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Abstract: The main objective of the system identification is to deliver maximum information about the
system dynamics, while still ensuring an acceptable cost of the identification experiment. The focus
of such an idea is to design an appropriate experiment so that the departure from normal working
conditions during the identification task is minimized. In this paper, the adaptive filtering (AF)
scheme for plant model parameter estimation is proposed. The experimental results are obtained
using the nonlinear interacting water tanks system. The adaptive filtering is expressed by minimizing
the error between the system and the plant model outputs subject to the white noise signal affecting
system output. This measurement error is quantified by the comparison of Minimum Error Entropy
Renyi (MEER), Least Entropy Like (LEL), Least Squares (LS), and Least Absolute Deviation (LAD)
estimators, respectively. The plant model parameters were obtained using sequential quadratic
programming (SQP) algorithm. The robustness tests for the double-tank water system parameter
estimators are performed using the ellipsoidal confidence regions. The effectiveness analysis for
the above-mentioned estimators relies on the total number of iterations and the number of function
evaluation comparisons. The main contribution of this paper is the evaluation of different estimation
methods for the nonlinear system identification using various excitation signals. The proposed
empirical study is illustrated by the numerical examples, and the simulation results are discussed.

Keywords: robust estimation; system identification; model fitting; optimal control

1. Introduction

System identification is generally performed by perturbing processes under operation and using
the measurement data to build the system model. The main objective of the system identification is
to excite the system under consideration using an applicable input and construct the plant model
with maximum accuracy [1,2]. The identification experiment can be performed in both closed and
open-loop systems. The inappropriate experimental conditions can lead to the performance loss of
the loop to be controlled. It has been noticed that about 80% of the developed control loops does not
ensure the desired performance assessment [3].

The estimators of various objective functions can be compared using mean square errors. In many
applications, the main objective is to find an unbiased estimator that should have minimum variance.
The main focus of such an experiment is to design the optimal input signal that maximizes selected
measures based on the Fisher information matrix (FIM) [4]. The motivation for this approach is the
Cramer–Rao definition where the covariance matrix of the parameter estimates converges to the inverse
of the FIM.

In recent years, a significant effort has been made to develop identification methods for robust
control [5]. The robust system identification consists of the real model parameter estimation and the
bounds imposed on the model uncertainty set [6]. Applying the worst-case identification experiment
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to model parameter estimation, the error bounds are established in the form of the noise affecting the
model of the system [7]. However, the above-presented methods do not guarantee the acceptable
control loop performance. The reason for this inconvenience is the fact that the experimental conditions
should be chosen in such a way that the identified model is precise.

This problem can be solved by the least-costly, application-oriented, and plant-friendly
identification experiment for control. The main goal of the least-costly experiment is to construct
the uncertainty set that is possibly small and provides the best control performance. Such a kind of
experiment requires the identification cost to be connected with the input design through the objective
function [8]. The application-oriented experiment design is quantified by first computing an optimal
input spectrum, and then constructing a perturbation signal required by real working conditions [9].
The plant-friendly experiment design is comparable to the application-oriented input design technique.
The objective of this experiment is to find a trade-off between minimal departure from real working
conditions and the precision of the model parameters to be identified [10,11]. For this purpose,
the concept of the performance degradation minimization instead of the variance minimization should
be considered.

When the optimal input signal has been obtained, one can identify the system under control in a
sequential manner. Then, the objective is to sequentially improve the system performance by more
precise estimates of the plant model parameters. This issue can be solved by the model predictive
control (MPC) and adaptive filtering (AF) techniques where the input signals are obtained to guarantee
the optimal control performance [12,13]. The MPC and AF formulations have been widely used in a
great number of industrial applications because of an increase in the speed of processors. The MPC
scheme contains the discrete-time nominal model of the system, MPC optimizer, and the Kalman filter
(KF) as a prediction model [14,15]. The MPC technique is based on the prediction of system succeeding
outputs subject to the future input signals. The advantage of MPC is the ability to simply operate
constraints on control signals and state variables. The adaptive filtering method can be formulated
as minimizing the error between the system output and the adaptive filter output with unknown
parameters. The true system output can be perturbed using Gaussian or no-Gaussian noise models.
The main objective of such an experiment is to extract the plant model with maximum accuracy.

