemical properties of soils in S. purpurea alpine
steppe.

Min Max Mean Std. Error Std. Deviation

AN1 mg?g21 0.013 0.110 0.057a 0.004 0.025

AN2 mg?g21 0.008 0.095 0.051a 0.004 0.023

TN1 mg?g21 0.386 1.630 1.008a 0.061 0.342

TN2 mg?g21 0.292 1.921 0.980a 0.064 0.362

doi:10.1371/journal.pone.0081986.t002

Biomass Partitioning at the Alpine Steppe
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Effects of Soil Nitrogen and Environmental Factors on
Biomass and R:S

Using the Pearson correlation analysis, we found that MA and

MB exhibited a significantly positive correlation with available

nitrogen in the soil. However, MA and MB did not exhibit a

significant correlation with total nitrogen (Table 4). The R:S ratio

also did not exhibit a significant correlation with soil nitrogen (total

or available). MA, MB, and R:S did correlate with the MAP of the

sampling sites, while these correlations differed from the ones

found with MAT (Table 3). In this study, we found that the

regression analysis showed the same results as the Pearson

correlation analysis (Fig. 4). Using the ordination space partition-

ing method, we found that MAP was the main factor that affected

MA, MB, and R:S (Fig. 5).

Discussion

MA, MB, and R:S in the Alpine Steppe
In the present study, amounts of MA and MB in the alpine

steppe (mean = 23.20 g?m–2) were found to be lower than those in

the alpine meadows [32] and in the temperate grasslands of China

[39]. By contrast, R:S in the alpine steppe was found to be higher

than it is in China’s alpine meadows [32] and temperate grasslands

[39] as well as in temperate grasslands of other regions [1]. These

results show that precipitation and temperature affect plant growth

and biomass allocation [1,40]. Slower root turnover in colder

environments might also results in higher R:S ratios [41–43]. MA,

MB, and R:S values found in the present study are not consistent

with results reported by Yang et al. (2009a), who performed a field

investigation from 2001 to 2004 [32]. R:S values have the potential

to vary greatly as a result of climate change and anthropogenic

activities [44–48].

Mechanism of Biomass Allocation in the Alpine Steppe
Based on the results of our SMA analysis, we found that biomass

allocation on the alpine steppe does not fit the isometric

hypothesis. By contrast, Yang et al. (2009a) previously reported

that biomass allocation on the alpine steppe is supported by the

isometric allocation hypothesis [32]. In the harsh alpine ecosystem,

scarce precipitation and low temperatures allow plants to allocate

more biomass to the roots, which helps plants survive [29–31].

Moreover, roots have also been found to store carbohydrates in

alpine grasslands [49,50]. Therefore, biomass allocation in the

alpine steppe may reflect the allometric biomass partitioning

hypothesis rather than the isometric allocation hypothesis.

Table 3. Descriptive statistics of above-ground biomass (MA), below-ground biomass (MB), and root-to-shoot (R:S) ratio in S.
purpurea alpine steppe.

MA (g?m22) MB (g?m22) R:S ratio

Min Max Median Min Max Median Min Max Median

Present study 2.32 73.6 17.16 22.4 587.32 233 6.19 29.15 11.83

Yang et al. (2009) 9.8 267.4 42.8 44.6 1934.8 206 0.8 13 5.2

doi:10.1371/journal.pone.0081986.t003

Figure 3. Relationships between above-ground net primary production (ANPP) and below-ground net primary production (BNPP)
in alpine steppe by SMA analysis.
doi:10.1371/journal.pone.0081986.g003
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Relationships between Environmental Factors and MA,
MB, and R:S

Precipitation and temperature are considered to be the limiting

factors for the growth and distribution of vegetation over the long

term [51,52]. In the present study, MA, MB, and R:S were mainly

affected by the environmental factor of precipitation (MAP), as

revealed by ordination space partitioning analysis. These results

are consistent with those of other reports about the alpine steppe

[46,53–56]. The low temperature in the growing season did not

limit the growth of alpine plants because these plants shave

evolved to survive in the cold alpine climate [57]. The amounts of

aboveground and belowground biomass are higher in sites with

higher humidity, but the MAT is also relatively low on the alpine

steppe. Precipitation is an essential factor that controls the

functions of ecosystems in terrestrial biomes, particularly in arid

and semiarid ecosystems [58]. Therefore, precipitation is the main

factor that influences amounts of biomass in the alpine steppe.

Moreover, in the present study, we found that amounts of MA

and MB on the alpine steppe were affected by the available

Figure 4. Relationships between biomass allocation (MA, MB, and R:S) and environmental factors in alpine steppe. Regressions are
shown: (a) MA versus available nitrogen, (b) MB versus available nitrogen,(c) MA versus total nitrogen, (d) MB versus total nitrogen,(e) MA versus MAT,(f)
MA versus MAP,(g) MB versus MAT, (h) MB versus MAP, (i) R:S ratio versus MAT, and (j) R:S ratio versus MAP.
doi:10.1371/journal.pone.0081986.g004

Table 4. Pearson’s correlation between MA, MB, and R:S with the environmental factors.

AN1(0 to 15 cm) AN2(15 to 30 cm) TN1(0 to 15 cm) TN2(15 to 30 cm) MAT(6C) MAP(mm)

MA 0.351* 0.317 –0.126 –0.165 –0.809** 0.791**

MB 0.429* 0.372* –0.088 –0.285 –0.853** 0.817**

R:S –0.047 –0.083 0.207 –0.082 0.392* –0.378*

**Correlation is significant at the 0.01 level (two-tailed).
*Correlation is significant at the 0.05 level.
doi:10.1371/journal.pone.0081986.t004

Figure 5. Analysis of the relationship of above-ground biomass (MA), below-ground biomass (MB), and root-to-shoot ratio (R:S) with
the environmental factors by ordination space partitioning method.
doi:10.1371/journal.pone.0081986.g005
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nitrogen content in the soil but not by the total nitrogen content of

the soil. These results are inconsistent with those from previous

studies, which have showed that MA and MB are positively related

to total nitrogen content [32,59]. Because available nitrogen can

be used to approximate the relative supply of nutrients, nitrogen

may be another factor that controls ecosystem processes in regions

with abundant water resources [60].

Conclusion

As the climate changes, the degree of aridity has been

consistently increasing in northern Tibet [61]. Changes in biomass

allocation on the alpine steppe are likely to affect the carbon cycle

and the general functioning of the alpine ecosystem. In the present

study, we found that the R:S ratio in the alpine steppe was higher

than that of other grassland systems. The amounts of aboveground

and belowground biomass as well as the R:S ratio were primarily

affected by precipitation. The observed biomass allocation was

found to follow the allometric biomass partitioning theory rather

than the isometric allocation hypothesis. These results suggest that

the landscape’s capacity to store carbon will potentially decrease as

the degree of aridity in northern Tibet increases.
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