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A B S T R A C T The mechanism of b a s o l a t e r a l  m e m b r a n e  b a s e  transport was  

examined in the in vitro microperfused rabbit proximal convoluted tubule 
(PCT) in the absence and presence of ambient COs/HCO; by means of the 
microfluorometric measurement of cell pH. The buffer capacity of the cells 
measured using rapid NHs washout was 42.8 4- 5.6 mmol.liter -t .pH unit -~ in 
the absence and 84.6 4- 7.3 mmol.liter-~.pH unit -~ in the presence of COs/ 
HCOL In the presence of CO~/HCOL lowering peritubular pH from 7.4 to 
6.8 acidified the cell by 0.30 pH units and lowering peritubular Na from 147 
to 0 mM acidified the cell by 0.25 pH units. Both effects were inhibited by 
peritubular 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonate (SITS). In the 
absence of exogenous CO2/HCO~', lowering peritubular pH from 7.4 to 6.8 
acidified the cell by 0.25 pH units and lowering peritubular Na from 147 to 0 
mM decreased cell pH by 0.20 pH units. Lowering bath pH from 7.4 to 6.8 
induced a proton flux of 643 4. 51 pmol.mm-~-min -~ in the presence of 
exogenous COdHCOg and 223 4- 27 pmol.mm -~ .rain -~ in its absence. Low- 
ering bath Na from 147 to 0 mM induced proton fluxes of 596 3= 77 pmol. 
mm-~.min -~ in the presence of exogenous CO~/HCO~- and 147 4- 13 pmol. 
mm -I .rain -~ in its absence. The cell acidification induced by lowering bath pH 
or bath Na in the absence of COs/HCO~" was inhibited by peritubular SITS or 
by acetazolamide, whereas peritubular amiloride had no effect. In the absence 
of exogenous CO2/HCOL cyanide blocked the cell acidification induced by 
bath Na removal, but was without effect in the presence of exogenous COs/ 
HCO~. We reached the following conclusions. (a) The basolateral Na/base,>~ 
cotransporter in the rabbit PCT has an absolute requirement for CO~/HCOg. 
(b) In spite of this CO2 dependence, in the absence of exogenous CO~/HCOL 
metabolically produced CO~/HCOg is sufficient to keep the transporter running 
at 30% of its control rate in the presence of ambient CO2/HCOL (c) There is 
no apparent amiloride-sensitive Na/H antiporter on the basolateral membrane 
of the rabbit PCT. 
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INTRODUCTION 

The mammalian proximal convoluted tubule (PCT) reabsorbs 80% of the filtered 
bicarbonate. Most of this bicarbonate reabsorption depends on two Na-depend- 
ent mechanisms, one on each side of the proximal tubule cell: an amiloride- 
sensitive Na/H antiporter on the apical membrane, and a recently described, 
stilbene-inhibitable, electrogenic Na/base cotransporter on the basolaterai mem- 
brane. This latter transport system, first described in the salamander (Boron and 
Boulpaep, 1983), has now been found in the rat (Alpern, 1985; Yoshitomi et al., 
1985) and rabbit PCT (Sasaki et ai., 1985; Biagi and Sothell, 1986), in basolateral 
membrane vesicles from the rabbit renal cortex (Akiba et ai., 1986a; Grassl and 
Aronson, 1986), in bovine corneal endothelial cells (Jentsch et ai., 1984), and in 
a kidney epithelial cell line from the monkey (BSC-1; Jentsch et al., 1985). It has 
not been resolved whether the mechanism of  Na/base exit is Na/HCO3 or Na/ 
OH cotransport (or, equivalently, Na/H antiport). Because it is not possible to 
eliminate CO~/HCO~ in vivo, in vitro studies are needed to differentiate among 
these possibilities. 

A basolateral membrane amiloride-sensitive Na/H antiporter has been de- 
scribed in the salamander PCT (Boron and Boulpaep, 1983), but could not be 
found in rabbit cortical basolateral membrane vesicles (Ires et al., 1983) and in 
in vitro perfused $3 segments of  the rabbit PCT (Nakhoul and Boron, 1985). In 
rabbit basolateral membrane vesicles, 2~Na uptake was stimulated by pH gradients 
in the absence of CO2/HCO~, but at a much slower rate than in its presence (5- 
20%), which raises the possibility that the Na/base cotransporter can transport 
HCOg and/or  OH-  (Grassl and Aronson, 1986). 

The purposes of our studies were therefore (a) to examine the mechanisms of 
basolateral Na-coupled base exit in the rabbit PCT, (b) to determine the COz/ 
HCO~ dependence of the base exit step, and (c) to confirm the presence or 
absence of a basolaterai membrane Na/H antiporter in the rabbit PCT. To 
examine these questions, we have adapted the technique of measuring intracel- 
l ular pH using the pH-sensitive dye (2',7')-bis-(carboxyethyl)-(5,6)-carboxyflu- 
orescein (BCECF) to the in vitro microperfused rabbit PCT. The results dem- 
onstrate that the basolateral membrane of the rabbit PCT contains an Na/HCO~ 
cotransporter with an absolute requirement for CO~/HCO~. In spite of this CO2 
dependence, the cotransporter is able to run at approximately one-third of its 
control rate in the absence of exogenous CO~ (utilizing metabolic CO2). There 
is no detectable amiloride-sensitive Na/H antiporter on this membrane. 

Portions of this work have been presented previously and have appeared in 
abstract form (Krapf et al., 1987). 