The often-used adaptive methods such as Least Squares (LS) and Least Absolute Deviation (LAD)
may operate incorrectly in terms of mean square error and convergence speed. The LS estimator is
computationally simple and mathematically tractable but is often criticized for its noticeable lack of
robustness. In effect, one single outlier can have a great impact on the estimate. To receive a more
robust regression estimator, the LAD criterion has been introduced [16,17]. The LAD method is robust
because it is resistant to the data outliers, but it can lead to multiple unstable solutions. The different
estimators where the penalty function is minimized subject to the overall distribution of residuals
are Least Median of Squares (LMS), Least Trimmed Squares (LTS), and Reweighted Least Squares
(RLS) [18]. The Maximum Likelihood (ML), Minimum Entropy (ME), and Generalized Maximum
Entropy (GME) methods for robust parameter estimation, which guarantee robustness subject to
regression models, are proposed in [19]. Another prediction error estimation method called the Least
Entropy-Like (LEL) estimator is described in [20,21]. This method is based on properly established
penalty function and is developed based on the Gibbs entropy definition. The main goal of this
algorithm is to examine the global dispersion measure of the residuals fit. The LEL estimator is robust
to outlying data because the cost function is minimized subject to relative squared error variability.
The Minimum Error Entropy Renyi (MEER) is adopted in many applications as a generalization of
Shannon entropy [22]. The Renyi entropy for several values of α takes on different forms. When α
equals zero, the Renyi entropy becomes the Hartley entropy. For α equal to one, the Renyi entropy
becomes standard Shannon entropy. In practice, Renyi entropy of order two is just called collision
entropy and is often used in qualitative tests for random number generators [23,24]. Finally, when α
tends to infinity, the Renyi entropy is increasingly determined by the events of the highest probability.
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The focus of this paper is to provide the robustness analysis of the LS, LAD, LEL, and MEER
methods for the nonlinear interacting water tanks system parameter estimation. The parameters of
the double water tank model are selected arbitrarily to ensure the gravitational flow of water in the
tanks. Many real-world systems indicate a quasi-linear or nonlinear manner during normal operation
and exhibit a hard saturation effect for high peaks of the input signal. The standard examples of
such systems are the water tank processes [25,26]. Nonlinear state-space modeling is a promising,
and at the same time challenging, category of techniques [25]. In this paper, the adaptive filtering
method for the parameter estimation of the nonlinear state-space model, the cascaded water tanks,
is verified [24]. Suitability and performance tests to capture the dynamical behavior of the water tank
process are performed. The effectiveness evaluation for the estimators under consideration relies on
the total number of iterations and the number of function evaluation comparisons. There are several
works related to water tank system identification [27–29], but such research comparing the different
estimators for the nonlinear system parameter identification has not been performed.

This paper is structured as follows. In Section 2, the problem statement of the unknown system
parameter estimation is derived. In Section 3, the nonlinear dynamic model of the double water tank
process is presented. The LS, LAD, LEL, and MEER estimators are discussed in detail in Section 4.
The numerical results and discussion for the second-order dynamic model parameter identification are
presented in Section 5. In this section, the simulation effects for chosen estimation methods, different
excitation signals, and various system initial conditions are studied. The identification duration based
on the total number of iterations and function evaluations is verified. Finally, some concluding
comments are made in Section 6.

2. Problem Statement

Consider the nonlinear system formulated as follows:

y(t) = f (u, t,θ, ε), (1)

where y(t), u(t), ε(t), and θ are: output, input, noise, and parameter vector of the true system,
respectively. System identification is the process of constructing a mathematical model of the system
from experimental data and a priori knowledge about the system. The accuracy of the model parameter
estimates is dependent on the input signal selection [30,31]. The scheme of the system parameter
identification is shown in Figure 1 we perturbed the system′s input using u(t), and we observed data
on its output y(t).

