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Abstract

Introduction

Studies of cerebral hemodynamics during motor learning have mostly focused on neuroreh-

abilitation interventions and their effectiveness. However, only a few imaging studies of

motor learning and the underlying complex cognitive processes have been performed.

Methods

Wemeasured cerebral hemodynamics using near-infrared spectroscopy (NIRS) in relation

to acquisition patterns of motor skills in healthy subjects using character entry into a touch-

screen terminal. Twenty healthy, right-handed subjects who had no previous experience

with character entry using a touch-screen terminal participated in this study. They were

asked to enter the characters of a randomly formed Japanese syllabary into the touch-

screen terminal. All subjects performed the task with their right thumb for 15 s alternating

with 25 s of rest for 30 repetitions. Performance was calculated by subtracting the number

of incorrect answers from the number of correct answers, and gains in motor skills were

evaluated according to the changes in performance across cycles. Behavioral and oxygen-

ated hemoglobin concentration changes across task cycles were analyzed using Spear-

man’s rank correlations.

Results

Performance correlated positively with task cycle, thus confirming motor learning. Hemody-

namic activation over the left sensorimotor cortex (SMC) showed a positive correlation with

task cycle, whereas activations over the right prefrontal cortex (PFC) and supplementary

motor area (SMA) showed negative correlations.
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Conclusions

We suggest that increases in finger momentum with motor learning are reflected in the

activity of the left SMC. We further speculate that the right PFC and SMA were activated

during the early phases of motor learning, and that this activity was attenuated with learning

progress.

Introduction
Humans accomplish a wide variety of motor and cognitive tasks in everyday life. Furthermore,
we continue acquiring new complex motor skills to overcome various challenges. Therefore, it
is important to study the underlying changes in cerebral hemodynamics during motor-cogni-
tive adaptation. In recent years, various functional brain imaging techniques that enable nonin-
vasive visualization of brain activity have advanced greatly [1–8]. Cerebral dynamics during
motor-cognitive task adaptations have been investigated by employing various neuroimaging
techniques, such as positron emission tomography (PET) or functional magnetic resonance
imaging (fMRI), while the subject is in a supine position [9–14]. However, in daily life, motor-
cognitive adaptation tasks are usually performed in upright positions such as sitting or stand-
ing. To address the issue of limited ecological validity and enable task performance in a more
natural setting, we used near-infrared spectroscopy (NIRS) as a less-limiting imaging method
that enables measurement of cortical activation during activities of daily life.

Although NIRS is characterized by marked limitations in temporal and spatial resolution,
its safety, non-restrictiveness, and portability enable broader and more flexible use than other
brain imaging methods [15]. A number of studies have examined cerebral hemodynamics
using NIRS during a wide variety of motor activities such as a walking or running [16–20],
cycling [21–23], apple peeling [24], and finger tapping [25–28]. Additionally, researchers have
examined cerebral hemodynamics during cognitive tasks such as trail making [29–32], the
rock-paper-scissors game [33,34], maze navigation [35], and sequential finger touching
[36,37].

To our knowledge, NIRS studies that examine motor skill learning with ongoing adaptation
processes are rare. Two NIRS studies have reported changes of hemodynamics over time
related to motor skill learning using eye-hand coordination in pursuit rotor [38] or target
reaching tasks [39]. These NIRS studies evaluated specific sensorimotor tasks. However, these
studies did not address changes in hemodynamic activity during motor learning of complex
skills with concurrent cognitive processing such as working memory and executive function.
Gentili et al. reported changes in cerebral hemodynamics as measured by NIRS during perfor-
mance of a motor-cognitive adaptation task and demonstrated activation only in the prefrontal
cortex (PFC) [40]. However, the NIRS probe in their study only covered the forehead. There-
fore, no studies are available that examine the hemodynamic responses of other cortical regions
during performance of motor-cognitive adaptation tasks using a NIRS system that also
includes the posterior half-head.

Information technology has substantially affected modern society, and researchers con-
cerned with neurorehabilitation should examine interventions relevant to the lifestyle of mod-
ern people. In recent years, the number of touch-screen terminal users has increased
remarkably and smartphones have spread all over the world. eMarketer, a U.S. research com-
pany, speculated that the number of smartphone users will total 1.75 billion in 2014 and further
increase to 2.5 billion in 2017 [41]. The operation of a smartphone requires flick inputs to
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create an email sentence in Japanese, and the entry of the required characters is difficult and
will need to be considered in the field of neurorehabilitation in the future. However, there are
no studies measuring cerebral hemodynamics related to motor skill learning that address the
underlying complex cognitive processing in tasks such as character entry into a touch-screen
terminal. Therefore, in this study, we examined cerebral hemodynamics using NIRS associated
with acquisition patterns of motor-cognitive skills in healthy subjects using character entry
into a touch-screen terminal. Based on previous studies, we hypothesized that the behavioral
improvements resulting from adaptation would be accompanied by distinct patterns of activa-
tion over the various cortical regions.

Methods

Subjects
Twenty healthy subjects (9 men and 11 women; mean age, 27.5±5.5 years) participated in this
study. All subjects were self-reported as right-handed (S1 Dataset). Exclusionary criteria
included any medical illness affecting central nervous system function, psychiatric or neurolog-
ical disorders, history of head trauma, or current substance abuse. None of the subjects had
previous experience with character entry using a touch-screen terminal. Written informed con-
sent was obtained from each subject. The study was approved by the local ethics committee of
Nagasaki University Graduate School of Biomedical and Health Sciences. All of the experimen-
tal procedures were conducted in accordance with the Declaration of Helsinki.

