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Background: A full examination of gastrointestinal tract is an essential prerequisite for effectively detecting gastrointestinal lesions. 
However, there is a lack of efficient tools to analyze and recognize gastric anatomy locations, preventing the complete portrayal of 
entire stomach. This study aimed to evaluate the effectiveness of artificial intelligence in identifying gastric anatomy sites by analyzing 
esophagogastroduodenoscopy images.
Methods: Using endoscopic images, we proposed a system called the Artificial Intelligence of Medicine (AIMED) through 
convolutional neural networks and MobileNetV3-large. The performance of artificial intelligence in the recognition of anatomic 
sites in esophagogastroduodenoscopy images was evaluated by considering many cases. Primary outcomes included diagnostic 
accuracy, sensitivity, and specificity.
Results: A total of 160,308 images from 27 categories of the upper endoscopy anatomy classification were included in this 
retrospective research. As a test group, 16031 esophagogastroduodenoscopy images with 27 categories were used to evaluate 
AIMED’s performance in identifying gastric anatomy sites. The convolutional neural network’s accuracy, sensitivity, and specificity 
were determined to be 99.40%, 91.85%, and 99.69%, respectively.
Conclusion: The AIMED system achieved high accuracy with regard to recognizing gastric anatomy sites, and it could assist the 
operator in enhancing the quality control of the used endoscope. Moreover, it could contribute to a more standardized endoscopic 
performance. Overall, our findings prove that artificial-intelligence-based systems can be indispensable to the endoscopic revolution 
(Clinical trial registration number: NCT04384575 (12/05/2020)).
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Introduction
Recently, advances have been realized in gastrointestinal endoscopy.1 The proper application of endoscopy can display 
real-time visualizations of gastrointestinal tracts and contribute to the early detection of digestive diseases, particularly 
gastric cancer (GC).2,3 Early diagnosis and therapy can improve prognostic outcomes, reduce correlated adverse events, 
and save medical costs in the long run.4,5 Endoscopic quality is a prerequisite for high detection rates of gastrointestinal 
areas, which can be determined based on the testing time, professional operator skills, experience in identifying lesions, 
and many other factors.6,7 Notably, a full inspection of gastrointestinal tract is considerably important for effective 
gastrointestinal lesion detection.8 Failure to map all gastric anatomy sites is correlated with many human factors, such as 
inexperience, fatigue, and bias, which can be avoided and solved. Therefore, much more efforts should be made to fully 
depict entire stomachs and standard gastroscopies without blind spots.
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Emerging evidence has highlighted the critical role of artificial intelligence (AI) in endoscopy.9 Abundant data 
consisting of numerous images and videos are generated during endoscopic processes, prompting the priority application 
of AI in digestive diseases. The fast advances in computational processing technologies and blooming of algorithms have 
facilitated the deep learning (DL) based AI in endoscopy, which requires physicians to have a deeper understanding of AI 
and how it may impact the medical field in the future. DL, a self-learning model without human indications, has been 
revealed to extract critical features and quantities through using back propagation algorithm and changing the internal 
parameters of each neural network layer. Convolutional neural network (CNN), a kind of DL method, has become an 
increasingly popular tool in the field of endoscopy, including esophagogastroduodenoscopy (EGD), colonoscopy, and etc. 
Emerging studies have reported that CNN-based program could automatically detect lesions and recognize different 
anatomical locations in captured images and video data. Tomonori et al developed a CNN-based model and made 
comparisons between its utility and the existing QuickView model in terms of their capacities for the detection of various 
abnormalities using capsule endoscopy (CE) video. The detection rates of this developed CNN-based system for different 
abnormalities, such as mucosal breaks, angioectasia, protruding lesions, and blood content were 100%, 97%, 98%, and 
100%, respectively, which was obviously higher than that of the QuickView mode,10 He et al proposed DL-based 
anatomy site classification methods for EGD images, and compared the performances of the most-commonly used CNN 
architectures, such as ResNet-50, Inception-v3, VGG-11-bn, VGG-16-bn and DenseNet-121. The performance of 
DenseNet-121 was better as compared with other tested CNN models, with the average overall accuracy of 88.11%.11 

