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Abstract: Arterial stiffness is an important predictor of cardiovascular events, independent of
traditional risk factors. Stiffening of arteries, though an adaptive process to hemodynamic load,
results in substantial increase in the pulsatile hemodynamic forces that detrimentally affects the
microcirculation perfusing the vital organs such as the brain, heart and kidneys. Studies have
proposed that arterial stiffness precedes and may contribute to the development of hypertension in
individuals with obesity. Our study sought to determine the gender-based effects on arterial stiffening
in obesity which may predispose to the development of hypertension. We found female sex is
associated with higher susceptibility of weight-related arterial stiffening and rise in blood pressure in
obesity. Women had significantly higher carotid-femoral pulse wave velocity (CF-PWV) with higher
body mass index (BMI) status (normal: 7.9 ± 2 m/s; overweight: 9.1 ± 2 m/s; obese: 9 ± 2 m/s,
p < 0.001), whereas it was similar in males across all BMI categories. The linear association between
arterial stiffness and BMI following adjustment for age and brachial systolic and diastolic blood
pressure (BP), remained significant in females (β = 0.06; 95% CI 0.01 to 0.1; p < 0.05) but not in males
(β = 0.04; 95% CI −0.01 to 0.1; p > 0.05). The mean CF-PWV values increased by 0.1 m/s for every
1 kg/m2 increase in BMI in the female subjects in the age adjusted linear model, while such effect
was not seen in the male subjects. In line with arterial stiffening, the overweight and obese females
demonstrated significantly higher systolic brachial BP. (BP difference: ∆BP 9−11 mmHg, p < 0.01)
and central systolic pressure (∆BP 8−10 mmHg, p < 0.05) compared to their lean counterparts, unlike
the male subjects. Our results suggest that female gender is associated with higher susceptibility of
weight-related arterial stiffening and rise in blood pressure.

Keywords: obesity; hypertension; body mass index; pulse wave velocity; arterial stiffness

1. Introduction

Obesity is a pandemic on the fast track, associated with adverse cardiovascular (CV)
outcomes in both genders. Hypertension is an increasingly prevalent risk factor that often
coexists with obesity in both men and women, mostly attributable to the increasing obesity

J. Clin. Med. 2021, 10, 3479. https://doi.org/10.3390/jcm10163479 https://www.mdpi.com/journal/jcm

https://www.mdpi.com/journal/jcm
https://www.mdpi.com
https://orcid.org/0000-0002-9850-405X
https://orcid.org/0000-0002-8311-2010
https://orcid.org/0000-0001-6864-8514
https://orcid.org/0000-0002-5567-6206
https://orcid.org/0000-0003-4714-0206
https://doi.org/10.3390/jcm10163479
https://doi.org/10.3390/jcm10163479
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jcm10163479
https://www.mdpi.com/journal/jcm
https://www.mdpi.com/article/10.3390/jcm10163479?type=check_update&version=1


J. Clin. Med. 2021, 10, 3479 2 of 12

prevalence [1,2]. Recent trends reveal that ~70% of arterial hypertension is associated with
obesity [1]. Elevation in arterial stiffening is a marker of vascular target organ damage
(TOD) and has emerged as an independent predictor of future cardiovascular events [3,4].
Stiffening of the arterial wall and earlier return of the reflected pressure pulse wave are key
determinants for elevation in systolic blood pressure (BP) at the central level, resulting in
the detrimental CV outcomes independent of peripheral BP [3].

Arterial stiffness has been identified to precede and contribute to the development of
hypertension in the general population [5], and arterial stiffness mediated hemodynamic
changes have been implicated in the development and progression of hypertension [6,7].
The pathophysiological mechanisms that link obesity and arterial stiffening remain incom-
pletely understood. However, obesity is associated with vascular remodelling and stiffness
that has been shown to predict CV mortality and morbidity in obesity [8]. Mechanisms such
as insulin resistance, hyperleptinemia, enhanced inflammatory mediators such as uric acid
levels and free fatty acids in the circulation, as well as mechanical shear stress on arterial
walls owing to obesity mediated volume overload are some of the proposed mechanisms of
obesity-mediated vascular TOD [9–12]. Furthermore, obesity is associated with heightened
sympathetic activation [13], while reversal of arterial stiffening has been demonstrated in
parallel to the reduction in heart rate, following weight loss [14–16]. Moreover, reduced
elasticity has been observed in both central and peripheral arteries in obesity [17].