Tasks and procedures
The subjects sat on a chair 80 cm away from a PC monitor (Epson LD1957S, Japan, 19-inch,
resolution: 1024 × 768 pixels) (Fig 1A). All subjects performed the task with their right thumb
for 15 s alternating with 25 s of rest for 30 repetitions (cycles 1 to 30) (Fig 1B). Gains in motor
skills were evaluated according to the number of characters entered into the touch-screen ter-
minal (Apple iPod Touch 4, Japan, 3.5-inch, resolution: 960×640 pixels) (Fig 1C). All subjects
were asked to enter the characters of a randomly formed Japanese syllabary presented on a PC
monitor, starting with the character from the upper left, into the touch-screen terminal as
quickly as possible (Fig 1D). The character string in the monitor was constructed in five lines
and nine rows, resulting in 45 characters. The characters of the randomly formed Japanese syl-
labary were changed every cycle (S1 Supporting Information). All subjects were asked to fixate
on a single point at the center of the screen during rest and to stay relaxed. In English, the letter
combinations “P Q R S” and “WX Y Z” involve a three-way operation in the upper, right, and
left direction, whereas the input otherwise involves operation in two ways. In Japanese, the
combinations “ya yu yo” and “wa wo n” are two-way operations in the right and left directions,
whereas the input otherwise operates in four ways in the upper, lower, right, and left directions.
Therefore, operation of these devices using Japanese input is more complicated than that using
English input. The task of the present study was not simply a matter of entering as many char-
acters as possible; the only characters that were meant to be entered were those displayed.
There was thus a trade-off between the number of characters and the number of incorrect
entries. Thus, the task performance of each subject was calculated by subtracting the number
of errors from the number of correct answers in each cycle.

NIRS measurements were performed using a continuous wave system (ETG-4000, Hitachi
Medical Corp., Tokyo, Japan) equipped with 4 × 4 optode probe sets (8 incident light and 8
detector fibers), resulting in a total of 24 channels with an inter-optode distance of 3.0 cm. The
continuous-wave NIRS system utilizes two different wavelengths (~625 and 830 nm). Relative
changes in the absorption of near-infrared light were sampled at 10 Hz, and these measures
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were converted into related concentration changes for oxygenated hemoglobin (oxy-Hb) and
deoxygenated hemoglobin (deoxy-Hb), based on the modified Beer-Lambert approach [42].
The moving average method (window: 5 s) was used to exclude short-term motion artifacts in
the analyzed data. The obtained data were analyzed in the integral mode, which calculates aver-
age waveform. Pre-task baseline was defined as the 5-s period immediately prior to task onset.
In this study, we used changes in oxy-Hb concentration as an indicator of changes in regional
cerebral blood volume, as an earlier NIRS signal study using a perfused rat brain model pro-
posed that oxy-Hb, rather than deoxy-Hb, is the more sensitive parameter for the study of acti-
vation [43]. The NIRS channels were placed according to the international 10–20 system [44].
Regarding the positions of the optodes, we followed previous NIRS studies of motor-related
areas [37,45]. The optodes were positioned using a custom-made cap that covered the right
and left PFC, presupplementary motor area (preSMA), supplementary motor area (SMA), dor-
sal premotor cortex (PMC), and sensorimotor cortex (SMC). The areas and optodes were as
follows: left SMC, channels 18 and 22; right SMC, channels 21 and 24; motor area, channels 19,
20, and 23; SMA, channels 9, 12, 13, and 16; preSMA, channels 2, 5, and 6; left PMC, channels
8, 11, and 15; right PMC, channels, 10, 14, and 17; left PFC, channels 1 and 4; and right PFC,
channels 3 and 7. The Cz position in the international 10–20 system was used as a marker for
ensuring replicable placement of the optodes (Fig 2).

Data analysis
Changes in performance across task cycles were analyzed by calculating Spearman’s rank cor-
relation coefficients; serial changes (1–30 cycles) in the level of oxy-Hb associated with cycle
repetition in the various regions were also evaluated using Spearman’s rank correlation coeffi-
cients. These correlation coefficients tested for associations between the number of task cycles
and changes in oxy-Hb level for each region.

Fig 1. Experimental setup of touch-screen terminal task. (A) Experimental setup of character entry into
touch-screen terminal showing a subject with the custom-made cap with the NIRS device. (B) Display of task
and rest conditions. The display showing the task condition changed with each cycle. (C) The iPod Touch 4.
The character entry into screen mode was used to measure the number of character entries. All subjects
performed the task with their right thumb for 15 s interleaved with rest periods of 25 s for 30 repetitions. (D)
Methods of character entry into touch-screen terminal. All subjects were asked to enter the characters of a
randomly formed Japanese syllabary into the touch-screen terminal.

doi:10.1371/journal.pone.0140552.g001
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Results
Fig 3 shows the average performance (i.e., number of correct entries minus incorrect entries
into the touch-screen terminal) during the touch-screen task over 30 cycles. There was a highly
significant positive correlation between task cycle and performance (ρ = 0.924, p< 0.001) (S2
Dataset). Fig 4 shows the mean changes in oxy-Hb concentration for three cortical regions
over the 30 cycles of the touch-screen task. A significant positive correlation between task cycle
and oxy-Hb concentration for the channels covering the area of the left SMC (ρ = 0.387,
p< 0.05) was observed (S3 Dataset). In contrast, significant negative correlations between task
cycle and oxy-Hb concentration for the channels covering the SMA (ρ = -0.513, p< 0.01) (S4
Dataset) and right PFC (ρ = -0.364, p< 0.05) (S5 Dataset) were obtained. There were no signif-
icant correlations between task cycle and oxy-Hb changes for the channels covering the other
areas (left PFC, preSMA, bilateral PMC, and right SMC) (S6 Dataset).

Discussion
Flick input is one of the entry methods for Japanese characters in a touch-screen terminal.
However, in general, flick input operation is difficult. The user of the touch-screen terminal
has to learn to input a letter quickly to effectively convey information. Because the subjects of
this study were inexperienced in touch-screen terminal operation, this task was equivalent to
motor learning combined with complex cognitive processing. In recent years, activities involv-
ing complex cognitive processing during operation of touch-screen terminals have become
abundant in everyday life. However, the cerebral blood flow dynamics during motor learning
with complex cognitive processing in humans are not well understood. Therefore, we used
NIRS to examine the cerebral blood flow dynamics of various cortical regions during motor
learning of flick input operation of a touch-screen terminal.

Fig 2. Location of the optodes and brain areas. Sixteen optodes, comprising 8 light source fibers (red) and
8 detectors (blue) that enabled 24-channel measurements, were arranged on the scalp. The channels
covering SMC, SMA, preSMA, PMC, and PFC are shown. See text for details.

doi:10.1371/journal.pone.0140552.g002
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Role of SMC in motor learning
The left SMC was activated with an increasing number of task cycles, whereas the right SMC
did not show such an activation pattern. The left SMC is equivalent to a region including pri-
mary motor and primary sensory areas primarily controlling operation of the hand [46]. PET
and NIRS studies have reported that the cerebral blood flow volume of the contralateral pri-
mary motor area of the operating hand increased with the frequency of finger tapping
[26,47,48]. In addition, the primary motor and primary sensory areas contralateral to the oper-
ating hand became activated during motor learning of the finger. In the present study, the
number of character entries significantly increased with the task cycle. During the course of
one experiment, motor learning of the finger occurred in all subjects, as confirmed by the
improvement of the flick input operation. Therefore, we speculate that increases in the
momentum of the finger reflect motor learning.