METHODS 

In this study, the technique of in vitro microperfusion of isolated rabbit PCT, as previously 
described (Burg et al., 1966), was used. Kidneys from New Zealand white rabbits, killed 
by decapitation, were quickly removed and cut into thin (~ 1 mm) coronal slices. Cortical 
PCT ($1 and $2 segments) were dissected in the cooled (4~ solution of the respective 
experiment (Table I). Late PCT, as identified by their attachment to straight tubules, 
were not used. The tubules were transferred to a bath chamber with a volume of ~150 
#1. The bath fluid was continuously exchanged at ~10 ml/min by hydrostatic pressure. 
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With this setup, a complete bath fluid exchange could be achieved within ~ 1 s. This was 
confirmed when solutions were changed from a control solution to one containing a 
fluorescent dye (BCECF salt; see below). The bath pH was continuously monitored by 
placing a flexible commercial pH electrode (MI 21960, Microelectrodes, Inc., London- 
derry, NH) into the bath. The bath solutions were preheated to 38~ and equilibrated 
with appropriate gasses (see Table I). Another water bath, placed just before the bath 
chamber, permitted adjustment of the bath temperature to a constant 38 + 0.5 ~ C. 

The perfusion solutions used in this study are listed in Table I. CO2/HCO~-free 
solutions were bubbled with 100% Or passed through a 3-N KOH COt trap. The protocol 
that excluded exogenous COr/HCO~ was always performed first, when the effects of the 
absence or presence of exogenous COr/HCO~ were compared to ensure the absence of 
COJHCO~-. SITS was obtained from ICN Pharmaceuticals (Cleveland, OH). Amiloride, 
nigericin, and acetazolamide were purchased from Sigma Chemical Co. (St. Louis, MO). 

After the tubules were allowed to equilibrate at 38~ for 15 min, they were loaded 
with the acetoxymethyl derivative of BCECF (BCECF-AM; Molecular Probes, Inc., 
Eugene, OR), This compound does not fluoresce and is lipid soluble. It therefore diffuses 
rapidly into the cells, where cytoplasmic esterases cleave off the acetoxymethyl group, 
forming the fluorescent BCECF, which leaves the cells only slowly owing to its anionic 
charges. The tubules were loaded for 5-8 min. Since the intracellular cleavage of ester 
bonds constitutes an acid load to the cell, the first fluorescence measurements were made 
no earlier than 5 min after loading the tubules. During the performance of these studies, 
we found that the tubules could be loaded from the lumen (dye concentration, 100 #M) 
as well as from the bath (dye concentration, 4 #M). Loading from the bath yielded, on 
average, a higher signal-to-background ratio than loading from the lumen. The intracel- 
lular calibration curve of the dye (see below) was similar in tubules loaded from the lumen 
(n = 8) and from the bath (n = 4). 

Cell pH Measurement 

Measurements were made with an inverted fluorescent microscope (Fluovert, E. Leitz, 
Inc., Rockleigh, N J) using a 25• objective. An adjustable measuring diaphragm was placed 
over the tubule and opened to ~40-70 #mr. Within this range, no difference in the 
reliability of the data was observed. The average tubule length exposed to the bath fluid 
was 300-400 #m. Background fluorescence was measured before loading the tubule with 
the dye. After this measurement, the measuring diaphragm was left in the same place for 
the entire experiment. The signal-to-background ratio at the end of the experiments 
varied from ~25 to 200 at 500 nm excitation and from ~15 to 120 at 450 nm excitation 
(see analysis below). 

Analysis 

BCECF has a peak excitation at 504 nm that is pH sensitive, and an isosbestic point at 
436 nm, where fluorescence is independent of pH. Peak emission is at 526 nm (Aipern, 
1985). Fluorescence was measured, as previously described (AIpern, 1985), alternately at 
500 and 450 nm excitation and at an emission wavelength of 530 nm (interference filters, 
Corion Corp., Holliston, MA). After correcting all measurements for background, the 
mean of two 500-nm excitation measurements was divided by the 450-nm excitation 
measurement between them, thereby yielding the fluorescence excitation ratio (Fsoo/F45o). 
For each determination, the measurements were performed twice and their mean was 
used to estimate cell pH. The use of the ratio provides a measurement that is unaffected 
by changes in the dye concentration (Thomas et al., 1979). After a solution change, the 
steady state cell pH values were determined when the 500-nm excitation fluorescence had 
stabilized. 
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Dye Calibration 

In order to correlate the fluorescence excitation ratios with cell pH, the dye was calibrated 
intracellularly using the method of Thomas et al. (1979). Tubules were perfused with 
well-buffered solutions (25 mM HEPES, 33 mM phosphate) containing 7 #M nigericin (a 
K/H antiporter) and 66 mM K. Since there are no data on the intraceilular K activity for 
the rabbit PCT, we used the values as reported for the proximal straight tubule (PST) of 
the rabbit (48 raM; activity coefficient, 0.73; Biagi et al., 1981). In the above setting, cell 
pH is predicted to approximately equal extracellular pH. In order to test whether a 
difference in the K concentration would affect the calibration, three tubules were cali- 
brated at pH 7.3 and external K concentrations of 66 or 132 raM. The ratios obtained 
were similar in the same tubules at these two external K concentrations. (The lack of an 
effect of a twofold increase in external K on the calibration is probably due to the high K 
conductance in PCT cells, which, together with the K/H antiporter, would be expected 

FIGURE 1. Intracellular dye 
calibration: typical study. 
Bath and luminal pH are si- 