The risk of obesity–related hypertension is sex specific [18,19]. Population rates of
obesity are higher in women than men with its prevalence and severity being much higher
in women, across all nations despite the socioeconomic status [20]. In addition, emerging
data suggest a disproportionate impact of obesity on arterial hypertension and CV health
in women compared to men [21] with stronger association between hypertension and
obesity in women [22,23]. Moreover, women have higher lifetime risk of hypertension,
with obesity cited as the most significant risk factor [24]. Furthermore, adequate blood
pressure (BP) control is less likely to be achieved in obese women than men [25,26]. Hence,
our study sought to determine the association of sex with weight related vascular TOD in a
normal healthy cohort.

2. Methods:
2.1. Patient Cohort

We performed a cross-sectional analysis of prospectively collected data from 836
otherwise healthy individuals attending a health assessment clinic for CV disease screening
at Ruijin Hospital North, Shanghai, China, between December 2017 and September 2019.
Subjects with any history of occlusive arterial disease history such as myocardial infarction
or acute coronary syndrome, transient ischemic attack or stroke were excluded from the
study as were patients age <18 years of age. This study was performed in accordance with
the Declaration of Helsinki and the principles of Good Clinical Practice guidelines. All
patients provided written, informed consent to participate in this systematic prospective
data collection, which was approved by the Ethics Committee of Shangai Xuhui Central
Hospital, Shanghai (approval no: 2011-30).

2.2. Clinical Workup

All patients had their medical history taken, underwent physical examination and
collection of anthropometric data. Body height and weight were measured without shoes,
waist and hip circumferences were measured with a tape while standing; waist at mid-point
between the lowest rib margin and iliac crest, hip at the widest part of pelvis. Anthro-
pometric measures such as body mass index (BMI), ratio of waist-to-hip circumference
(WHR) and ratio of waist circumference to body height (WHtR) were calculated using
these anthropometrics data. The subjects had their BP measured at the right arm in supine
position using Omron device (BP-203RPEIII VP-1000 Kyoto, Japan), following 10 minutes
rest in a quiet room with a controlled temperature of 22 ◦C. Carotid femoral pulse wave
velocity (CF-PWV) was performed using SphygmoCor CVMS system (AtCor Medical Pty
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Ltd, Sydney, Australia) as per the manufacturer’s protocol in a supine position. Radial
artery pressure waveforms were recorded using the high-fidelity tonometer for at least
10 s, until a stable radial tonometric pressure trace was obtained. Using the SphygmoCor
CVMS system, these radial waves were calibrated to brachial cuff systolic and diastolic
pressure, derived to central aortic pressure waveforms using a validated transfer function
that averaged over 10 cardiac cycles to account for respiratory variation and the central
pressure indices such as the central systolic and diastolic pressure, end systolic pressure,
systolic ejection duration, and central augmentation index were calculated as per the
manufacturer’s protocol.

Biochemistry: All biochemical analysis was performed in hospital/clinic laboratory
using standard methods and reagents. Full blood count, fasting glucose, lipid profile:
total cholesterol (TC), triglycerides (TGL), high-density lipoproteins (HDL); renal: blood
urea nitrogen, creatinine; and liver parameters: alanine transaminase (ALT), aspartate
transaminase (AST) and gamma-glutamyl transferase (GGT) were determined from the
same fasting venous blood samples. Serum uric acid was used as a marker of vascular
inflammation [27]. LDL- cholesterol was calculated using Friedewald formula.

2.3. Statistical Analysis

In the cross-sectional study, all continuous variables were expressed as mean ± SD.
We used one-way ANOVA and post hoc analysis, where significant to present the clinical
features, anthropometric measures, arterial and biochemical parameters across the BMI
groups. Regression models, adjusted for age, brachial systolic and diastolic BP and blood
glucose were used to assess the gender based effect on the association of BMI with CF-
PWV. Linear predictive margin analysis was used to determine the influence of gender on
CF-PWV in the age-adjusted model. Pearson’s correlation analysis was used to analyse the
gender-based associations of the central anthropometric measures with arterial pressure
indices. A p value of < 0.05 was considered to be of statistical significance. Statistical analy-
ses were performed using Stata/SE 15.1 for Windows (STATACorp LLC, College Station,
TX, USA).