Current studies have indicated that AI has aided in the early detection of digestive diseases, sometimes even out
performing the diagnoses of physicians.9,12 Proper visualization of stomachs can be improved by employing AI 
systems.13 It is known that endoscopic physicians receive professional training to acquire practical skills. However, 
such training programs mostly rely on traditional approaches and need great manpower, materials, and time.14 Strikingly, 
the introduction of AI offers a unique method of standardized training, upgrades the quality of endoscopic operation, and 
improves accuracy.15 Moreover, it functions as an effective tool to monitor and perfect entire operating processes and 
relieve the work pressure on physicians.16,17 Notably, the majority of the published studies regarding AI and endoscopy 
focus on involving AI-based endoscopy in identifying lesions. However, limited attention has been paid to the potential 
of AI-based systems in recognizing anatomic sites through endoscopy.

In this study, using a CNN, we aimed to construct a novel AI-based gastroscopy system called AIMED to analyze 
EGD images and distinguish gastric locations during endoscopic procedures.

Methods
Datasets Preparation
The patients considered in this study underwent endoscopy examinations at the Peking University Cancer Hospital from 
June 2020 to December 2021. The Ethics Committee approved the study at the Peking University Cancer Hospital on 
February 21, 2020 (ethics board protocol number 2020KT02) under the clinical trial registration number NCT04384575 
(12/05/2020). The following endoscopes were used: GIF-H290, GIF-HQ290, GIF-H260, GIF-Q260 (Olympus, Japan), 
EG-760Z, EG-760R, EG-L600ZW7, EGL600WR7, and EG-580R7 (Fujifilm, Japan). All the EGD images used came 
from stored available data at the Peking University Cancer Hospital.

Two networks were used for training in this research. The first network aims to identify EGD sites, whereas 
the second network defines the endoscope inside or outside a human body.

Model 1: The images captured during gastroscopy were divided into 27 sites according to previously reported 
guidelines8,18,19 with a total of 160,308 EGD images from stored available data of over 2000 patients, for training the 
network of classifying EGD sites. Each category was randomly sampled divided into a training set and a verification set 
in a ratio of 9:1, as shown in Table 1.

Model 2: A dataset containing 42,030 in vivo images and 22,305 in vitro images was used to train this network, which 
can automatically identify whether an endoscope is inside or outside a human body, and it can also calculate and record 
endoscopic operation time. Representative images of this network were shown in online Supplementary Figure S1. The 
labelled images were randomly sampled divided into a training set and a verification set in a ratio of 9:1.

https://doi.org/10.2147/IJGM.S481127                                                                                                                                                                                                                                 

DovePress                                                                                                                                   

International Journal of General Medicine 2024:17 6128

Yuan et al                                                                                                                                                             Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com/get_supplementary_file.php?f=481127.docx
https://www.dovepress.com
https://www.dovepress.com


Since the data acquired from gastroscopy is typically in the form of dynamic video, motion blur often occurs, leading 
to unclear images of stationary parts, as shown in Figure 1. The left image shows a clear view of the esophagus at rest, 
while the right image displays a blurred esophagus. To address this, the data acquisition method involves extracting 

Table 1 Training and Validation Image Sets for EGD Anatomical Site

Category No. Anatomical Site Name Proportion

Category 1: 3934 Antrum anterior wall 1.67%
Category 2: 10397 Pharynx 7.65%

Category 3: 3983 Pylorus 3.33%

Category 4: 5613 Duodenal bulb 4.24%
Category 5: 5346 The descending duodenum 3.50%

Category 6: 9896 Body lesser curvature with retroflex view 7.50%

Category 7: 9700 Fundus 7.35%
Category 8: 4059 Antrum posterior wall 1.83%

Category 9: 4405 Antrum greater curvature 2.92%
Category 10: 4380 Antrum lesser curvature 1.75%

Category 11: 5814 Antrum view 4.40%

Category 12: 5184 Angulus 3.75%
Category 13: 4248 Angulus anterior wall 1.67%

Category 14: 4824 Angulus posterior wall 1.67%

Category 15: 5983 Squamocolumnar junction 4.53%
Category 16: 14363 Esophagus 11.40%

Category 17: 11517 Middle-upper body greater curvature 9.14%

Category 18: 3879 Middle-upper lesser curvature 1.92%
Category 19: 3850 Middle-upper anterior wall 1.71%

Category 20: 4249 Middle-upper posterior wall 2.67%

Category 21: 5512 Lower body greater curvature 4.16%
Category 22: 4458 Lower body lesser curvature 1.67%