Referring to Figure 1, the algorithm can be defined as the error e(t) minimization between the true
system response and the adaptive filter output [24]. The output of the system is affected by the white
noise signal with zero mean and finite variance values. The system with nominal parameter values and
the adaptive filter with unknown parameters were perturbed using selected continuous-time input
signals. The system was assumed to be at the initial states and control signal conditions. The unknown
parameters of the adaptive model were computed, in an iterative way, for different initial state
conditions and various white noise variance values. The adaptive model parameters were obtained
using the interior point method of constrained optimization. The goal of such an experiment was to
estimate adaptive model parameter values which should be comparable to the real values of the system
parameters. The constrained objective functions built based on LS, LAD, LEL, and MEER estimators
were minimized to obtain the most precise parameters of the adaptive model. The accuracy of the above
estimators was verified using absolute, relative, and mean square errors, respectively. The graphical
representation of the adaptive model parameter estimates for different input signals are shown by
ellipsoidal confidence regions. The performance assessment of the estimation methods was performed
comparing the total number of iterations and the number of function evaluations. The results of this
identification experiment can answer the estimator selection for instance for MPC implementation.
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3. The Nonlinear Interacting Water Tanks Process

In this section, the second-order nonlinear dynamic system is presented in Figure 2. The gravitational
interacting tanks system consists of two interconnected cylindrical water tanks [29]. The model of an
individual cylindrical tank is described by the volumetric flow Qin(t) into the upper tank to the water
outflow Qout(t) through the valve of the lower tank. The balance of the water flow in each tank can be
defined as:

A
dh(t)

dt
= Qin(t) −Qout(t), (2)

where: A is the cross-sectional area of each tank and h(t) is the water level in the tank.
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It has been established that the outlet leak has an ideal sharp-edged orifice. The water outflow of
the connected tanks can be described by the Torricelli′s law, given by the following equation:

Qout(t) = a ·
√

2gh(t) . (3)

In the above equation, a is the cross-sectional area of the orifice (in some approaches, it is also
multiplied by the constant Cd, called the discharge coefficient of the valve, which takes into account all
fluid characteristics, losses, and irregularities in the system) and g denotes the gravitational constant
(9.8 m/s2).

Substituting Equation (2) and (3) and assuming that the output hole of the first tank is the input to
the second one, the nonlinear model of the system is as follows: A1

dh1(t)
dt = −a1 ·

√
2gh1(t) + Qin(t), h1(0) = h10,

A2
dh2(t)

dt = a1 ·
√

2gh1(t) − a2 ·
√

2gh2(t), h2(0) = h20.
(4)

The index n = 1, 2 signifies the number of the tank in the tank cascade. The Equation (4) represents
the mathematical model and characterizes the behavior of a second-order nonlinear dynamic system.

The differential Equation (4), after the following substitution, can be written in the standard form
of the state-space equations: Qin(t) = u(t), x1(t) = h1(t), x2(t) = h2(t), y(t) = h1(t).

dx1(t)
dt = − a1

A1
·
√

2gx1(t) + 1
A1

u(t), x1(0) = h10,
dx2(t)

dt = a1
A2
·
√

2gx1(t) −
a2
A2
·
√

2gx2(t), x2(0) = h20,
y(t) = x1(t),

(5)

where: x1 = x1(t, a1), x2 = x2(t, a1, a2).
The steady-state condition (x1std, x2std) in response to the constant input signal ustd can be calculated

from the set of algebraic equations: 0 = − a1
A1
·
√

2gx1std +
1

A1
ustd,

0 = a1
A2
·
√

2gx1std −
a2
A2
·
√

2gx2std,
(6)

then we obtain:

x1std =
1

2g

(
ustd
a1

)2

, x2std =
(a1

a2

)2
· x1std =

1
2g

(ustd
a2

)2
. (7)