BATH pH Z6 Z6 

\ ,0 7o /  

I min 
I I 

LB. ' / J  

multaneously varied in the 
presence of nigericin (K/H 
antiporter) and a high K con- 
centration (66 raM) in luminal 
and bath perfusates. Changes 
in cell pH are followed at 500 
nm excitation. In the steady 
state, measurements at 500 
and 450 (*) nm excitation 
yield the fluorescence ratio 
Fsoo/F45o. 

to equilibrate internal and external K, even if they were initially unequal.) Before exposure 
to nigericin, the tubules were loaded with BCECF and were then perfused in the lumen 
and the bath with the above solutions at different pH values. A typical tracing is shown 
in Fig. 1. The results of this calibration in a total of 12 tubules are shown in Fig. 2. As 
noted by others (AIpern, 1985; Chaillet and Boron, 1985), the effect of cell pH on the 
intracellular excitation ratios is shifted toward higher pH values as compared with the 
results of the extraceilular calibration. 

Acidification Rate 

To measure dpHJdt, fluorescence was followed at 500 nm while a fluid exchange was 
performed, and recorded on a chart recorder (LS 52, Linseis, Inc., Princeton Junction, 
N J). The slope of a line drawn tangent to the initial deflection (dF~oo/dO defined the initial 
rate of change in 500 nm fluorescence. Because fluorescence with 450 nm excitation is 
pH insensitive (Aipern, 1985), it can be considered constant. By measuring fluorescence 
at 450 nm before and after the fluid exchange, the actual value of the 450-nm excitation 



8 3 8  T H E  J O U R N A L  O F  G E N E R A L  P H Y S I O L O G Y  �9 V O L U M E  90 - 1 9 8 7  

at the time of the initial deflection of 500 nm could be interpolated. The rate of change 
in the fluorescence ratio was then calculated using the formula: 

d(Fsoo/F4~o) _ (dF~oo/dt) (1) 
dt F450 

Because the slope of the line (intracellular calibration) relating fluorescence ratio to pH 
in Fig. 2 is 1.13.pH unit-I: 

d p H ~  (dFsoo/dt) (2) 
dt F4.~0 • 1.13 

Buffer Capacity 

The buffer capacity (B) was determined using the technique of rapid NHs washout (Roos 
and Boron, 1981). Tubules were perfused at pH 7.4 in the control period. The bath 
solution was then changed to a similar solution with 20 mM NHs/NH~" added (solutions 
9-12, Table I). The NHs in these solutions rapidly enters the cells and combines with 
intraceilular protons to form NHL When external NHs/NH~ are rapidly removed, 

2.2]- EXTRACELLULAR / _ 

J'~ 1.2 

0 , 8  t t I I I I I 
6.6 6.7 6.8 6.9 7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 

pH 

FIGURE 2. Dye calibration 
by fluorescence microscopy. 
The results of the extraceilu- 
lar and intracellular calibra- 
tions (n = 12 tubules) are 
shown. The intracellular cali- 
bration curve is shifted up- 
ward by ~0.24 pH units at pH 
7.4. 

intracellular NH4 dissociates into NHs and protons. Because of its high permeability (6 X 
10 -2 cm/s in the rabbit PCT; Hamm et al., 1985), NH3 rapidly diffuses out of the cell, 
while the protons are left behind and constitute the intracellular acid load. Since for each 
NH~ molecule dissociated, one intracellular proton is produced, the acid load per liter 
cell is A[NH~]i. The buffer capacity (in millimoles per liter times pH units) is given by the 
formula 

B = A[NH~]i 
ApH, ' (3) 

where [NH~]I is the intracellular NH~" concentration just before removal of external NHs/ 
NH4. This is calculated as 

[NH~]i = [NH~]i X 10 ~pK--pH'), (4) 

where [NHs]i is the intracellular NHs concentration (assumed to equal the extracellular 
NHs concentration), pHi was calculated from the fluorescence excitation ratios described 
above. A pK. of 9.4 was used. 

Calculation of Proton Fluxes 

The proton fluxes (Jm in picomoles per liter times millimeters times minutes) induced by 
the maneuvers in the different protocols were calculated using the formula 
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J .  = dpHi/dt. V. mm-' .B, (5) 

where dpHi/dt is the initial rate of cell acidification (in pH units per minute), V. mm -~ is 
the approximate cellular volume of the tubules per millimeter, and B is the buffer capacity 
(in millimoles per liter times pH units). For an outer tubular diameter of 60 #m and an 
inner diameter of 25 #m, V = 23.4 • 10 -~~ liter, mm -~. ReportedJH values represent the 
means of the J .  values for the acidification induced by the experimental solution and the 
alkalinization induced by the control solution in the recovery period. In the steady state, 
cell pH is constant and there are proton fluxes from bath to cell and from cell to lumen. 
The proton flux (JH) referred to here is actually the change in the proton flux induced 
by the experimental maneuver. 

Statistics 

All studies were paired, comparing two protocols within the same tubule. After the first 
protocol, the tubules were left to equilibrate in the control solution of the second protocol 
for 5 min. The data were analyzed using the paired t test. The calibration data were fitted 
using linear regression. Results are reported as means :!: standard error. 