Fig 3. Correlation between performance (number of correctly entered characters minus incorrectly
entered characters) and number of task cycles. Performance significantly increased with cycle repetitions.

doi:10.1371/journal.pone.0140552.g003

Fig 4. Correlations between oxy-Hb changes over three regions and number of task cycles. Vertical
axis represents mean oxy-Hb concentration changes (in mM*mm). Left SMC activation significantly
increased, whereas SMA and right PFC activation significantly decreased with cycle repetition.

doi:10.1371/journal.pone.0140552.g004
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Role of SMA in motor learning
The SMA extracts motor programs that depend on memory information and the initiation of
spontaneous movements. Thus, the SMA plays an important role in situations where a com-
pound movement is controlled [49–53]. The examination of SMA activity during motor learn-
ing can be accomplished by various neuroimaging techniques. However, there is little
consensus on the activity of the SMA during motor learning [54–60]. In a previous NIRS
study, SMA activation gradually increased with motor learning [38]. That study used a pursuit
rotor task requiring simple motor learning and therefore differs from the motor learning task
of the current study that involved complex cognitive processing. Although the SMA showed
greatly increased activity immediately after experiment initiation, its activity was gradually
attenuated with increasing task cycles.

We suggest that these changes in cerebral blood flow were caused by motor inhibition. All
subjects of this study owned a feature phone and inputted characters using ten keys that oper-
ated in a toggle manner. During the experiment, all subjects were required to input letters
using a method that differed from the operation they had mastered previously. We speculate
that the two divergent character input methods competed, leading to motor inhibition that
occurred in all subjects during this task. Preliminary research has suggested that the SMA is
activated by motor inhibition [61,62]. We further suggest that the SMA is activated initially by
motor inhibition; as learning progresses, SMA activity is attenuated. Although our findings
demonstrate activation of SMA by motor inhibition, we could not find similar reports that
examined changes of cerebral blood flow showing motor inhibition with cognitive learning
over time. Therefore, this study may be the first to report cerebral blood flow dynamics in
SMA with cognitive learning involving motor inhibition. However, the task required complex
cognitive processes including visuomotor adaptation and working memory. Therefore, the cur-
rent task was not specifically designed to test motor inhibition. In future experiments, we thus
need to examine the dynamics of cerebral blood flow over the SMA during more specific tasks
requiring motor inhibition.

This may be the first study to report the activity of the SMA during a motor learning task
with complex cognitive processing using character entry into a touch-screen terminal over
time. Therefore, further research is needed to examine the role of SMA during motor learning
using other complex tasks (e.g., character input on a personal computer, trail making, serial
reaction time, or other visuomotor adaptation and motor sequence learning tasks that involve
complex cognitive processing).

Role of the PFC in motor learning
The PFC is an important neural substrate for visual working memory [63]. As the task of this
study consisted of entering a letter presented on a PC screen into a hand-held touch-screen ter-
minal, working memory was required to successfully accomplish this task. Memory encoding
has been associated with lateral PFC activation across a variety of experimental paradigms in
functional neuroimaging [64,65]. In the current study, the right PFC activation was gradually
attenuated with increasing task cycle. However, activation of the left PFC continued without
attenuation as the task cycles progressed. Activity of PFC regions has been reported to gradu-
ally decrease with learning [66–71]. Therefore, acquisition of the cognitive skill associated with
working memory in our subjects may have attenuated the activity of the right PFC. As all sub-
jects in our study were right-handed, we assume that their left hemisphere was language-domi-
nant. Thus, the left PFC was likely involved in linguistic information manipulation [63,72,73]
and continued to be recruited during all task cycles, thereby maintaining the activity of the left
PFC. Previous studies have reported PFC asymmetry for memory encoding of verbal and
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nonverbal code [74,75]. The right PFC is activated during a nonverbal task, whereas the left
PFC is activated during a verbal task, supporting the validity of our hypothesis.

Role of other regions
The PMC is involved in choice and control of movements that depend on sensory information
[76,77]. During the 1–30 cycles, the PMC continued to be activated bilaterally. As the task of
this study consisted of a visuomotor problem, we speculate that the activity of PMC was main-
tained because the subjects depended on visual information throughout all task cycles. The pre-
SMA controls the aspect of the task that uses the rich entry from the premotor area, including
order decision of the complex movements during preparation and movement choice; this also
includes motor learning of changes in movement style and timing of the movement initiation.
Furthermore, the preSMA is activated by cognitive control in the absence of movement control
[78–82]. The activity of the preSMA was previously reported to be attenuated with motor
learning [38]. However, in this study, the activity of preSMA continued during all task cycles.

The subjects performed a movement control problem with complex cognitive information
processing by translating the letter presented on a monitor to the movement direction of their
finger. We suggest that this step represents early stages of cognitive-motor learning. In the cur-
rent task, sustained attentional engagement from the subjects was required during cognitive
processing, and we speculate that this led to the continued activity of preSMA without
attenuation.

Limitations of this study
First, as our measurements included only the initial learning period of 30 cycles, it was not pos-
sible to determine how cerebral blood flow dynamics might have changed after completion of
the 30-cycle learning stage. Therefore, further studies are needed to investigate cerebral blood
flow dynamics after task training.

Second, we used the number of characters entered minus the number of incorrect entries as
the performance index in this study, and investigated its relationship with Oxy-Hb concentra-
tion changes in each region in this study,. However, it is also possible that the Oxy-Hb concen-
tration changes for each region would show a different course if the speed of entering the
characters and reaction time (i.e. the time to enter a character appearing on a monitor upon
confirmation) were investigated separately as a performance index. Further studies should be
performed to address this issue.

Third, activation in deeper structures such as the basal ganglia, which are closely linked
with the frontal cortices, cannot be detected because of the technical limitations of NIRS. We
thus could not address functional connectivity between brain areas, but it would be interesting
to investigate functional connectivity between the right PFC and SMA during complex motor
learning tasks. In future research, it will be necessary to consider other neuroimaging tech-
niques that measure cerebral blood flow dynamics in humans during motor learning of flick
input operation of a touch-screen terminal.