If we assume that the cross-sectional areas of the tanks can be exactly determined, the parameters
to be estimated are the cross-sectional areas of the orifices: a1 = a, a2 = b. Then, the state-space equations
of the double tank system can be expressed in the following form:

.
x1 = − a

A1
·
√

2gx1 +
1

A1
u, x1(0) = h10,

.
x2 = a

A2
·
√

2gx1 −
b

A2
·
√

2gx2, x2(0) = h20,
(8)

where: x1 = x1(t, a), x2 = x2(t, a, b) and the state coordinates (the water levels in the tanks hn(t), n = 1, 2)
have the natural physical constraints:

hn, max ≥ xn(t) ≥ 0, n = 1, 2. (9)

The nonlinear double tank model of the true system was executed using a Matlab–Simulink
environment [27]. The Simulink block diagram of the system under consideration is shown in Figure 3.
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During double tank model parameter estimation, the difference between the system and the
adaptive model outputs is minimized. According to Equation (5), the state variable x1 is equal to h1

(i.e., the water level in the first tank). Therefore, the difference between system and adaptive model
water levels of the first tank should be minimized. Consequently, the marks 1 and 2 in Figure 3 indicate
the integrator and the saturation block, respectively. The integrator block outputs the value of the
integral of the water level concerning time, and the saturation block produces an output signal which is
bounded to the upper and lower limits of the physical values. The parameters of the model are selected
arbitrarily to ensure the gravitational flow of water through the tanks. The physical constraints and
the model parameters of the water tank process are displayed in Table 1.

Table 1. The physical constraints and the plant model parameters.

Parameter Value Unit Description

h1,max 4.00 [m] Max. water level of tank 1
h1,min = h2,min 0.00 [m] Min. water level of tanks 1, 2

h2,max 2.00 [m] Max. water level of tank 2
h10 0.75 [m] Initial condition of tank 1
h20 0.50 [m] Initial condition of tank 2

a1 = a2 0.05 [m] Area of water outlet holes
A1 1.50 [m2] Cross-section of tank 1
A2 0.75 [m2] Cross-section of tank 2
u0 0.05 [m3/s] Initial water inflow

The chosen methods of estimation of the adaptive model parameters will be presented in the next
section of this paper.

4. Robust Parameter Identification

The system identification for control is the process of the plant model development where outlying
data have a significant impact on model parameter estimation. The general and well-accepted definition
of outlying data does not exist. In considerations that follow, it was assumed that the outlying data
should be inconsistent with the rest of the set.



Entropy 2020, 22, 834 7 of 17

In this paper, the Least Squares (LS), Least Absolute Deviation (LAD), Least Entropy Like (LEL),
and Minimum Error Entropy Renyi (MEER) methods were considered for adaptive filter parameter
estimation. The system identification block diagram is shown in Figure 1. The main concept of the
prediction error method (PEM) is based on the objective function minimization subject to prediction
error residuals [1].

Suppose that the data set consists of the points ( xi, yi) with i = 1, 2, . . . , l. We want to find a
function f such that f (xi) ≈ yi. To solve the mentioned optimization problem the following system
was considered:

yi = f (x1, x2, . . . , xl,θr) + εi,
i = 1, 2, . . . , l,

(10)

where: θr is the vector of estimated parameters, yi is the system output sequence, and εi is the Gaussian
white noise with finite variance. The PEM estimators are calculated using the residuals:

ri = yi − ŷi, (11)

where ŷi are the identified outputs i.e., ŷi = f
(
x1, x2, . . . , xl, θ̂

)
. The primary and frequently used

method for regression analysis is the Least Squares estimation. The LS objective function minimizes
the sum of squared residuals of the fit (i.e., prediction error estimator) is:

θ̂LS = Argmin
θ

N∑
i=1

r2
i =Argmin

θ

(
rTr

)
, (12)

where r is the residual vector of the fit r = f (r1, r2, . . . , rN). The similar technique, which is robust for
model parameter estimation is Least Absolute Deviations (LAD) [16].