R E S U L T S  

Determination of Buffer Capacity 

Buffer capacity was determined in the absence and presence of  CO~/HCO~. An 
accurate determinat ion of  the buffer capacity requires that acid-extrusion pro- 
cesses be blocked. We at tempted to meet this requirement  by perfusing the 
tubules with 1 mM amiloride in the lumen (to block the apical Na /H  antiporter) 
and 1 mM SITS in the bath (to block the Na/base cotransporter and Cl/base 
exchanger). To  prevent competition of  Na ions to the amiloride-binding site on 
the antiporter  (Kinsella and Aronson, 1981), the tubules were perfused symmet- 
rically with 50 mM Na (solutions 9-12,  Table I). Tha t  the acid extrusion 
processes were effectively blocked in this setting is illustrated by the fact that cell 
pH defense against the acid load induced by NH3 washout was very slow (e.g., 
0 .05-0.08 pH uni ts .min -I in the absence of  exogenous CO2/HCO~). As illus- 
t rated by Table II, in the absence of  exogenous CO2/HCO~, the buffer capacity 
of  the cells was 42.8 • 5.6 mmol . l i te r - '  .pH unit -1 (Bi), and in its presence, the 
buffer capacity was 84.6 _+ 7.3 mmol . l i ter  - l - p H  unit -~ (B-r, n = 10). The  mean 
resting cell pH was 7.26 • 0.02 in the presence and 7.24 • 0.03 in the absence 
of  CO2/HCO~" (NS). 

Na/Base Cotransport in Rabbit PCT 

To determine whether  an Na/base cotransporter is present in the rabbit PCT, 
we examined the effects o f  changes in peri tubular pH and Na concentration on 
cell pH in the absence and presence of  1 mM bath SITS. As shown in Fig. 3, 
lowering the bath HCO~- concentration from 25 to 5 mM (solutions 1 and 2, 
Table I) decreased cell pH by 0.30 • 0.02 pH units in the absence of  SITS as 
compared with 0.09 • 0.02 in the presence of  SITS (p < 0.001, n --- 6). The  
proton f lux ,Ju ,  was 592 • 71 p m o l . m m  -~ .min -~ in the control period and was 
inhibited 94% to 37 • 14 p m o l . m m  -~.min -1 by bath SITS. When peritubular 
Na was lowered from 147 to 0 mM (Fig. 4; solutions 5 and 6, Table I), the cells 
acidified by a mean of  0.25 • 0.03 pH units. In the presence of  SITS, the pH 



840 THE JOURNAL OF GENERAL PHYSIOLOGY �9 VOLUME 90 �9 1987 

T A B L E  I I  

lntraceUular Buffer Capacity of Rabbit PCT 
in the Presence and Absence of COffHCO~ 

Millimoles per liter 
per pH unit pHi 

B-r 84.6• 7.26• 
B~ ( -  COdHCO~) 42.8• 7.24• 
Measured Bco~ 42.23=6.1 
Calculated Boot 39.03=3.2 

Comparison of  the total buffer capacity (BT) with the buffer capacity in the absence 
of  exogenous COt /HCO;  (BI). The difference between these two values is the buffer 
capacity of  CO~/HCOi (Bcot measured). Calculated Bco, represents the buffer capacity 
calculated from the estimated intracellular HCO~" concentration (see text). 

decrease was reduced to 0.03 _ 0.02 (p < 0.001, n = 5). T h e J a  was 332 + 51 
pmol. mm -~- min -] in the control period and was reduced to 10 _ 5 pmol. mm -~ �9 
rain -I by SITS. 

These studies show the presence of a stilbene-inhibitable, Na-coupled base exit 
mechanism on the basolateral membrane of the rabbit PCT and confirm studies 
that found this transporter in the salamander (Boron and Boulpaep, 1983), rat 
(Alpern, 1985; Yoshitomi et al., 1985), and rabbit (Biagi, 1985; Sasaki et al., 
1985; Biagi and Sothell, 1986) PCT. 

C02/HCO~ Dependence of Na[Base Cotransport 

Since this Na-coupled transporter could possibly transport either HCO~ and/or 
H+/OH - coupled to Na, the next studies were designed to determine the CO2 
requirements of this transport system. Tubules were symmetrically perfused at 
pH 7.4 and the bath fluid was changed to pH 6.8, first in the absence (solutions 
3 and 4, Table I) and then in the presence of exogenous CO~]HCO~ (solutions 
1 and 2, Table I). As illustrated in Fig. 5 (left), lowering bath pH in the absence 
of CO2]HCO~ decreased cell pH from 7.38 + 0.04 to 7.14 __. 0.04 (p < 0.001, 
n = 10). Cell pH returned to 7.40 + 0.04 (p < 0.001) when bath pH was 
returned to 7.4. In the presence of CO~]HCO; (Fig. 5, right), lowering bath pH 
acidified the cells from 7.35 _+ 0.04 to 6.97 + 0.04 (p < 0.001), with a recovery 

7.5 

t- Z3 
z ~ zz 
~ 7.1 

ZO 

6.9 

16r I. 
ls,~l, 

592==71 [ 3 7 t  14 N 

0.30"  0.02 ] 0.09 ~" 0.02 u 

25 5 25 I 25 5 25 

0 [ I mM 

.9 

.8 
t.7 
1.6 
t.5 0 
1.4 ~2 

1.3 
1.2 

FIGURE 3. Effect of lowering bath 
pH in the presence of CO~/HCO~ 
on cell pH andJ. .  Bath HCO~ was 
lowered from 25 to 5 mM in the 
absence and presence of 1 mM bath 
SITS. * p < 0.001, ** p < 0.05, n 
= 6 .  
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I dH 

7.5 
+- 74 
o. 
i -  73 
z 
h, 72 Q: 

,< 
7.O 

6.9 

I [Noll 
[slvsl. 