Category 23: 4402 Lower body anterior wall 1.83%

Category 24: 4963 Lower body posterior wall 1.75%
Category 25: 6121 Cardia lesser curvature with retroflex view 2.00%

Category 26: 4140 Cardia anterior wall with retroflex view 1.94%

Category 27: 5088 Cardia posterior wall with retroflex view 2.05%
Total 160308 100%

Training set 144277 90%

Validation set 16031 10%

Figure 1 Clear esophagus at rest on the left and blurred esophagus on the right.
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frames from the video and labeling both clear and blurred images of the same region for model training. This approach 
significantly enhances the model’s sensitivity compared to training on clear images alone.

Model Architecture
Adam’s optimization method was adopted in the model, with a learning rate of 0.02, an attenuation rate of 0.001, and a batch 
size of 32 and trained about 300 epochs. In addition, due to the imbalance of the training samples among different categories, 
cross-entropy losses with different weights of training data were added for different categories. The categories with small 
data amounts are more important when updating parameters. The weights of the updating parameters were smaller for the 
categories with large data. The methods of defining the weights of different categories are as follows: For example, if there 
are three categories, there are a samples in category 1, b samples in category 2 and c samples in category 3 in the training set, 
then the weight of category 1 is (a+b+c)/a, the weight of category 2 is (a+b+c)/b, and the weight of category 3 is (a+b+c)/c.

The areas around the images do not contribute to the recognition and should be removed. First, convert the image to 
grayscale. Second, the image was binarized. Then, extract the largest contour in the binary image. Finally, the outer 
rectangle of the largest contour area was resized to 400 × 400 (Figure 2).

Here, we show the heat map of features extracted by the model. Take the dentate line as an example. We show four groups 
of images, each one containing two. All of their true labels are dentate line. The left is the original image, and the right is the 
heat map generated by the model, as shown in Figure 3. We could see the model learned the main features of the dentate line.

To improve speed and achieve high accuracy, MobileNetV3-large was adopted as a backbone. Figure 4 shows the 
overall structure of the model. The parts were divided into 27 sites, where K = 27. What’s more, Figure 5 shows some 
modifications of the model. (a) Inverted residual structures with a linear bottleneck as a Bneck structure. (b) Squeeze-and 
-excitation layer (SE-layer), learning the weight between channels. (c) After the feature map, a nonlocal module was 
added to obtain global information and enlarge the model’s vision. (d) The anti-Aliasing; all MaxPooling (stride), Conv 
(stride), and AvgPool in the model were replaced by corresponding BlurPooling to improve the model’s performance.

Based on the Ubuntu 20.04 system, the CPU was i5-10400F (Intel, USA), and the GPU was GeForce RTX 3070 
(NVIDIA USA).

Definition and Study Endpoints
Three professional, experienced physicians (5–10 years of EGD experience) independently labeled annotation for the 
same image or the same frame from an endoscopic video into 27 different sites. Then, to alleviate the incorporated bias of 
single physician, the final image tag would result from a label made by no less than two physicians. Study endpoints 
included the sensitivity, specificity, and accuracy of AIMED with regard to classifying the EGD images into 27 sites. 

Figure 2 Original gastroscopic image and preprocessed image.
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Sensitivity = true positive/(true positive + false negative); specificity = true negative/(true negative + false positive); and 
accuracy = (true positive + true negative)/total number of cases.

Statistical Analysis
The primary outcome measures included sensitivity, specificity, and accuracy. The P values <0.05 were considered to be 
statistically significant. SPSS 22.0 (Chicago, IL, USA) was employed for all the statistical analyses.

Figure 3 Origin images and the heat map of features extracted by the model.

International Journal of General Medicine 2024:17                                                                             https://doi.org/10.2147/IJGM.S481127                                                                                                                                                                                                                       

DovePress                                                                                                                       
6131

Dovepress                                                                                                                                                             Yuan et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Results
Performance of AIMED for Images
To evaluate AIMED’s performance in vivo and in vitro for recording endoscopic operation time, the test group, which 
includes 6504 EGD images (ie, 4203 in vivo images and 2301 in vitro images), was used to calculate the sensitivity, 
specificity, and accuracy. AIMED’s sensitivity, specificity, and accuracy were 98.1%, 99.5%, and 98.9%, respectively.