θ̂LAD = Argmin
θ

N∑
i=1

|ri|. (13)

Similar to the LS method, LAD minimizes an objective function which should closely estimates a
data set. This technique minimizes the sum of absolute errors (SAE). The sum of the absolute values
minimizes the residuals between points obtained by the function and corresponding data points.
The LAD is robust because it is resistant to outliers in the data points and guarantees equal emphasis
in all observations. In comparison with ordinary LS which, by squaring the corresponding data points,
ensures the larger weight of the residuals (i.e., the outliers in which estimated values are far from actual
observations). The disadvantage of this method is multiple solutions.

The Least Entropy-Like (LEL) method was inspired by the idea of Gibbs entropy [20]. The concept
behind this method is to examine the global dispersion value of the residuals fit. The PEM built
according to Equation (11) is given by:

S =
N∑

j=1

r2
j , (14)

The relative squared residuals are defined as:

if S , 0 then si =
r2

i
N∑

j=1
r2

j

where si ∈ [0, 1],
N∑

i=1

si = 1, (15)
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Regarding paper [20], the estimation cost Φ based on relative squared residuals is defined as:

Φ =


0 for S = 0

−
1

log N

N∑
i=1

si log si for S , 0
. (16)

According to the entropy-like function Φ as Equation (16), the LEL estimator is proposed:

θ̂LEL = Arg min
θ

Φ, (17)

Entropy-like expression, such as Equation (16), acts on the unknown parameters θ through the
predictive error residuals. The LEL criterion Equation (17) is robust concerning outliers because the
cost function is minimized subject to relative squared error dispersion. It should be noted that the
penalty function Equation (16) is nonlinear and may not lead to a unique minimum for θ. Considering
the LEL properties, one should first verify the LS quality fit. If the LS fit is perfect, there is no reason
to use any other estimator. Finally, the LEL estimator should be executed numerically from initial
conditions around the real parameter values.

The Minimum Error Entropy Renyi (MEER) concept can be specified as a generalization of
the Shannon, Hartley, the collision, and the min-entropy [23]. The Renyi entropy expression is
parameterized by a parameter α, which when allowed to approach unity, reverts to the well-known
concept of Shannon. The MEER estimator for alpha in the range of 0 < α <∞ is defined as follows:

θ̂MEER = Argmin
θ

1
1− α

log
N∑

i=1

pαi , (18)

where α is the Renyi entropy order and pi is normal probability density function with the mean
value of zero and standard deviation of one, evaluated at the values in ri according to Equation (11).
The probability distribution was computed using Matlab function normpdf. When α assumes the
value of zero, the Renyi entropy becomes the Hartley entropy. For α approaching unity, the Renyi
entropy reverts to standard Shannon entropy. In practice, Renyi entropy of order two is just called
collision entropy. Finally, when α tends to infinity, the Renyi entropy is increasingly determined by
the events of the highest probability. The parameter α of order two offers a large reduction in the
computational effort.

The next section presents the results of the robustness tests for the double-tank water system
parameter estimators using the ellipsoidal confidence regions. The effectiveness analysis for the
above-mentioned estimators relies on the total number of iterations and the number of function
evaluation comparisons.

5. Numerical Results and Discussion

To illustrate the advantages of the parameter identification process (Figure 1), using four different
excitation signals u(t), we have selected a second-order nonlinear system—the cascade of two tanks.
In this section, we discuss the formulation of the optimization problem where the error e(t) between
the true system response and the adaptive filter output is minimized. For the numerical solution of
this optimal control problem, a Matlab–Simulink environment [32] was employed.