3. Results
3.1. Baseline Characteristics

The clinical characteristics of the study population (n = 834) are shown in Table 1. The
mean ± SD age of participants was 54 ± 15 years and there was a greater proportion of
males (n = 525, 63%) than females (n = 309, 37%). The cohort had an average height of
168 ± 8.7 cm, weight 72 ± 14kg and BMI of 29.2 ± 11 kg/m2. The brachial BP averaged
134/77 mmHg, central BP averaged 122/78 mmHg and the CF-PWV averaged 8.5 m/s.
Subjects were stratified into 3 groups on the basis of their BMI according to WHO rec-
ommendations in the Chinese population-calculated as the weight in kilograms divided
by height in meters squared (kg/m2) (BMI < 24 kg/m2: lean; 24−28 kg/m2: overweight,
≥28 kg/m2: obese). The study cohort included smokers (n = 46, 6%), type 2 diabetics (n = 2,
0.2%), BP controlled on antihypertensives (n = 158, 19%), participants who consumed
alcohol (n = 466, 56%) and those on aspirin (n = 4, 0.5%) and statins (n = 5, 0.6%). Three
hundred and six subjects (37%) had normal weight with 142 males (46%) and 164 females
(53%), 345 were overweight (41%) with 244 males (71%) and 100 females (29%), 183 were
obese (22%) with 138 males (75%) and 45 females (25%). Subject characteristics grouped by
their BMI, age and sex are shown in Tables 1 and 2.
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Table 1. General characteristics of the study participants (mean ± SD).

Study Participants BMI < 24 BMI 24–28 BMI > 28 p Value between
BMI Class

n 834 306 345 183
Age (years) 54 (14) 55 (16) 55 (15) 51 (14)

Anthropometrics
BMI 25.5 (4) 22 (2) 26 (1) 31 (3)

WC (cm) 91 (11) 83 (8) 92 (7) 102 (10) p < 0.001
HC (cm) 98 (7) 93 (5) 98 (5) 105 (7) p < 0.001

WHR 0.93 (0.08) 0.90 (0.08) 0.94 (0.07) 0.97 (0.08) p < 0.001
WHtR 0.55 (0.06) 0.5 (0.05) 0.55 (0.04) 0.6 (0.06) p < 0.001

Arterial parameters
CF PWV (m/s) 8.5 (2.1) 8.2 (2.2) 8.6 (2.2) 8.6 (2.2) p < 0.001

Brachial SP (mmHg) 134 (19) 131 (20) 135 (19) 135 (16) p < 0.01
Brachial DP (mmHg) 77 (12) 73(12) 78 (12) 79 (11) p < 0.001
Brachial PP (mmHg) 57 (14) 57 (15) 57 (13) 56 (13) p < 0.001
Central SP (mmHg) 122 (19) 120 (20) 124 (20) 122 (16) p < 0.05
Central DP (mmHg) 78 (12) 75 (12) 79 (13) 81 (11) p < 0.001
Central PP (mmHg) 44 (13) 45 (14) 44 (13) 41 (12) p = 0.0643

MAP (mmHg) 97 (14) 94 (15) 99 (15) 99 (13) p < 0.001
CAIx (%) 139 (26) 28 (12) 26 (12) 21 (13) p < 0.001

Systolic ejection duration 315 (26) 320 (25) 315 (24) 307 (27) p < 0.001
End systolic pressure 110 (18) 107 (18) 111 (18) 110 (15) p < 0.05

Biochemical Parameters
Plasma glucose (mmol/L) 5.86 (1.9) 5.6 2 (1.7) 5.95 (1.8) 6.03 (2) p < 0.05

Liver profile
Alanine transaminase (ALT) 28.1 (27.8) 20 (11) 29 (19.7) 36.9 (23.4) p < 0.001

Aspartate transaminase (AST) 25.6 (22.8) 22 (8.9) 26.8 (25.6) 29.5 (31) p < 0.001
Gamma-glutamyl transferase 38.2 (36.9) 26.1 (24) 40 (33) 54.7 (52) p < 0.001

Renal profile
Blood urea nitrogen (BUN) 6.1 (12.5) 6.7 (20) 5.8 (3.8) 5.6 (1.5) p = 0.458