332 • 51 [ I0  t 5 

0.25 t 0.03 I 0.03 t 0.02 

147 0 147 [ 147 0 147 

0 I I mM 

1.9 
1.8 
1'7 tA.~ 

1.6 ~0 
1 . 5 0  
1.4 
1.3 

1.2 

FIGURE 4. Effect of bath Na 
removal in the presence of ex- 
ogenous CO2/HCO~ on cell 
pH and J . .  Bath Na was re- 
placed by choline in the pres- 
ence and absence of 1 mM 
bath SITS. * p < 0.001, n = 
5. 

to 7.36 + 0.05 (p < 0.001). The mean decrease of  cell pH was 0.25 + 0.04 in 
the absence of  exogenous CO~/HCO~ and 0.38 _4- 0.04 in its presence (p < 
0.005). T h e  associatedJH values were 223 3= 27 p m o l - m m  -1- min -= in the absence 
of CO~/HCOg and 643 + 51 pmol .mm-~-min -l in its presence (p < 0.001). 
Thus, theJH in response to a given change in bath pH is reduced by only 65% 
upon removal of  ambient CO~/HCO~. 

T h e  effect  o f  lowering the bath  Na concentra t ion  f rom 147 to 0 mM in the 
absence and presence of  CO~/HCOg (solutions 5-8,  Table I) is shown in Fig. 6. 
In the absence o f  CO2/HCO~' ,  cell p H  decreased f rom 7.25 + 0.03 to 7.08 3= 
0.02 (p < 0.001) and  recovered  to 7.21 + 0.04 (p < 0.001, n = 7). In the 
presence of  CO2/HCO~, cell pH decreased from 7.28 3= 0.03 to 6.93 3= 0.05 (p 
< 0.001) and  r e tu rned  to 7.30 3= 0.05 (p < 0.001). T h e  mean  change  o f  cell p H  
was 0.17 3= 0.03 in the absence of  CO~/HCO~ and 0.35 3= 0.07 in its presence 
(p < 0.005), andJH values were 147 + 13 and 596 + 77 pmol .mm-] .min  -~, 
respectively (p < 0.005). Again,  a significant JH value in response to lowering 
the ba th  Na concentra t ion  was observed in the absence o f  ambien t  CO2/HCO~'.  
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HCO; on cell pH andJH. Bath pH was lowered from 7.4 to 6.8. * p < 0.001, n = 10. 
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Thus,  these studies show the persistence o f  Na/base cotransport  in the absence 
o f  CO2/HCOg.  In theory,  the above results could be explained by the presence 
o f  an N a / O H  or  an Na /HCO s  cot ranspor ter  a n d / o r  an N a / H  antiporter .  T o  
differentiate among these mechanisms, we studied the effects of  SITS (an 
inhibitor of  N a / O H  and Na /H CO s  cotransporters)  and amiloride (an inhibitor 
of  Na /H  antiporters)  in the absence o f  exogenous  CO2/HCO~'. 

Effect of SITS 
T h e  effects o f  1 mM peri tubular  SITS on the cell pH response to changes in 
bath pH or  bath Na in the absence o f  ambient  CO2/HCO~ were examined.  A 
typical tracing is shown in Fig. 7. SITS markedly inhibited the response o f  cell 
pH to changing bath pH in the absence o f  exogenous CO2/HCO~'. Fig. 8 shows 
results f rom six tubules. In the absence o f  SITS,  lowering bath pH from 7.4 to 
6.8 caused a decrease in cell pH f rom 7.52 -+ 0.04 to 7.23 -+ 0.03 (p < 0.001) 

BATH pH 7.4 7. 4 Z 4 

l m i n  I m M  BATH SITS 
i ,  , I I I 

FIGURE 7. Effect of SITS on cell 
pH changes induced by lowering 
bath pH in the absence of exoge- 
nous COJHCO~: typical study. On 
the left of the figure, the effect of 
lowering bath pH on the fluores- 
cence ratio is shown in the absence, 
on the right of the figure in the 
presence, of 1 mM bath SITS. The 
changes are followed at 500 nm ex- 
citation. The asterisk denotes meas- 
urements at 450 nm excitation. 
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and a re turn to 7.53 _.+ 0.05 in the recovery period (p < 0.001). In the presence 
of  I mM bath SITS,  cell pH decreased f rom 7.44 _+ 0.05 to 7.26 +_ 0.05 (p < 
0.005) and recovered to 7.43 +_ 0.08 (p < 0.005). T h e  mean changes in cell pH 
andJrt  were 0.30 _ 0.04 pH units and 338 + 36 pmol.  mm -1. min -1, respectively, 
in the absence o f  SITS and 0.17 + 0.05 (p < 0.005) pH units and 62 _ 23 pmol.  
mm -~ .m in - '  (p < 0.001) in the presence o f  SITS. 

Fig. 9 demonstrates  that SITS decreased the mean change in cell pH induced 
by removing bath Na from 0.16 + 0.03 to 0.05 _ 0.02 pH units (p < 0.001, n 
= 8) and inhibi tedJn f rom 165 to 33 to 13 +_ 7 p m o l . m m  -~ .min - '  (p < 0.001). 
In the period without SITS, cell pH decreased from 7.47 ___ 0.04 to 7.30 + 0.04 
(p < 0.001) and re turned  to 7.45 + 0.04 in the recovery period (p < 0.025). In 
the presence o f  1 mM bath SITS,  cell pH changed from 7.34 _ 0.03 to 7.31 _ 
0.06 when bath Na was removed (NS) and was unchanged (7.31 _+ 0.06) upon 
readdit ion o f  Na. 
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These data show that cell acidification induced by lowering bath pH or Na in 
the absence of  exogenous CO2/HCO~ is SITS sensitive and is inhibited by >80% 
by this agent. In these protocols, SITS caused a slight decrease of  cell pH (see 
Figs. 8 and 9). Since time controls did not show any acidification, this effect 
seems to be SITS related, although its mechanism is presently unclear. 