Additionally, we tested 16031 images to evaluate the performance of AIMED with regard to identifying gastric sites, 
obtaining the accuracy, sensitivity, and specificity of every gastric location, and obtaining the confusion matrix, as shown 
in Figure 6. Table 2 shows the detailed results. The average accuracy of 27 EGD sites was 99.40%. Notably, AIMED 
showed individual accuracy for the EGD sites ranging from 98.63% to 99.89%. AIMED’s average sensitivity and 
specificity for EGD location recognition were 91.85% and 99.69%, ranging from 80.61% to 98.04% and from 99.10% to 
99.97%, respectively.

Considering the pretreatment time, the total prediction time of the model was less than 17ms; thus, it could predict 60 
frames per second, meeting the needs of real-time clinical identification.

Discussion
GC is the third leading cause of cancer deaths worldwide.20,21 Recently, gastrointestinal endoscopy has been identified as 
an important tool for cancer diagnosis and therapy, particularly for patients with early gastric cancer (EGC).20,21 It is 

Figure 4 Structure diagram of MobileNetV3-large.
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known that the quality of gastroscope is a prerequisite for the high detection rate of gastrointestinal areas.22 Poor-quality 
endoscopy can lead to misdiagnoses, and patients may lose the best time for treatment. Therefore, managing the quality 
of gastrointestinal endoscopy is essential for improving early detection. Currently, the fast development of AI-based 
systems has brought dramatic changes to alter the traditional medical practice.14

A complete observation of gastrointestinal tract is of great significance for effectively determining lesions, as tumor 
occurrences may be uncertainly observed in different gastrointestinal tract regions.23 Quality assurance committees 
worldwide have set various recommendations for image documentation in gastrointestinal endoscopy to promote 
complete examination of gastrointestinal tract. It was indicated that Japanese standard guidelines required at least 22 
images of the stomach.18 The European Society of Gastrointestinal Endoscopy (ESGE) suggested that the number of 
pictures captured per procedure should be at least 10.8,19 These mentioned guidelines are highlighted to get a full view of 
the upper gastrointestinal tract regions, thus improving the quality of endoscopy. The AIMED system achieved high 
accuracy in recognizing gastric anatomy sites, and it could assist the operator to master the progress of endoscopic 
performances, including examined regions, untested parts and exhausted time. Its application could contribute to a more 
standardized endoscopy pattern.

Recently, studies have reported that EGD has more advantages with regard to detecting the lesions distributed at the 
junction of the hypopharynx and esophagus than the laryngoscope.24–26 Moreover, the full inspection of the hypopharynx 

Figure 5 Characteristics in the model included. (a) The structure of Bneck: when the stride = 1, the block is shown on the left; when the stride = 2, the block is shown on 
the right; (b) squeeze-and-excitation layer; (c) nonlocal module; (d) use of anti-aliased instead of the baseline.
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and upper esophageal sphincter is much more difficult due to the shorter duration time at this site caused by nausea. 
Importantly, this may lead to the misdiagnosis of cancer in both. Meanwhile, missed detections can be easily found in 
sections such as the esophagus, lower curvature of the gastric cardia, and posterior wall.13,27 Chang et al found that the 
lesions in pharynx, gastric angle, gastric retroflex view, gastric antrum, and first portion of the duodenum are likely to be 
missed.6 Several studies have reported AI involvement in the management of endoscopy performance. According to 
previous studies, the combination of the deep CNN (DCCN) and long short-term memory was used in recognizing 
certain parts of the gastrointestinal tract.13 He et al developed a deep learning-based anatomy site classification approach 
for EGD pictures. The regions of interest (ROI) data were divided into 12 classes according to the proposed guidelines 
and the British guidelines, under two conditions: “not available” (NA) and “available” (A), resulting in the generation of 
four different datasets forms. Then, the most-commonly used CNN models were involved to be pre-trained and test their 
performances on the four datasets, such as ResNet-50, Inception-v3, VGG-11-bn, VGG-16-bn and DenseNet-121. The 
performance of DenseNet-121 was better as compared with other tested CNN models, with the average overall accuracy 
of 88.11%. Further, it was found that CNN model without NA outperformed their counterparts with NA by 8.87% and 
8.67% overall accuracies.11 By contrast, the average accuracy of our developed AIMED in classifying 27 gastric sites 
was 99.40%. The individual accuracy of AIMED for the gastric sites was ranging from 98.63% to 99.89%. A striking 
study directed by Wu et al developed a system based on DCCN to detect EGC and distinguish gastric locations on a par 
with the expert level.28 A grid stomach model was involved to recognize the existence of blind spots during EGD. DCCN 
could achieve an accuracy of 90% or 65.9% in the tasks of classifying gastric locations into 10 or 26 parts, respectively. 
The accuracy of DCCN was also compared with that of expert, seniors and novices, and the performances of the expert 
level achieved an accuracy of 90.2% or 63.8% in the tasks of classifying gastric locations into 10 or 26 parts, 