Creatinine 79 (37.5) 78 (55.6) 79.33 (23) 79 (16.6) p = 0.814
Lipid Profile

Total Cholesterol (TC) 4.8 (1.13) 4.7 (1.1) 4.8 (1.2) 4.7 (1.2) p = 0.644
Triglycerides (TGL) 2 (2.5) 1.5 (0.9) 2.23 (3.4) 2.4 (2.4) p < 0.05

Low density lipoprotein (LDL)
High density 3.4 (6.3) 3.1 (0.9) 3.8 (9.6) 3.3 (2.3) p = 0.897

lipoprotein (HDL) 1.2 (0.5) 1.2 (0.4) 1.1 (0.7) 1.1 (0.4) p < 0.005
Inflammatory marker:

Uric acid (µmol/L) 359.4 (100.1) 321.9 (92.5) 374 (98) 394.39 (96.6) p < 0.001

Table 1. Continuous clinical characteristics of the patient cohort. Data are given as mean ± SD. BMI, body mass index; WC, waist
circumference; HC, hip circumference, WHR, waist–hip ratio; WHtR, waist–height ratio; CF PWV, carotid femoral pulse wave velocity; SP,
systolic blood pressure; DP, diastolic blood pressure; PP, pulse pressure; MAP, mean arterial pressure; AIx; augmentation index.
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Table 2. Arterial parameters (mean ± SD) grouped by age and sex (males and females).

Gender Arterial
Parameters BMI Classes

Age in Years p Value b/w
BMI Classes

Post-hoc Analysis
(Lean vs. Others BMI Classes)

p Value b/w
Gender10–30 31–50 51–70 >71

n 32 331 379 92

Male CF PWV lean 6.6 (1.1) 7.4 (1.4) 9.0 (2.4) 10.5 (0.0)

p = 0.21 NS

p = 0.88

overweight 7.6 (0.2) 7.7 (1.5) 9.0 (2.0) 10.4 (2.7)

obese 7.1 (2.2) 8.3 (1.5) 9.1 (2.0) 9.8 (1.7)

p = 0.82 p < 0.005 p = 0.90 p = 0.76

Female lean 5.5 (1.1) 7.2 (1.7) 8.2 (1.6) 10.2 (1.9)

p < 0.005overweight 6.4 (0.5) 7.3 (0.8) 9.2 (1.9) 12.0 (3.5) p < 0.005

obese 6.3 (0.2) 7.7 (1.4) 9.1 (2.3) 11.3 (1.9) p < 0.005

p = 0.36 p = 0.67 p < 0.005 p = 0.25

Male Brachial SP lean 133 (4.5) 131 (17.5) 136 (16.9) 135 (17.8)

p = 0.78 NS

p < 0.05

overweight 143 (10.9) 131 (18) 137 (20) 135 (18.4)

obese 142 (20.2) 133 (14.1) 137 (17.0) 125 (15.0)

p = 0.70 p = 0.56 p = 0.93 p = 0.32

Female lean 116 (15.4) 123 (20.1) 129 (17.1) 148 (30.1)

p < 0.005overweight 125 (18.7) 128 (19.5) 143 (18.1) 143 (26.1) p < 0.005

obese 114 (12.7) 137 (16.8) 139 (18.7) 138 (7.9) p < 0.05

p = 0.68 p = 0.16 p < 0.005 p = 0.74

Male Brachial DP lean 77 (11.8) 77 (13.5) 79 (9.9) 70 (8.5)

p = 0.12 NS

p < 0.005

overweight 81 (7.0) 79 (12.5) 78 (11.7) 73 (11.3)

obese 79 (14.8) 82 (11.7) 81 (10.0) 64 (7.2)

p = 0.94 p = 0.16 p = 0.50 p = 0.62

Female lean 70 (7.9) 72 (14.3) 71 (10.6) 75 (14.4)

p < 0.001overweight 74 (20.9) 79 (13.0) 79 (13.0) 73 (10.5) p < 0.005

obese 68 (13.4) 81 (9.4) 79 (9.1) 75 (6.0) p < 0.005

p = 0.81 p = 0.07 p < 0.005 p = 0.89
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Table 2. Cont.