Conclusions
We examined cerebral blood flow dynamics during motor learning of flick input into a touch-
screen terminal using NIRS. The number of character inputs significantly increased with repe-
tition of task cycles. These results show that motor learning occurred in all subjects during the
course of one experiment. In the left SMC, SMA, and right PFC, there was a significant change
of cerebral blood flow dynamics as the task cycles progressed, indicating motor learning over
time. Changes in activity over the left SMC, SMA, and right PFC likely reflect distinct aspects
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of acquisition of the motor task such as increase in finger momentum, motor inhibition, and
visual working memory, respectively.

Supporting Information
S1 Dataset. Subjects information.
(XLSX)

S2 Dataset. Correlations between task performance and task cycles.
(XLSX)

S3 Dataset. Correlations between left SMC Oxy-Hb concentration changes and number of
task cycles.
(XLSX)

S4 Dataset. Correlations between SMA Oxy-Hb concentration changes and number of task
cycles.
(XLSX)

S5 Dataset. Correlations between right PFC Oxy-Hb concentration changes and number of
task cycles.
(XLSX)

S6 Dataset. Correlations between other regions Oxy-Hb concentration changes and num-
ber of task cycles.
(XLSX)

S1 Supporting Information. Presentation for the task.
(PPTX)

Acknowledgments
The authors would like to thank all the participants in this study. Takehito Yonezawa, Kengo
Fujiwara, and Akira Nakashima contributed significantly with their flexible support of the
participants during data acquisition. We thank Hitachi Medical Corp., Japan for their skilled
technical support whenever needed. Moreover, we would particularly like to thank Takumi
Inakazu for his continuous support during the data acquisition and processing phase. We
would like to thank Editage (www.editage.jp) for English language editing.

Author Contributions
Conceived and designed the experiments: AS TT KO TH. Performed the experiments: AS NI
TM TH EK. Analyzed the data: AS NI KT. Wrote the paper: AS TH TT.

References
1. Hillebrand A, Singh KD, Holliday IE, Furlong PL, Barnes GR. A new approach to neuroimaging with

magnetoencephalography. Hum Brain Mapp. 2005; 25: 199–211. PMID: 15846771

2. Lauritzen M. Reading vascular changes in brain imaging: is dendritic calcium the key? Nat Rev Neu-
rosci. 2005; 6: 77–85. PMID: 15611729

3. Costafreda SG, Fu CHY, Lee L, Everitt B, Brammer MJ, David AS. A systematic review and quantitative
appraisal of fMRI studies of verbal fluency: role of the left inferior frontal gyrus. Hum Brain Mapp. 2006;
27: 799–810. PMID: 16511886

4. Debener S, Ullsperger M, Siegel M, Engel AK. Single-trial EEG-fMRI reveals the dynamics of cognitive
function. Trends Cogn Sci. 2006; 10: 558–63. PMID: 17074530

Changes in Cerebral Hemodynamics during Complex Motor Learning

PLOS ONE | DOI:10.1371/journal.pone.0140552 October 20, 2015 9 / 13

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0140552.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0140552.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0140552.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0140552.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0140552.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0140552.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0140552.s007
http://www.editage.jp/
http://www.ncbi.nlm.nih.gov/pubmed/15846771
http://www.ncbi.nlm.nih.gov/pubmed/15611729
http://www.ncbi.nlm.nih.gov/pubmed/16511886
http://www.ncbi.nlm.nih.gov/pubmed/17074530


5. Norris DG. Principles of magnetic resonance assessment of brain function. J Magn Reson Imaging.
2006; 23: 794–807. PMID: 16649206

6. Otte A, Halsband U. Brain imaging tools in neurosciences. J Physiol Paris. 2006; 99: 281–92. PMID:
16713203

7. Stern JM. Simultaneous electroencephalography and functional magnetic resonance imaging applied
to epilepsy. Epilepsy Behav. 2006; 8: 683–92. PMID: 16630747

8. Van Eimeren T, Siebner HR. An update on functional neuroimaging of parkinsonism and dystonia. Curr
Opin Neurol. 2006; 19: 412–9. PMID: 16914982

9. Seidler RD, Noll DC. Neuroanatomical correlates of motor acquisition and motor transfer. J Neurophy-
siol. 2008; 99: 1836–45. doi: 10.1152/jn.01187.2007 PMID: 18272874

10. Anguera JA, Reuter-lorenz PA, Willingham DT, Seidler RD. Contributions of Spatial Working Memory
to Visuomotor Learning. J Cogn Neurosci. 2009; 22: 1917–1930.

11. King BR, Fogel SM, Albouy G, Doyon J. Neural correlates of the age-related changes in motor
sequence learning and motor adaptation in older adults. Front Hum Neurosci. 2013; 7: 142. doi: 10.
3389/fnhum.2013.00142 PMID: 23616757

12. Bédard P, Sanes JN. Brain representations for acquiring and recalling visual-motor adaptations. Neuro-
image. Elsevier B.V. 2014; 101: 225–35. doi: 10.1016/j.neuroimage.2014.07.009 PMID: 25019676

13. Deluca C, Golzar A, Santandrea E, Lo Gerfo E, Eštočinová J, Moretto G, et al. The cerebellum and
visual perceptual learning: evidence from a motion extrapolation task. Cortex. 2014; 58: 52–71. doi: 10.
1016/j.cortex.2014.04.017 PMID: 24959702

14. Stewart JC, Tran X, Cramer SC. Age-related variability in performance of a motor action selection task
is related to differences in brain function and structure among older adults. Neuroimage. Elsevier Inc.;
2014; 86: 326–34. doi: 10.1016/j.neuroimage.2013.10.016 PMID: 24125791

15. Okamoto M, Dan I. Functional near-infrared spectroscopy for human brain mapping of taste-related
cognitive functions. J Biosci Bioeng. 2007; 103: 207–15. PMID: 17434422

16. Miyai I, Tanabe HC, Sase I, Eda H, Oda I, Konishi I, et al. Cortical mapping of gait in humans: a near-
infrared spectroscopic topography study. Neuroimage. 2001; 14: 1186–92. PMID: 11697950