Figure 6 Confusion matrix for classifying images into 27 sites. Elements (x, y) in the matrix represent the number of the predicted category (x) based on the true category 
(y), where the numbers represent data shown inTable 1.
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respectively. This real-time model helped ensure the observation of the whole stomach, thus offering an essential 
prerequisite for EGC detection. Next, Wu et al further enriched knowledge regarding non-blind spot monitoring systems 
during EGD in another study.29 It was indicated that the rates of blind spots obviously decreased in the WISENSE group 
compared with the controls (5.86% vs 22.46, p<0.001). These findings suggested the efficacy of WISENSE as an 
assistant endoscopic tool. Shortly after, Wu et al developed ENDOANGEL based on DCCN and DRL and verified its 
ability in a multicenter randomized controlled trial, including 498 and 504 patients in ENDOANGEL and in the control 
group, respectively.30 Compared with the control group, the number of blind spots dropped from 9.82 to 5.38 with the use 
of ENDOANGEL. In another study performed by Hirotoshi et al, a CNN-based diagnostic program was constructed.31 

The receiver operating characteristics analysis showed the performance of trained CNN in classifying the anatomical 
location of EGD images, where the area under the curves (AUCs) was 1.00 for the larynx and esophagus and was 0.99 
for the stomach and duodenum. Specifically, the trained CNN was determined to distinguish different gastric anatomy 
sites, with AUCs of 0.99 for the upper, middle, and lower sections. Besides, Seong et al reported a CNN model that could 
classify EGD images into one of the eight regions of upper gastrointestinal tracts with an accuracy of 97.58%.22 These 
observations suggested that using AI-based systems may reduce blind spots and positively affect endoscopic quality. 
These studies are often in their early stages, which lack validation in large-scale clinical trials. There is an urgent need to 
determine the clinical value of certain AI-based systems in clinical trials, and the precise identification of each section of 
the gastrointestinal tract is absolutely a challenge. Thus, much more emphasis should be performed on the involvement of 
AI in the quality control of endoscopy. Strikingly, our research team has been striving to develop a superb AI-based 
system to identify gastric sites without blind spots. A total of 160,308 images obtained during endoscopy were randomly 

Table 2 AIMED Performance for Anatomical Site Classification

Anatomical Site Name No. Accuracy Sensitivity Specificity

Antrum anterior wall 528 99.31% 95.64% 99.43%
Pharynx 900 98.63% 90.67% 99.10%

Pylorus 522 99.54% 94.06% 99.73%

Duodenal bulb 512 99.89% 98.04% 99.95%
The descending duodenum 699 99.74% 96.57% 99.89%

Body lesser curvature with retroflex view 867 99.66% 97.00% 99.81%

Fundus 882 99.44% 94.56% 99.73%
Antrum posterior wall 546 99.23% 92.31% 99.47%

Antrum greater curvature 576 98.96% 83.33% 99.54%
Antrum lesser curvature 588 99.11% 80.61% 99.82%

Antrum view 530 98.97% 85.66% 99.43%

Angulus 678 99.06% 90.26% 99.45%
Angulus anterior wall 520 99.22% 84.61% 99.71%

Angulus posterior wall 525 99.56% 93.33% 99.77%

Squamocolumnar junction 544 99.67% 94.12% 99.86%
Esophagus 665 99.64% 95.19% 99.83%

Middle-upper body greater curvature 549 99.44% 91.80% 99.72%

Middle-upper lesser curvature 500 99.50% 93.20% 99.70%
Middle-upper anterior wall 516 99.64% 96.32% 99.76%