Gender Arterial
Parameters BMI Classes

Age in Years p Value b/w
BMI Classes

Post-hoc Analysis
(Lean vs. Others BMI Classes)

p Value b/w
Gender10–30 31–50 51–70 >71

Male Central SP lean 118 (11.4) 118 (19.2) 126 (16.0) 124 (19.1)

p = 0.94 NS

p = 0.25

overweight 125 (6.0) 119 (19.0) 126 (19.2) 123 (20.1)

obese 120 (16.9) 120 (13.5) 125 (16.5) 110 (13.0)

p = 0.82 p = 0.77 p = 0.94 p = 0.14

Female lean 104 (16.1) 114 (21.4) 119 (16.8) 138 (29.8)

p < 0.05overweight 112 (21.0) 118 (20.0) 132 (17.4) 130 (25.0) p < 0.005

obese 99 (17.7) 123 (18.6) 128 (19.6) 128 (8.4) p < 0.05

p = 0.68 p = 0.37 p < 0.005 p = 0.62

Male Central DP lean 78 (11.9) 78 (13.7) 80 (10.0) 71 (8.6)

p = 0.13 NS

p < 0.05

overweight 82 (7.1) 80 (12.8) 79 (12.0) 74 (11.5)

obese 80 (15.0) 83 (11.7) 82 (10.2) 65 (7.8)

p = 0.95 p = 0.08 p = 0.44 p = 0.07

Female lean 71 (8.1) 74 (14.6) 72 (10.8) 76 (14.8)

p < 0.001overweight 76 (21.5) 80 (13.1) 80 (13.1) 73 (11.0) p < 0.005

obese 69 (12.7) 83 (9.5) 80 (9.4) 76 (5.8) p < 0.005

p = 0.80 p = 0.06 p < 0.005 p = 0.86

Data are given as mean ± SD. CF PWV, carotid femoral pulse wave velocity; SP, systolic blood pressure; DP, diastolic blood pressure; BMI, body mass index (kg/m2 ); lean, BMI < 24; overweight, BMI 24–28;
obese, BMI > 28.
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3.2. Association of the Female Gender with Obesity Mediated Vascular TOD

Aortic stiffness was assessed by CF-PWV (m/s) across the BMI groups in both genders.
PWV was high in overweight and obese females compared to their lean counterparts
(normal BMI: 7.9 ± 2 m/s; overweight: 9.1 ± 2 m/s; obese: 9 ± 2 mmHg, p < 0.001)
whereas it was similar in males across all BMI categories: normal BMI: 8.7 ± 2.4 m/s;
overweight: 8.5 ± 2.1 m/s; obese: 8.5 ± 2 m/s. Linear regression analysis showed that
the weight is significantly associated with CF PWV in females (β = 0.02; 95% CI 0.004 to
0.04; p < 0.05) but not in males (β = 0.01; 95% CI −0.004 to 0.02; p > 0.05) in the age and
BP adjusted model. The linear association between arterial stiffness and BMI following
adjustment for age and brachial systolic and diastolic BP, remained significant in females
(β = 0.06; 95% CI 0.01 to 0.1; p < 0.05) but not in males (β = 0.04; 95% CI −0.01 to 0.1;
p > 0.05). Similarly, the association between arterial stiffness and BMI following adjustment
for age and blood glucose levels remained significant in females (β = 0.06; 95% CI 0.01 to
0.1; p < 0.05) but not in males (β = 0.05; 95% CI −0.002 to 0.1; p > 0.05). In the same model,
serum uric acid (UA) levels, measured as an indicator of the pro-inflammatory milieu, was
significantly associated with CF-PWV in female subjects (CF PWV: β = 0.003; 95% CI 0.00
to 0.005; p < 0.05) whereas this was not the case in male subjects (CF PWV: β = 0.002; 95%
CI −0.00 to 0.03; p > 0.05).