17. Miyai I, Yagura H, Oda I, Konishi I, Eda H, Suzuki T, et al. Premotor cortex is involved in restoration of
gait in stroke. Ann Neurol. 2002; 52: 188–94. PMID: 12210789

18. Hiroyuki H, Hamaoka T, Sako T, Nishio S, Kime R, Murakami M, et al. Oxygenation in vastus lateralis
and lateral head of gastrocnemius during treadmill walking and running in humans. Eur J Appl Physiol.
2002; 87: 343–9. PMID: 12172872

19. Suzuki M, Miyai I, Ono T, Oda I, Konishi I, Kochiyama T, et al. Prefrontal and premotor cortices are
involved in adapting walking and running speed on the treadmill: an optical imaging study. Neuroimage.
2004; 23: 1020–6. PMID: 15528102

20. Harada T, Miyai I, Suzuki M, Kubota K. Gait capacity affects cortical activation patterns related to speed
control in the elderly. Exp brain Res. 2009; 193: 445–54. doi: 10.1007/s00221-008-1643-y PMID:
19030850

21. Subudhi AW, Dimmen AC, Roach RC. Effects of acute hypoxia on cerebral and muscle oxygenation
during incremental exercise. J Appl Physiol. 2007; 103: 177–83. PMID: 17431082

22. Subudhi AW, Miramon BR, Granger ME, Roach RC. Frontal and motor cortex oxygenation during maxi-
mal exercise in normoxia and hypoxia. J Appl Physiol. 2009; 106: 1153–8. doi: 10.1152/japplphysiol.
91475.2008 PMID: 19150853

23. Ide K, Horn A, Secher NH, Trangmar SJ, Chiesa ST, Stock CG, et al. Cerebral metabolic response to
submaximal exercise maximal exercise in trained humans maximal exercise in trained humans Cere-
bral metabolic response to submaximal exercise. 2014; 1604–1608.

24. Okamoto M, Dan H, Shimizu K, Takeo K, Amita T, Oda I, et al. Multimodal assessment of cortical acti-
vation during apple peeling by NIRS and fMRI. Neuroimage. 2004; 21: 1275–88. PMID: 15050555

25. Kuboyama N, Nabetani T, Shibuya K-I, Machida K, Ogaki T. The effect of maximal finger tapping on
cerebral activation. J Physiol Anthropol Appl Human Sci. 2004; 23: 105–10. PMID: 15314267

26. Kuboyama N, Nabetani T, Shibuya K, Machida K, Ogaki T. Relationship between Cerebral Activity and
Movement Frequency of Maximal Finger Tapping. J Physiol Anthropol Appl Human Sci. 2005; 24: 201–
208 PMID: 15930807

27. Ito M, Fukuda M, Suto T, Uehara T, Mikuni M. Increased and decreased cortical reactivities in novelty
seeking and persistence: a multichannel near-infrared spectroscopy study in healthy subjects. Neurop-
sychobiology. 2005; 52: 45–54. PMID: 15942263

Changes in Cerebral Hemodynamics during Complex Motor Learning

PLOS ONE | DOI:10.1371/journal.pone.0140552 October 20, 2015 10 / 13

http://www.ncbi.nlm.nih.gov/pubmed/16649206
http://www.ncbi.nlm.nih.gov/pubmed/16713203
http://www.ncbi.nlm.nih.gov/pubmed/16630747
http://www.ncbi.nlm.nih.gov/pubmed/16914982
http://dx.doi.org/10.1152/jn.01187.2007
http://www.ncbi.nlm.nih.gov/pubmed/18272874
http://dx.doi.org/10.3389/fnhum.2013.00142
http://dx.doi.org/10.3389/fnhum.2013.00142
http://www.ncbi.nlm.nih.gov/pubmed/23616757
http://dx.doi.org/10.1016/j.neuroimage.2014.07.009
http://www.ncbi.nlm.nih.gov/pubmed/25019676
http://dx.doi.org/10.1016/j.cortex.2014.04.017
http://dx.doi.org/10.1016/j.cortex.2014.04.017
http://www.ncbi.nlm.nih.gov/pubmed/24959702
http://dx.doi.org/10.1016/j.neuroimage.2013.10.016
http://www.ncbi.nlm.nih.gov/pubmed/24125791
http://www.ncbi.nlm.nih.gov/pubmed/17434422
http://www.ncbi.nlm.nih.gov/pubmed/11697950
http://www.ncbi.nlm.nih.gov/pubmed/12210789
http://www.ncbi.nlm.nih.gov/pubmed/12172872
http://www.ncbi.nlm.nih.gov/pubmed/15528102
http://dx.doi.org/10.1007/s00221-008-1643-y
http://www.ncbi.nlm.nih.gov/pubmed/19030850
http://www.ncbi.nlm.nih.gov/pubmed/17431082
http://dx.doi.org/10.1152/japplphysiol.91475.2008
http://dx.doi.org/10.1152/japplphysiol.91475.2008
http://www.ncbi.nlm.nih.gov/pubmed/19150853
http://www.ncbi.nlm.nih.gov/pubmed/15050555
http://www.ncbi.nlm.nih.gov/pubmed/15314267
http://www.ncbi.nlm.nih.gov/pubmed/15930807
http://www.ncbi.nlm.nih.gov/pubmed/15942263


28. Holper L, Biallas M, Wolf M. Task complexity relates to activation of cortical motor areas during uni- and
bimanual performance: a functional NIRS study. Neuroimage. Elsevier Inc.; 2009; 46: 1105–13. doi:
10.1016/j.neuroimage.2009.03.027 PMID: 19306929

29. Shibuya K, Kuboyama N. Human motor cortex oxygenation during exhaustive pinching task. Brain
Res. 2007; 1156: 120–4. PMID: 17543291

30. Kubo M, Shoshi C, Kitawaki T, Takemoto R, Kinugasa K, Yoshida H, et al. Increase in prefrontal cortex
blood flow during the computer version trail making test. Neuropsychobiology. 2008; 58: 200–10. doi:
10.1159/000201717 PMID: 19212135

31. Nakahachi T, Ishii R, Iwase M, Canuet L, Takahashi H, Kurimoto R, et al. Frontal cortex activation asso-
ciated with speeded processing of visuospatial working memory revealed by multichannel near-infrared
spectroscopy during Advanced Trail Making Test performance. Behav Brain Res. Elsevier B.V.; 2010;
215: 21–7. doi: 10.1016/j.bbr.2010.06.016 PMID: 20600348