For the system parameter estimation purposes, various input signals were adopted. The optimal
input was computed for arbitrary selected nominal values of the system parameters: a = 0.05, b = 0.05,
and with the termination time set as Tf = 10 s, using Riots_95 toolbox [33]. The system was assumed to
be at the initial states: x1(0) = 0.75, x2(0) = 0.50, and the initial value of the input signal as u(0) = 0.05.
Successive signals were selected as follows: step-input signal from the steady-state value of 0.20,
sinusoidal signal with the frequency of 0.25 Hz, and steady-state value of 0.2 and sinusoidal signal
with a frequency of 2.50 Hz and the same steady-state value.
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The structure of the parameter identification process is shown in Figure 1, with the measurement
noise of variance from the interval 0.0 ≤ σ2

≤ 0.20. The plant model corresponds to the theoretical
representation of the system Equation (8), which depends on a vector of unknown parameters θ = [a,b]T

to be estimated. The equations describing the system dynamics were integrated using the fixed
step-size fourth-order Runge–Kutta method with grid intervals of 0.1 s. The one hundred and fifty runs
were performed when the plant model starts from various initial state conditions, and the additional
noise disturbing the system input has a different variance. The initial states of the system were chosen
from the intervals 0.55 ≤ x1(0) ≤ 0.95 and 0.30 ≤ x2(0) ≤ 0.70. Four mentioned estimators and an
interior-point method were used for the output error e(t) minimization.

Figures 4 and 5 illustrate the number of iterations and function evaluations generated using the
optimal input signal.
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The above figures show the comparison of the number of iterations and function evaluations for
different estimators when the system was perturbed using an optimal input signal. The main objective
of this optimization task was to obtain the most accurate plant model parameters undertaking the
minimum duration identification experiment. The results of the identification experiments in the form
of mean iterations and mean function evaluations values for other input signals are summarized in
Tables 2 and 3.

Table 2. The mean value of the number of iterations for different input signals and estimators.

Mean Value of the Number of Iterations

Estimator LS LAD MEER LEL

step input 25.92 37.06 17.85 27.17
sinusoidal 0.25 Hz 24.11 35.33 17.55 25.67
sinusoidal 2.50 Hz 24.40 34.68 17.53 26.86

optimal input 22.61 21.61 17.07 23.41
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Table 3. The mean value of the number of function evaluations for different input signals and estimators.

Mean Value of the Number of Function Evaluations

Estimator LS LAD MEER LEL

step input 97.13 178.31 60.67 100.63
sinusoidal 0.25 Hz 91.99 169.31 59.29 96.25
sinusoidal 2.50 Hz 92.72 168.88 58.63 87.37

optimal input 80.36 159.77 58.81 87.20

It should be noted that the lowest mean values of iterations and function evaluations were obtained
using optimal input excitation. Considering other input signals, the number of iterations and function
evaluations increased significantly. The MEER algorithm yielded the smallest number of iterations
and function evaluations. The following estimators are less robust and can be sorted in the order LS,
LEL, and LAD. However, the advantage of LEL and LAD estimators is that these estimators find the
optimal solution before reaching boundary values. Analyzing waveforms shown in Figures 4 and 5,
one can notice which estimator achieved optimal values in a minimal time lag.

Figure 6 illustrates the results of the identification experiments, i.e., the optimal values of
parameters estimated as a solution of optimization tasks for each run. The ellipsoidal confidence
regions were obtained for the LS, LAD, MEER, and LEL estimators using an optimal excitation signal.
Analysis of the confidence regions of the nonlinear double tank model parameter estimates confirms
some regularities. The optimal input signal yielded the minimal volume of the ellipsoidal confidence
region for the MEER estimator. The cluster occupied by the model parameter values, computed using
the LAD method, slightly increased its size for the same initial conditions and noise variance as in the
previous experiment. The uncertainty regions obtained for the optimal input signal using LS and LEL
estimators are not recommended in the real-life identification experiments.
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Deviation (LAD), (c) Minimum Error Entropy Renyi (MEER), and (d) Least Entropy Like (LEL)
estimators for the optimal input signal based on the 150 runs.
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For comparison, the ellipsoidal confidence regions obtained using the same estimators and
step input signal are shown in Figure 7. The identification experiments were performed, when the
system started from different initial conditions and the output of the system was disturbed by the
white noise signal with different variance values. It can be noticed that for the nonoptimal step
excitation signal, the clusters occupied by the model parameters estimated using the LAD and MEER
methods increased their sizes. The plant model parameters estimated using sinusoidal perturbation
signals were characterized by significant dispersion from nominal parameter values. It seems to
be reasonable because sinusoidal input signals are generally used for frequency-domain system
identification purposes.
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Deviation (LAD), (c) Minimum Error Entropy Renyi (MEER), and (d) Least Entropy Like (LEL)
estimators for the step input signal based on the 150 runs.