Effect of Amiloride 
Fig. 10 shows that 1 mM bath amiloride did not inhibit the cell acidification 
induced by removing bath Na in the absence of  exogenous CO~/HCO;. Cell 
acidification was 0.18 + 0.03 pH units in the absence of amiloride and 0.19 + 
0.04 pH units in the presence of  amiloride (NS, n = 11). The  corresponding JH 
values were 131 + 23 and 118 + 21 pmol .mm -1 .min -1 (NS). In terms of  absolute 

d H 131• 23 118~ 21 (NS) 

&pHi 0.18 t 0 .05 0.19 tO.04  (NS) 

1.9 7 . 5 -  
1.8 

7.3 , -  1.6 ,~ 
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7 . 1  a. 1.4 

r162 
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Ioride] B 0 I mM 

FIGURE 10. Effect ofamiloride on cell pH changes andJH induced by bath Na removal 
in the absence of exogenous CO~/HCO~. Na was removed from the bath in the absence 
and presence of 1 mM bath amiloride. * p < 0.001, ** p < 0.005, n = 11. 

pH values, Na removal caused a decrease of  cell pH from 7.33 + 0.06 to 7.13 + 
0.07 (p < 0.001), with a recovery to 7.30 +_ 0.05 (p < 0.001) in the absence of  
amiloride. In the presence of amiloride, cell pH decreased from 7.33 + 0.06 to 
7.11 + 0.06 (p < 0.005) and returned to 7.28 _ 0.06 (p < 0.005). 

The  absence of an amiloride effect in these studies could be due to the high 
Na concentration used, since amiloride competes with Na on the Na/H antiporter 
(Kinsella and Aronson, 1981). When the same protocol was repeated in six 
additional tubules, but with Na decreased from 50 to 0 mM, there was still no 
detectable inhibition of  cell acidification. The  mean changes in cell pH were 
0.11 + 0.01 without and 0.14 _+ 0.03 with 1 mM bath amiloride (NS). TheJH 
was 148 + 12 pmoi .mm-t .min  -l and was unaltered by amiloride (152 + 16 
pmol- mm- ' .  min-1; NS). 

Thus, these studies rule out an important role for an amiloride-sensitive 
Na/H antiporter in the Na-coupled basolateral base exit mechanism. 
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Effect of AcetazoIamide and Cyanide 
The significant rate of  basolateral Na-coupled base exit in the absence of ambient 
CO2/HCO~, although it is slower than in the presence of CO~/HCO;, raises the 
possibility that the cotransport system might operate as an Na/OH cotransporter. 
Alternatively, there might be sufficient metabolic CO~ produced in the cell to 
drive an Na/HCOs cotransporter in the absence of external CO~/HCO~. 

The effect of acetazolamide on the cell acidification induced by lowering bath 
pH or bath Na might aid in distinguishing between these two possibilities. 
Acetazolamide would be expected to inhibit the rate of Na/HCOs cotransport, 
because carbonic anhydrase would be required to hydroxylate CO2 to HCO~. In 
contrast, acetazolamide would not be expected to inhibit the rate of Na/OH 
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FIGURE 11. Effect of acetazolamide on cell pH changes and J .  induced by lowering 
bath pH in the absence of exogenous COJHCO~. Bath pH was changed from 7.4 to 6.8 
in the absence and presence of 0.1 mM acetazolamide in luminal and bath perfusates. * p 
< 0.001, n = 7. 

cotransport, unless carbonic anhydrase were an integral part of the Na/OH 
symporter protein. Such a function for carbonic anhydrase has not been previ- 
ously described (Dobyan and Bulger, 1982; Silverman and Vincent, 1983). 

The effect of  0.1 mM acetazolamide added to bath and lumen when bath pH 
was lowered is shown in Fig. 11. When bath pH was lowered from 7.4 to 6.8 in 
the absence of exogenous COJHCO~,  the cell pH decreased by 0.27 +_ 0.04 in 
the absence of  acetazolamide, but only by 0.15 + 0.05 (p < 0.001, n = 7) in the 
presence of  acetazolamide. Acetazolamide substantially inhibited JR from 212 --+ 
39 to 15 _4- 3 pmol.mm -l .min -l (p < 0.001). When bath Na was removed (Fig. 
12), acetazolamide prevented (100% inhibition) cell acidification. The mean cell 
pH change was 0.12 -+ 0.02 in the absence and 0.01 + 0.02 in the presence of 
acetazolamide (p < 0.001, n = 8). J .  was inhibited from 125 -+ 13 to 1 + 3 
pmol.mm -l .rain -l (p < 0.001). 