32. Ohsugi H, Ohgi S, Shigemori K, Schneider EB. Differences in dual-task performance and prefrontal cor-
tex activation between younger and older adults. BMCNeurosci. BMC Neuroscience; 2013; 14: 10. doi:
10.1186/1471-2202-14-10 PMID: 23327197

33. Kikuchi S, Iwata K, Onishi Y, Kubota F, Nisijima K, Tamai H, et al. Prefrontal cerebral activity during a
simple “rock, paper, scissors” task measured by the noninvasive near-infrared spectroscopy method.
Psychiatry Res. 2007; 156: 199–208. PMID: 17976959

34. Yamauchi Y, Kikuchi S, Miwakeichi F, Matsumoto K, Nishida M, Ishiguro M, et al. Relation between
parametric change of the workload and prefrontal cortex activity during a modified version of the “rock,
paper, scissors” task. Neuropsychobiology. 2013; 68: 24–33. doi: 10.1159/000350948 PMID:
23774939

35. Miyata H, Watanabe S, Minagawa-Kawai Y. Two successive neurocognitive processes captured by
near-infrared spectroscopy: prefrontal activation during a computerized plus-shaped maze task. Brain
Res. Elsevier B.V.; 2011; 1374: 90–9. doi: 10.1016/j.brainres.2010.12.047 PMID: 21172310

36. Suto T, Fukuda M, Ito M, Uehara T, Mikuni M. Multichannel near-infrared spectroscopy in depression
and schizophrenia: cognitive brain activation study. Biol Psychiatry. 2004; 55: 501–11. PMID:
15023578

37. Amemiya K, Ishizu T, Ayabe T, Kojima S. Effects of motor imagery on intermanual transfer: a near-infra-
red spectroscopy and behavioural study. Brain Res. Elsevier B.V.; 2010; 1343: 93–103. doi: 10.1016/j.
brainres.2010.04.048 PMID: 20423702

38. Hatakenaka M, Miyai I, Mihara M, Sakoda S, Kubota K. Frontal regions involved in learning of motor
skill—A functional NIRS study. Neuroimage. 2007; 34: 109–16. PMID: 17067821

39. Ikegami T, Taga G. Decrease in cortical activation during learning of a multi-joint discrete motor task.
Exp brain Res. 2008; 191: 221–36. doi: 10.1007/s00221-008-1518-2 PMID: 18679662

40. Gentili RJ, Shewokis P a, Ayaz H, Contreras-Vidal JL. Functional near-infrared spectroscopy-based
correlates of prefrontal cortical dynamics during a cognitive-

41. eMarketer. eMarketer. Smartphone Users WorldwideWill Total 1.75 Billion in 2014. January 16, 2014.
Available: http://www.emarketer.com/Article/Smartphone-Users-Worldwide-Will-Total-175-Billion-
2014/1010536. Accessed 6 December 2014

42. Obrig H, Villringer A. Beyond the visible—imaging the human brain with light. J Cereb Blood Flow
Metab. 2003; 23: 1–18. PMID: 12500086

43. Hoshi Y, Kobayashi N, Tamura M. Interpretation of near-infrared spectroscopy signals: a study with a
newly developed perfused rat brain model. J Appl Physiol. 2001; 90: 1657–62. PMID: 11299252

44. Okamoto M, Dan H, Sakamoto K, Takeo K, Shimizu K, Kohno S, et al. Three-dimensional probabilistic
anatomical cranio-cerebral correlation via the international 10–20 system oriented for transcranial func-
tional brain mapping. Neuroimage. 2004; 21: 99–111 PMID: 14741647

45. Miyai I, Yagura H, Hatakenaka M, Oda I, Konishi I, Kubota K. Longitudinal optical imaging study for
locomotor recovery after stroke. Stroke. 2003; 34: 2866–70. PMID: 14615624

46. Kakei S, Hoffman DS, Strick PL. Muscle and movement representations in the primary motor cortex.
Science. 1999; 285: 2136–9. PMID: 10497133

47. Grafton ST, Hazeltine E, Ivry RB. Motor sequence learning with the nondominant left hand. A PET func-
tional imaging study. Exp brain Res. 2002; 146: 369–78. PMID: 12232693

48. Kuboyama N, Nabetani T, Shibuya K-I, Machida K, Ogaki T. The effect of maximal finger tapping on
cerebral activation. [Internet]. Journal of physiological anthropology and applied human science.
2004. pp. 105–10.

49. Roland PE, Larsen B, Lassen N a, Skinhøj E. Supplementary motor area and other cortical areas in
organization of voluntary movements in man. J Neurophysiol. 1980; 43: 118–36. PMID: 7351547

Changes in Cerebral Hemodynamics during Complex Motor Learning

PLOS ONE | DOI:10.1371/journal.pone.0140552 October 20, 2015 11 / 13

http://dx.doi.org/10.1016/j.neuroimage.2009.03.027
http://www.ncbi.nlm.nih.gov/pubmed/19306929
http://www.ncbi.nlm.nih.gov/pubmed/17543291
http://dx.doi.org/10.1159/000201717
http://www.ncbi.nlm.nih.gov/pubmed/19212135
http://dx.doi.org/10.1016/j.bbr.2010.06.016
http://www.ncbi.nlm.nih.gov/pubmed/20600348
http://dx.doi.org/10.1186/1471-2202-14-10
http://www.ncbi.nlm.nih.gov/pubmed/23327197
http://www.ncbi.nlm.nih.gov/pubmed/17976959
http://dx.doi.org/10.1159/000350948
http://www.ncbi.nlm.nih.gov/pubmed/23774939
http://dx.doi.org/10.1016/j.brainres.2010.12.047
http://www.ncbi.nlm.nih.gov/pubmed/21172310
http://www.ncbi.nlm.nih.gov/pubmed/15023578
http://dx.doi.org/10.1016/j.brainres.2010.04.048
http://dx.doi.org/10.1016/j.brainres.2010.04.048
http://www.ncbi.nlm.nih.gov/pubmed/20423702
http://www.ncbi.nlm.nih.gov/pubmed/17067821
http://dx.doi.org/10.1007/s00221-008-1518-2
http://www.ncbi.nlm.nih.gov/pubmed/18679662
http://www.emarketer.com/Article/Smartphone-Users-Worldwide-Will-Total-175-Billion-2014/1010536
http://www.emarketer.com/Article/Smartphone-Users-Worldwide-Will-Total-175-Billion-2014/1010536
http://www.ncbi.nlm.nih.gov/pubmed/12500086
http://www.ncbi.nlm.nih.gov/pubmed/11299252
http://www.ncbi.nlm.nih.gov/pubmed/14741647
http://www.ncbi.nlm.nih.gov/pubmed/14615624
http://www.ncbi.nlm.nih.gov/pubmed/10497133
http://www.ncbi.nlm.nih.gov/pubmed/12232693
http://www.ncbi.nlm.nih.gov/pubmed/7351547