Table 4 presents the percentage mean relative errors of the model parameter estimates for various
perturbation signals and different estimation methods. Comparing the values of the mean relative
errors shown in Table 4, it can be noticed that the LAD estimator occurred most precisely. However,
considering the number of iterations and function evaluations, the MEER method has some advantages
over the LAD algorithm. This is because the MEER duration of computation is shorter, and the
identified parameters are practically similar. When the frequency of the sinusoidal excitation signal
increases, the value of the percentage mean relative error also increases.

The LS method adapts to the most outlying data points from the average that can introduce the
largest error value. If there exists a single disturbing outlier in the data very distant from the rest of
the data points, it will attract a trend line to itself. The primary goal of the LEL method Equation (17)
is to make the most of residuals striving to zero or to cause the relative squared residuals equally
distributed concerning optimization criteria. The LEL method is a robust subject to outliers because
the goal function to be minimized is a measure of the relative squared error variability. Finally, it can
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be noticed that there is no warranty for relative squared residual expression to have a unique solution
subject to the parameters. So, the minimization should be executed carefully with particular attention
to the initial values of the parameters.

Table 4. The percentage mean relative error for different input signals and estimators.

Percentage Mean Relative Error

Estimator LS LAD MEER LEL

step input 29.94% 22.96% 34.90% 33.88%
sinusoidal 0.25 Hz 30.03% 22.54% 26.62% 36.10%
sinusoidal 2.50 Hz 36.05% 21.49% 28.69% 36.66%

optimal input 25.48% 12.25% 13.74% 24.47%

Summarizing the simulation results, it should be noted that the LS estimator indicated maximum
absolute error value equals to 0.497. The average value of the number of iterations was 3600 and the
average function evaluation value was 13,500. The minimal absolute error value was observed for
the LAD estimator equal to 0.232. The LAD method was worse in terms of the average number of
iterations—5000 and the average function evaluations value—25,000. Interesting results were obtained
for the MEER estimator where the maximum absolute error value was equal to 0.349. The corresponding
amount of the average number of iterations was 2450, and the average function evaluation value was
9000. Surprising effects were received using the LEL estimator where the maximum absolute error
value was about 0.475, the average number of iterations and the average function evaluation values
were 3800 and 14,000, respectively. The reason for this inaccuracy is probably the lack of data outliers
during the nonlinear double tank system parameter identification. The absence of the data outliers is
related to the dynamic system initial condition selection.

To demonstrate that the results are structural and are not a function of the particular model
parameters, the numerical experiments were repeated for additional initial parameter values a = b = 0.03
and a = b = 0.07, respectively. To report the results of numerical experiments, bar graphs were used.
To simplify the analysis of the number of iterations, the number of function evaluations and the
percentage relative errors the average values of estimated indicators, for four different input signals,
were taken into consideration.