The peripheral and central systolic BP levels were significantly elevated in the higher
BMI ranges in females whereas no such differences were observed in the males with higher
BMI. The brachial systolic BP was significantly higher in overweight (BP difference: ∆ SBP
11 mmHg, p < 0.001) and obese (∆ SBP 9 mmHg, p < 0.001) females compared to their
lean counterparts, while brachial BP remained the same across the different BMI groups in
males (Tables 1 and 2). Similarly, the central systolic BP was significantly (p < 0.05) higher
in overweight (∆SBP 10 mmHg) and obese (∆SBP 8 mmHg) females compared to those in
normal weight group, and no change was observed in the male subjects with higher BMI
(Tables 1 and 2). Predictive margin analysis revealed that in female subjects, every 1 kg/m2

increase in BMI was associated with an increase in PWV of 0.1m/s (Figure 1). No effect of
BMI and PWV was observed in males.
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Figure 1. Age adjusted linear regression model with predictive margins to determine the association of BMI with arterial
stiffening, measured by carotid-femoral pulse wave velocity (CF-PWV) in the study cohort. Predictive margin analysis
indicated a PWV increase of 0.1m/s with every 1 kg/m2 increase in BMI with female subjects whereas this effect was not
seen in male subjects.

3.3. Gender Based Associations of Central Anthropometric Measures with Arterial Damage

The influence of gender on the association of central anthropometric measures such as
the waist–hip ratio (WHR) and waist–height ratio (WHtR) with arterial damage and BP
elevation was assessed using correlation analysis. Pearson’s correlation showed that WHR
and WHtR significantly correlated with CF-PWV in both males (p < 0.005) and females
(p < 0.001) (Table 3). However, the central anthropometric measures significantly correlated
with the central (WHR, r = 0.196, p < 0.005; WHtR, r = 0.271, p < 0.001) and peripheral
(WHR, r = 0.202, p < 0.005; WHtR, r = 0.291, p < 0.001) systolic BP in the female subjects
only and not in the males as shown in Table 3.

Table 3. Correlation analysis of WHR and WHeightR with pressure wave indices in males and
females.

Central Anthropometric
Measures WHR WHtR

M F M F

CF PWV (m/s)
p = 0.004 p = 0.000 p = 0.003 p = 0.000
r = 0.145 r = 0.386 r = 0.145 r = 0.412

Brachial SP (mmHg) p = 0.372 p = 0.001 p = 0.063 p = 0.000
r = −0.044 r = 0.202 r = 0.201 r = 0.291

Brachial PP (mmHg) p = 0.651 p = 0.008 p = 0.55 p = 0.002
r = −0.022 r = 0.166 r = −0.029 r = 0.198

Central SP (mmHg) p = 0.146 p = 0.002 p = 0.54 p = 0.000
r = −0.072 r = 0.196 r = 0.03 r = 0.271

Central PP (mmHg) p = 0.239 p = 0.00 p = 0.109 p = 0.003
r = −0.058 r = 0.174 r = −0.079 r = 0.185

Central MAP (mmHg) p = 0.149 p = 0.023 p = 0.127 p = 0.000
r = −0.071 r = 0.143 r = 0.075 r = 0.234

CF-PWV, carotid femoral pulse wave velocity; SP, systolic blood pressure; DP, diastolic blood pressure; PP, pulse
pressure; MAP, mean arterial pressure; WHR, waist–hip ratio; WHtR, waist–height ratio.

4. Discussion

In our study of the evaluation of sex related differences of obesity mediated vascular
TOD in the Chinese cohort, body fat measures were strongly associated with aortic stiffness
in females with significant positive association with the central and peripheral systolic BP
compared to their male counterparts. The CF-PWV increased linearly with BMI - every
1 kg/m2 increase in BMI was associated with 0.1m/s increase in CF-PWV in female subjects
whereas no such effect was observed in male subjects. These results demonstrate that
excess body weight in females is associated with increased risk of vascular TOD, with



J. Clin. Med. 2021, 10, 3479 9 of 12

the female gender being more susceptible to the development of hypertension in obesity,
compared to the male counterparts.

In addition, the uric acid levels, taken as an indicator of a pro-inflammatory milieu [27]
were significantly associated with aortic stiffness in obese females (Table 3). The central
anthropometric measures (WHR and WHtR) of abdominal obesity have been proposed
to be better predictors of hemodynamic compromise and CV events [28–30]. Our find-
ing demonstrated a significant correlation between WHR and WHtR with CF-PWV as
well as central and brachial BP in females, unlike the male counterparts whose central
anthropometric measures correlated only with aortic stiffness and not with pressure indices
(Table 3).