As discussed above, acetazolamide sensitivity of the cell pH change is compat- 
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bath Na in the absence of exogenous CO2/HCOs. Bath Na was changed from 147 to 0 
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perfusates. * p < 0.001, n = 8. 

ible with the transport of HCOs. To test whether a known H+/OH - transporter 
would be inhibited by acetazolamide, we examined the effect of acetazolamide 
on the rate of the apical Na/H antiport. This transporter was assayed as previously 
described (Alpern and Chambers, 1986). Glucose and alanine were eliminated 
from the luminal perfusate to prevent cell membrane potential changes upon 
luminal Na removal (solutions 13 and 14, Table I). SITS was added to the bath 
to prevent secondary effects of the basolateral membrane Na/HCOE cotrans- 
porter. In this setting (Fig. 13), removal of luminal Na acidified the cells by 0.41 
+ 0.08 pH units in the absence of 0.1 mM acetazolamide and by 0.43 +_ 0.08 
pH units in its presence (NS, n = 4). JH was not significantly altered and was 159 
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FIGURE 13. Effect of acetazolamide on cell pH changes and JH induced by removing 
luminal Na in the absence of exogenous C O 2 / H C O ~ .  Glucose and alanine were eliminated 
from the luminal perfusate and 1 mM SITS was added to the bath. Luminal Na was 
changed from 141 to 0 mM in the absence and presence of 0.1 mM acetazolamide in 
luminal and bath perfusates. * p < 0.001, n = 4. 
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_ 34 pmol .  mm -~. min -I without acetazolamide and 147 "4- 41 pmol .  mm - j .  min -] 
with acetazolamide (NS). 

Thus ,  the acetazolamide sensitivity suggests that in the absence of  exogenous  
CO~/HCO~, HCO~ provided by metabolism is the t ranspor ted base species. I f  
this is the case, metabolic inhibitors would be expected to inhibit the t ranspor ter  
by restriction o f  substrate availability. On the o ther  hand, they should have no 
effect in the presence o f  exogenous  CO~/HCO~-. T h e  effect of" 2 mM bath KCN 
(2 mM KCN replaced 2 mM KCI in solutions 7 and 8, Table  I) when bath Na 
was removed  in the absence of  exogenous  CO2/HCO~- is shown in Fig. 14. Na 
removal lowered cell pH by 0.16 --. 0.02 pH units in the absence of  KCN. In its 
presence, however,  cell acidification was completely abolished (mean cell pH 
change plus 0.02 -+ 0.02 pH units; p < 0.001, n = 6). KCN inhibited JH f rom 
141 + 12 to 3 _+ 5 p m o l . m m - ] . m i n  -~ (p < 0.001). Cyanide inhibition o f  the 
t ranspor ter  could be due  to an A T P  dependence  ra ther  than a CO2 dependence.  
T o  rule this out,  additional exper iments  were pe r fo rmed  on four  tubules (Fig. 
15) in the presence o f  exogenous  CO2/HCO~ (2 mM KCN replaced 2 mM KC1 
in solutions 5 and 6, Table  I). In this setting, KCN had no significant effect on 
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FIGURE 15. Effect of 2 mM bath KCN on cell pH changes andJH induced by removing 
bath Na in the presence of exogenous CO2/HCO;. * p < 0.001, ** p < 0.025, n = 4. 



848 T H E  J O U R N A L  OF GENERAL PHYSIOLOGY �9 VOLUME 9 0  �9 1 9 8 7  

the cell acidification induced by bath Na removal: the cells acidified by 0.21 + 
0.03 pH units in the absence and by 0.26 :t= 0.04 in the presence of  KCN.JH was 
412 + 55 pmol-mm -~ .min -m in the absence of  KCN and 434 _ 61 pmol.mm -~. 
min -I (NS) in its presence. 

The fact that restriction of  substrate (HCO~) availability by acetazolamide and 
KCN inhibits cell pH changes induced by bath Na removal also provides evidence 
that the transporter is Na coupled. We could not prove this formally when we 
attempted to show an inhibitory effect of  symmetrical Na removal on cell pH 
change induced by lowering bath pH from 7.4 to 6.8, because Na removal 
caused a massive, stable, and fully reversible cell acidification from 7.28 + 0.04 
to 6.84 _ 0.05 (p < 0.001, n = 5; solutions 3 and 8, Table I). The decrease in 
the intracellular base concentration associated with this degree of  cell acidifica- 
tion would by itself decrease the driving force across the transporter. 

D I S C U S S I O N  

Since the main purposes of these studies were to determine the CO~/HCO~ 
dependence of  the Na/base cotransporter and to analyze the nature of  the base 
exit, we used the technique of  in vitro microperfusion of  rabbit PCT, which 
permits vigorous exclusion of  exogenous CO~/HCO~. Microcalorimetric analysis 
of bath fluid samples confirmed that the total CO2 concentration was not 
different from zero. In addition, the special setup for these studies permitted 
rapid, serial fluid exchanges for the bath and the luminal perfusates independ- 
ently. Therefore, we were able to assess the kinetic properties of  the Na-coupled 
base transporter under a variety of  experimental conditions. Cell pH was meas- 
ured using fluorescence ratios of  BCECF at two different wavelengths (500 and 
450 nm), as previously described (Alpern, 1985). 