Middle-upper posterior wall 555 99.52% 92.07% 99.79%

Lower body greater curvature 502 99.28% 91.63% 99.52%
Lower body lesser curvature 544 99.34% 91.17% 99.63%

Lower body anterior wall 588 99.34% 85.71% 99.86%

Lower body posterior wall 539 99.41% 88.12% 99.80%
Cardia lesser curvature with retroflex view 572 99.75% 93.70% 99.97%

Cardia anterior wall with retroflex view 504 99.54% 94.44% 99.70%

Cardia posterior wall with retroflex view 580 99.53% 95.69% 99.68%
Total 16031 99.40% 91.85% 99.69%
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split into a training set and a validation set according to a ratio of 9:1. To develop the AI-based system, the 
MobileNetV3-large model was introduced, and it could improve the processing speed and accuracy. We found that the 
validation set’s accuracy, specificity, and sensitivity were 99.40%, 99.69%, and 91.85%, respectively. These observations 
strongly highlight AIMED’s potential in classifying different anatomy sites of the stomach. Identifying a different 
stomach area may clearly show the current inspection status and effectively monitor the blind spots in real-time during 
endoscopic operations.

The employment of an AI-based system could timely record the part being inspected and provide tips for physicians. 
The area that was fully examined was marked in yellow. The operator could visually notice the untested area and master 
the actual number of tested parts. Our findings strongly verified the effectiveness of AI-based model, which could timely 
reflect the testing status of the entire stomach. Previous studies have highlighted the close association between endoscopy 
quality and inspection time.27,32 The guideline proposed by ESGE indicated that the EGD performing time is best when it 
is more than 7 minutes.27,32 Many factors could contribute to the insufficiency or inaccuracy of the testing time, such as 
intensive schedules, manual recording, and inadequate skills. Notably, the developed AI-based model could record the 
operating time and function as a useful reminder.

Moreover, the analysis results may be influenced by the operator’s skill, experience, and familiarity with AI-related 
knowledge. Furthermore, the physicians’ attitudes toward AI-based systems may also affect the results, emphasizing the need 
for AI-related training and practice for each physician. White-light imaging has been identified as a standard protocol for 
detecting gastric areas.33 However, rapid advancements in endoscopic technology has introduced new techniques such as 
narrow-band imaging, blue-laser imaging, and linked-color imaging, which could enhance viewing quality and color 
contrast, thereby increasing the identification of gastric areas or lesions.33 Thus, image enhancement and scope configuration, 
as well as the structure-weighted level and color-enhancement capabilities of endoscopic systems, should be considered to 
optimize examination. In this study, the exclusive use of white-light imaging may have affected visibility and posed 
challenges in detecting different gastric anatomy sites. Although high accuracy rates were obtained, further improvements 
in image quality and operator skill may be enhance the efficacy of AI in future research.

The integration of advanced endoscopy with AI technology holds promise for benefiting patients and improving 
operational standards. Further explorations of other endoscopy types combined with the AI-based system are already 
planned for future studies. The AI algorithm used in this study exhibited great potential in identifying different gastric 
anatomy sites, which were also verified in a clinical trial. However, the current study has limitations, including 
a relatively small sample size and single-center design, which may limit the statistical power of the findings. Larger 
sample sizes and data from multiple centers are needed to confirm the algorithm’s efficacy in other settings, as diverse 
data can mitigate overfitting issues and improve generalizability.

Additionally, the dynamic video data obtained during endoscopic procedures frequently contained motion blur and 
“noise” from artifacts like reflections, foam, mucus, and folds. Such “noise” could obscure visibility and confuse the 
operator. To address this, frames were extracted from the video, and non-contributory areas were removed and processed. 
Previous studies have demonstrated that localization and segmentation can be effective in minimizing noise by shielding 
targeted images.34–36 Massive efforts have been made to reduce noise during endoscopic operations. This study focused 
on evaluating the AI-based system’s effectiveness in identifying different anatomic locations. Besides, future studies will 
further investigate AI’s potential in identifying gastric lesions. From a broader perspective, the application of this system 
greatly improve lesion detection, bringing substantial benefits to both physicians and patients.

Conclusion
The AI-based system could accurately and efficiently identify different gastric anatomy sites and display the real-time 
inspection status, supporting operator in achieving comprehensive stomach detection and enhancing the quality control of 
endoscopy.
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