50. Tanji J. New concepts of the supplementary motor area. Curr Opin Neurobiol. 1996; 6: 782–7. PMID:
9000016

51. Picard N, Strick P. Motor areas of the medial wall: a review of their location and functional activation.
Cereb cortex. 1996; 6: 342–53. PMID: 8670662

52. Nachev P, Kennard C, Husain M. Functional role of the supplementary and pre-supplementary motor
areas. Nat Rev Neurosci. 2008; 9: 856–69. doi: 10.1038/nrn2478 PMID: 18843271

53. Mita A, Mushiake H, Shima K, Matsuzaka Y, Tanji J. Interval time coding by neurons in the presupple-
mentary and supplementary motor areas. Nat Neurosci. 2009; 12: 502–7. doi: 10.1038/nn.2272 PMID:
19252498

54. Grafton ST, Mazziotta JC, Presty S, Friston KJ, Frackowick RS, Phelps ME. Functional Anatomy of
Human Procedural Learning Determined with Regional Cerebral Blood Flow and PET. J Neurosci.
1992; 12: 2542–48. PMID: 1613546

55. Toni I, Krams M, Turner R, Passingham RE. The time course of changes during motor sequence learn-
ing: a whole-brain fMRI study. Neuroimage. 1998; 8: 50–61. PMID: 9698575

56. Hund-Georgiadis M, von Cramon D. Motor-learning-related changes in piano players and non-musi-
cians revealed by functional magnetic-resonance signals. Exp brain Res. 1999; 125: 417–25. PMID:
10323287

57. Krings T, Töpper R, Foltys H, Erberich S, Sparing R, Willmes K, et al. Cortical activation patterns during
complex motor tasks in piano players and control subjects. A functional magnetic resonance imaging
study. Neurosci Lett. 2000; 278: 189–193. PMID: 10653025

58. Hatta A, Nishihira Y, Higashiura T, Kim SR, Kaneda T. Long-termmotor practice induces practice-
dependent modulation of movement-related cortical potentials (MRCP) preceding a self-paced non-
dominant handgrip movement in kendo players. Neurosci Lett. 2009; 459: 105–8. doi: 10.1016/j.neulet.
2009.05.005 PMID: 19427364

59. Lefebvre S, Dricot L, Gradkowski W, Laloux P, Vandermeeren Y. Brain activations underlying different
patterns of performance improvement during early motor skill learning. Neuroimage. Elsevier Inc.;
2012; 62: 290–9. doi: 10.1016/j.neuroimage.2012.04.052 PMID: 22569545

60. Wright DJ, Holmes PS, Di Russo F, Loporto M, Smith D. Differences in cortical activity related to motor
planning between experienced guitarists and non-musicians during guitar playing. HumMov Sci. Else-
vier B.V.; 2012; 31: 567–77. doi: 10.1016/j.humov.2011.07.001 PMID: 21899906

61. Whitmer AJ, Banich MT. Brain activity related to the ability to inhibit previous task sets: an fMRI study.
Cogn Affect Behav Neurosci. 2012; 12: 661–70. doi: 10.3758/s13415-012-0118-6 PMID: 22956332

62. Nakata H, Sakamoto K, Honda Y, Kakigi R. Somato-motor inhibitory processing in humans: evidence
from neurophysiology and neuroimaging. J Physiol Sci. 2014; 64: 233–52. doi: 10.1007/s12576-014-
0320-0 PMID: 24859317

63. Goldman-Rakic PS. Regional and cellular fractionation of working memory. Proc Natl Acad Sci U S A.
1996; 93: 13473–80. PMID: 8942959

64. Shallice T. Brain regions associated with acquisition and retrieval of verbal episodic memory. Nature.
1994; 368: 633–635. PMID: 8145849

65. Fletcher PC, Frith CD, Rugg MD. The functional neuroanatomy of episodic memory. Trends Neurosci.
1997; 20: 213–8. PMID: 9141197

66. Jenkins I, Brooks D, Nixon P, Frachowick S, Passingham R. Motor sequence learning: A Study with
Positron Emission Tomography. J Neurosci. 1994; 14: 3775–90. PMID: 8207487

67. Deiber MP, Wise SP, HondaM, Catalan MJ, Grafman J, Hallett M. Frontal and parietal networks for
conditional motor learning: a positron emission tomography study. J Neurophysiol. 1997; 78: 977–91.
PMID: 9307128

68. Debaere F, Wenderoth N, Sunaert S, Van Hecke P, Swinnen SP. Changes in brain activation during
the acquisition of a new bimanual coodination task. Neuropsychologia. 2004; 42: 855–67. PMID:
14998701

69. Floyer-Lea a, Matthews PM. Distinguishable brain activation networks for short- and long-term motor
skill learning. J Neurophysiol. 2005; 94: 512–8. PMID: 15716371

70. Leff DR, Elwell CE, Orihuela-Espina F, Atallah L, Delpy DT, Darzi AW, et al. Changes in prefrontal corti-
cal behaviour depend upon familiarity on a bimanual co-ordination task: an fNIRS study. Neuroimage.
2008; 39: 805–13. PMID: 17964187

71. James DRC, Leff DR, Orihuela-Espina F, Kwok K-W, Mylonas GP, Athanasiou T, et al. Enhanced fron-
toparietal network architectures following “gaze-contingent” versus “free-hand”motor learning. Neuro-
image. Elsevier Inc.; 2013; 64: 267–76. doi: 10.1016/j.neuroimage.2012.08.056 PMID: 22960153