Women are perceived to be protected from hypertension until menopausal ages [31].
This perceived dogma however, may be restricted to premenopausal lean women as
hypertension is more heavily associated with increased BMI in obese young women [21,32].
The protection from the female sex hormones is possibly lost in obesity. Though carotid
distensibility decreased with increasing BMI in both sexes at younger age [33], the PWV
increased with higher BMI in middle-aged and older women but not in men [34]. Moreover,
obesity associated insulin resistance and prediabetes ablates the cardio-protective effects
of female sex hormones for both coronary heart disease and hypertension [35]. Data
from studies are suggestive of desensitization effect of female sex hormones and the
associated CV protective effects in obesity. In addition to the desensitisation of the oestrogen
mediated vasoprotective effects in obesity, the male hormones, notably testosterone, are
high in circulation of obese women, which further enhances the risk of CV morbidity [36].
Obesity induced insulin resistance is a stronger CV risk determinant in women compared
to men [36]. The high fasting insulin levels associated with obesity mediated insulin
resistance, in turn determine arterial stiffness and CV outcomes in women than men [36],
while increasing insulin resistance was associated with greater increase in arterial stiffness
in women and not in men [37].

The Proposed Mechanism Predisposing the Female Gender to Obesity-Related Hypertension
Compared to the Males

The renin angiotensin aldosterone system (RAAS) is an important regulator of vascular
tone and BP, contributing to obesity related hypertension in a sex discrepant manner. The
RAAS plays a significant role in the development of vascular remodelling and vascular
TOD in obesity-associated hypertension in both men and women [38,39]. RAAS activation
yields angiotensin II (Ang II), a potent vasoconstrictor and salt-retaining hormone and
Ang II also stimulates adrenal aldosterone production through the canonical pathway,
both of which are known to play a role in vascular remodelling [40]. The sex specificity
of obesity-mediated RAAS activation is less explored. Healthy women subjects exhibited
an unfavourable heart rate variability response (a measure of cardiac autonomic tone)
and increased arterial stiffness to angiotensin II infusion whilst the male counterparts
demonstrated an opposite effect [36] and the disruption of the non-canonical RAAS, Ang
(1–7) pathway was identified to play a role in obesity-associated hypertension in obese
female mice [41].

Increased aldosterone has been associated with hypertension and vascular dysfunc-
tion in obesity in males and females, outside of its role of renal sodium retention [42,43].
Aldosterone levels increase with parallel increase in adipose tissue and BMI more so in
females than in males [44]. Moreover, adipocyte derived leptin stimulates aldosterone pro-
duction, which promoted vascular dysfunction [45]. Female leptin-sensitive mice exhibited
increased aldosterone levels, an effect that was absent in male counterparts, suggesting
that females are specifically prone to leptin-induced aldosterone secretion in a sex-specific
manner [45,46]. Studies in female animal models have demonstrated that vascular dys-
function and hypertension in obesity are mediated by leptin induced aldosterone secretion,
whereas such an effect was not observed in, the male counterparts indicating that female
gender is more prone to the development of leptin-mediated aldosterone induced vas-
cular dysfunction and hypertension in females [47]. To note, obesity is often associated
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with hyperleptinemia [48]. This in line with the studies that have reported antagonism
of aldosterone receptor (mineralocorticoid receptor) is more efficacious as a therapeutic
cardiovascular regimen in women compared to men [49,50].

5. Conclusions

While much of the mechanistic studies are restricted to animal models, more research
is required to delineate the causal pathways that predispose female gender to increased
risk of obesity mediated vascular TOD in human subjects. From a clinical perspective,
overweight and obesity in females is associated with increased CV risk resulting from
arterial stiffening and higher BP, which may predispose to the development of obesity
related hypertension compared to the overweight and obese male subjects. Though several
possible mechanisms predisposing the female gender to increased obesity mediated arterial
stiffening and hypertension have been proposed, clearly future studies are needed, looking
into the specific causal mechanisms that could potentially guide gender specific clinical
management of obesity related hypertension.

Limitations

There are several limitations to be acknowledged in the current study. Firstly, this is a
cross sectional study and there is the possibility of selection bias and we had no data on the
menopausal status in female participants. Moreover, the relatively low number of certain
subgroups, may lead to an underestimation of effects. The causal mechanisms such as
RAAS activation, insulin resistance and others were not explored due to limited resources.
However, this study included an otherwise healthy cohort to study vascular TOD using
CF-PWV, a gold standard assessment of aortic stiffness that could provide us with robust
data and which have advantages in terms of its general applicability in clinical settings.
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