Figures 8–10 contain data for the initial parameter values a = b = 0.05 presented in Tables 2–4.
The simulation experiments for the additional initial parameter values of the nonlinear double tank
system were performed under the same experimental conditions. It should be noted that despite
the use of the average value of indicators for various input signals (i.e., sinusoidal signals which
are not plant-friendly in the time domain identification), the results of the parameter estimation
are similar. The least percentage mean relative errors (Figure 10) occurred for LAD and MEER
estimators, respectively. The worst results regarding the number of iterations and the number of
function evaluations were obtained for LAD and LEL estimators. Figure 10 shows some regularities:
when the cross-sectional areas of the orifices increase their size, the percentage mean relative error
decreases its value. Figures 11–13 show the standard deviations of the mean values of the number of
iterations, the mean values of the number of function evaluations, and the percentage mean relative
error obtained as the average value of indicators for four different input signals using the LS, LAD,
MEER, and LEL estimators, respectively. The standard deviation is a number used to demonstrate how
the estimation results for a group are spread out from the average value. The low standard deviation
value indicates that most of the numbers are close to the average. The above figures show that the
greatest standard deviations for the number of iterations and the number of function evaluations were
obtained for the LAD estimator. It should be noted that the MEER estimator had the greatest standard
deviation of the percentage mean relative error for the small sizes of cross-sectional areas of the plant
orifices. This inconvenience is caused by the percentage mean relative error outliers (i.e., very low error
values) obtained using optimal perturbation signal. The advantages of the MEER estimator are low
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values of the standard deviations of the number of iterations and the number of function evaluations
shown in Figures 11 and 12.
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Figure 8. The mean values of the number of iterations obtained as the average value of indicators for
four different input signals using LS, LAD, MEER, and LEL estimators.
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Figure 9. The mean values of the number of function evaluations obtained as the average value of
indicators for four different input signals using LS, LAD, MEER, and LEL estimators.
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Figure 10. The percentage mean relative error obtained as the average value of indicators for four
different input signals using LS, LAD, MEER, and LEL estimators.
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Figure 11. The standard deviations of the mean values of the number of iterations obtained as the
average value of indicators for four different input signals using LS, LAD, MEER, and LEL estimators.
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Figure 12. The standard deviations of the mean values of the number of function evaluations obtained as
the average value of indicators for four different input signals using LS, LAD, MEER, and LEL estimators.
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Figure 13. The standard deviations of the percentage mean relative error obtained as the average value
of indicators for four different input signals using LS, LAD, MEER, and LEL estimators.
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6. Conclusions

The goal of the dynamic system identification task is to develop the appropriate experiment
so that the departure from the system nominal working conditions is minimized. In this paper,
the adaptive filtering method for the nonlinear interacting liquid tanks system identification was
proposed. Adaptive filtering was defined by minimizing an error between the system and the model
outputs subject to the Gaussian noise disturbing system output. This paper was devoted to the
robustness analysis of the LS, LAD, MEER, and LEL estimators for the dynamic system parameter
identification. The accuracy of the estimated adaptive filter parameters, for four estimation methods,
different excitation signals, and various initial conditions was verified using ellipsoidal confidence
regions. Effectiveness analysis was performed by comparison of the total number of iterations and the
number of function evaluations per iteration. The main purpose of such research was to determine the
most precise and effective estimator (e.g., for MPC tasks).

The performed experiments indicate that the best parameter estimation results were obtained
using the LAD and MEER methods, respectively. The other presented methods produce worse
estimation results: the LS estimator subject to the white noise affecting the system output and the LEL
estimator subject to the lack of data outliers. It has been shown that the sinusoidal excitation signals
are not recommended for double water tank system identification in the time domain. The simulation
experiments performed for the additional initial parameter values demonstrate that the results are
structural for interacting water tank process identification. The numerical results for standard deviation
estimation also confirmed the effectiveness of the MEER estimator for second-order, nonlinear system
identification. The most accurate results were obtained using the optimal input and the standard step
input signals, respectively. In conclusion, based on the experiments performed, it should be stated
that the best accuracy of the estimated parameters was observed for the optimal input signal and the
LAD estimator. However, comparing parameter estimation durations, the MEER estimator should be
considered for real-world identification experiments.
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