Changes in Cerebral Hemodynamics during Complex Motor Learning

PLOS ONE | DOI:10.1371/journal.pone.0140552 October 20, 2015 12 / 13

http://www.ncbi.nlm.nih.gov/pubmed/9000016
http://www.ncbi.nlm.nih.gov/pubmed/8670662
http://dx.doi.org/10.1038/nrn2478
http://www.ncbi.nlm.nih.gov/pubmed/18843271
http://dx.doi.org/10.1038/nn.2272
http://www.ncbi.nlm.nih.gov/pubmed/19252498
http://www.ncbi.nlm.nih.gov/pubmed/1613546
http://www.ncbi.nlm.nih.gov/pubmed/9698575
http://www.ncbi.nlm.nih.gov/pubmed/10323287
http://www.ncbi.nlm.nih.gov/pubmed/10653025
http://dx.doi.org/10.1016/j.neulet.2009.05.005
http://dx.doi.org/10.1016/j.neulet.2009.05.005
http://www.ncbi.nlm.nih.gov/pubmed/19427364
http://dx.doi.org/10.1016/j.neuroimage.2012.04.052
http://www.ncbi.nlm.nih.gov/pubmed/22569545
http://dx.doi.org/10.1016/j.humov.2011.07.001
http://www.ncbi.nlm.nih.gov/pubmed/21899906
http://dx.doi.org/10.3758/s13415-012-0118-6
http://www.ncbi.nlm.nih.gov/pubmed/22956332
http://dx.doi.org/10.1007/s12576-014-0320-0
http://dx.doi.org/10.1007/s12576-014-0320-0
http://www.ncbi.nlm.nih.gov/pubmed/24859317
http://www.ncbi.nlm.nih.gov/pubmed/8942959
http://www.ncbi.nlm.nih.gov/pubmed/8145849
http://www.ncbi.nlm.nih.gov/pubmed/9141197
http://www.ncbi.nlm.nih.gov/pubmed/8207487
http://www.ncbi.nlm.nih.gov/pubmed/9307128
http://www.ncbi.nlm.nih.gov/pubmed/14998701
http://www.ncbi.nlm.nih.gov/pubmed/15716371
http://www.ncbi.nlm.nih.gov/pubmed/17964187
http://dx.doi.org/10.1016/j.neuroimage.2012.08.056
http://www.ncbi.nlm.nih.gov/pubmed/22960153


72. Awh E, Jonides J, Smith EE, Schumacher EH, Koeppe RA, Katz S. Dissociation of Storage and
Rehearsal in Verbal Working Memory: Evidence From Positron Emission Tomography. 1996. pp. 25–
31.

73. Herbster AN, Mintun MA, Nebes RD, Becker JT. Regional Cerebral Blood Flow DuringWord and Non-
word Reading. Hum Brain Mapp. 1997; 92: 84–92.

74. Opitz B, Mecklinger A, Friederici A. Functional asymmetry of human prefrontal cortex: encoding and
retrieval of verbally and nonverbally coded information. Learn Mem. 2000; 7: 85–96. PMID: 10753975

75. Floel A, Poeppel D, Buffalo EA, Braun A, Wu CW-H, Seo H, et al. Prefrontal Cortex Asymmetry for
Memory Encoding of Words and Abstract Shapes. Cereb Cortex. 2004; 14: 404–9. PMID: 15028644

76. Mushiake H, Inase M, Tanji J. Neuronal activity in the primate premotor, supplementary, and precentral
motor cortex during visually guided and internally determined sequential movements Neuronal Activity
in the Primate Premotor, Supplementary, and Precentral Motor Cortex During Vi. J Neurophysiol. 1991;
66: 705–18. PMID: 1753282

77. Murray E a, Bussey TJ, Wise SP. Role of prefrontal cortex in a network for arbitrary visuomotor map-
ping. Exp brain Res. 2000; 133: 114–29. PMID: 10933216

78. Hikosaka O, Sakai K, Miyauchi S, Takino R, Sasaki Y, Putz B. Activation of human presupplementary
motor area in learning of sequential procedures: a functional MRI study. J Neurophysiol. 1996; 76:
617–21. PMID: 8836248

79. Hanakawa T, Honda M, Sawamoto N, Okada T, Yonekura Y, Fukuyama H, et al. The Role of Rostral
Brodmann Area 6 in Mental-operation Tasks: an Integrative Neuroimaging Approach. Cereb Cortex.
2002; 12: 1157–70. PMID: 12379604

80. Leek EC, Johnston SJ. Functional specialization in the supplementary motor complex. Nat Rev Neu-
rosci. 2009; 10: 78; author reply 78. doi: 10.1038/nrn2478-c1 PMID: 19096371

81. Hardwick RM, Rottschy C, Miall RC, Eickhoff SB. A quantitative meta-analysis and review of motor
learning in the human brain. Neuroimage. Elsevier Inc.; 2013; 67: 283–97. doi: 10.1016/j.neuroimage.
2012.11.020 PMID: 23194819

82. Wilson TW, Kurz MJ, Arpin DJ. Functional specialization within the supplementary motor area: a fNIRS
study of bimanual coordination. Neuroimage. Elsevier Inc.; 2014; 85 Pt 1: 445–50. doi: 10.1016/j.
neuroimage.2013.04.112 PMID: 23664948

Changes in Cerebral Hemodynamics during Complex Motor Learning

PLOS ONE | DOI:10.1371/journal.pone.0140552 October 20, 2015 13 / 13

http://www.ncbi.nlm.nih.gov/pubmed/10753975
http://www.ncbi.nlm.nih.gov/pubmed/15028644
http://www.ncbi.nlm.nih.gov/pubmed/1753282
http://www.ncbi.nlm.nih.gov/pubmed/10933216
http://www.ncbi.nlm.nih.gov/pubmed/8836248
http://www.ncbi.nlm.nih.gov/pubmed/12379604
http://dx.doi.org/10.1038/nrn2478-c1
http://www.ncbi.nlm.nih.gov/pubmed/19096371
http://dx.doi.org/10.1016/j.neuroimage.2012.11.020
http://dx.doi.org/10.1016/j.neuroimage.2012.11.020
http://www.ncbi.nlm.nih.gov/pubmed/23194819
http://dx.doi.org/10.1016/j.neuroimage.2013.04.112
http://dx.doi.org/10.1016/j.neuroimage.2013.04.112
http://www.ncbi.nlm.nih.gov/pubmed/23664948