In order to correlate the cell pH to the fluorescent ratios, the dye was calibrated 
using nigericin (a K/H antiporter) and a high external K concentration that 
approximated intracellular K activity (Thomas et al., 1979). In this setting, 
external pH approximately equals cell pH. The intracellular calibration curve 
was shifted to higher pH values when compared with the extracellular calibration, 
as also noted for the rat (Alpern, 1985) and the salamander PCT (dimethyl-6- 
carboxyfluorescein; Chaillet and Boron, 1985). In this study, the shift was 
equivalent to 0.24 pH units at pH 7.4 (Fig. 2). When tubules were perfused 
symmetrically with HCOs-containing solutions (solution 1, Table I), the cell pH 
was 7.29 + 0.02 (n = 42). This value is comparable to cell pH determinations 
with microelectrodes in the rabbit PST (Sasaki et al., 1985), but is lower than 
microfluorometrically obtained cell pH values in the rabbit PST (pH 7.46; 
Nakhoul and Boron, 1985). However, in the latter study, the pH data were 
obtained in the nominal absence of  COs and in the presence of monocarboxylate. 
We observed some intertubular variability in the resting cell pH, which probably 
relates to the fact that the tubules were not calibrated individually. However, as 
all our studies were paired, comparing a control with an experimental procedure, 
and since the interpretation of  our results depends on the changes of  the cell pH 
rather than their absolute values, this variability is probably of  minor importance. 
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Determination of Buffer Capacity 

Buffer capacity was measured in the presence and absence of  exogenous CO2] 
HCO~ and was 84.6 _ 7.3 mmol-liter -~ .pH unit -1 in the presence and 42.8 4- 
5.6 mmol.l i ter-~.pH unit -~ in the absence of  CO2/HCOL The difference 
between total buffer capacity and the buffer capacity in the absence of  exogenous 
CO2/HCO~ is equal to the buffer capacity of  CO2/HCO~ (Bco2). According to 
the formula 

Bco2 - 2.3 x [HCO~]i (6) 

(Roos and Boron, 1981), the C O , / H C O ;  buffer capacity can be directly calcu- 
lated. Since the mean pH in this set of  studies was 7.26, [HCO~]i would be 17 
mM and Bco2 would therefore be 39 mmol . l i ter - ' -pH unit -1. As can be seen, 
this value is in excellent agreement with our measured difference of  42.2 retool. 
l i ter- l .pH unit -1 (see Table II). The value for the total buffer capacity is 
comparable to that in the rat PCT of 102.7 4. 11.2 retool.liter -1, when cells 
were exposed to a pCO~ of 40 kPa or 0.5 kPa, respectively (Yoshitomi and 
Froemter, 1984), and the value of  65.3 + 8.7 mmol.liter -] when pCO~ was 
varied from 5 to 10 kPa only (Yoshitomi et al., 1985). 

Persistence of a Stilbene-inhibitable, Na-coupled Base Exit in the Absence of 
Exogenous CO ff H CO ~ 

In the presence of  exogenous CO~/HCO~, our studies confirmed the presence 
of  a stilbene-sensitive, Na-coupled base exit in the rabbit PCT (Figs. 3 and 4). 
The observed mean cell pH change of  0.30 pH units when bath bicarbonate was 
lowered from 25 to 5 mM is comparable to findings in the rabbit PST (micro- 
electrode study; Sasaki et al., 1985) and the rat PCT (fluorescent studies; Alpern, 
1985; Aipern and Chambers, 1986), where mean changes of  ~0.31 and 0.23-  
0.30 pH units were recorded, respectively. Similarly, Na removal from the bath 
caused a mean acidification of  0.25 pH units, again quite close to values in the 
rabbit PST (0.21; Sasaki et al., 1985) and the rat PCT (0.20, where Na was not 
totally removed, but lowered to 25 raM; Alpern, 1985). 

When the effects of  lowering peritubular Na or pH were compared in the 
absence and presence of  CO~/HCO~ in the same tubule (Figs. 5 and 6), it could 
be demonstrated that a significant acidification persisted in the total absence of  
exogenous CO~/HCO~. The persisting proton fluxes were ~25% of  the observed 
fluxes in the presence of  CO~]HCO~ when bath Na was removed and ~35% 
when bath pH was lowered. The facts that (a) SITS inhibited these effects (Figs. 
7-9) and (b) amiloride had no effect (Fig. 10) both support the existence of  a 
stilbene-sensitive, Na-coupled base exit in the absence of  exogenous CO~] 
HCO~. The failure to find an amiloride-sensitive Na/H antiporter on the 
basolateral membrane agrees with studies in vesicles from the rabbit and rat 
renal cortex (Ives et al., 1983; Sabolic and Burckhardt, 1983) and with studies 
in the isolated rabbit PST (Nakhoul and Boron, 1985). 
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Nature of the Na-coupled Base Exit in the Rabbit PCT 

In the absence of exogenous CO2/HCO~, an Na-coupled base exit could occur 
by two basic transport mechanisms: (a) an Na/OH cotransporter (equivalent to 
an amiloride-insensitive Na/H antiporter), or (b) an Na/HCO~ cotransporter. 

The presence of  an amiloride-insensitive Na/H antiporter has recently been 
described in endosomes from the rabbit renal cortex (Gurich and Warnock, 
1986), but there are no data to suggest its presence in the basolateral membrane 
of the PCT; in addition, it would not be expected to be SITS sensitive. 

The finding that acetazolamide inhibited the cell pH changes in this study 
could be consistent with an Na/OH cotransporter: (a) if cytoplasmic carbonic 
anhydrase is needed to minimize a cellular diffusion barrier to base equivalents 
(Gutknecht et al., 1977), (b) if basolateral carbonic anhydrase is an integral 
functional component of the transporter, or (c) if the transporter shares a 
common structural domain with carbonic anhydrase, rendering it susceptible to 
acetazolamide. 

If  carbonic anhydrase facilitated diffusion of mobile buffers from the bulk 
phase in the cytoplasm to the membrane transporter, acetazolamide also should 
have inhibited the apical Na/H antiporter in the absence of exogenous CO2/ 
HCOL As such an inhibition was not found, carbonic anhydrase does not seem 
to have an important role in facilitating cytoplasmic buffer diffusion. 

Because CO~-dependent 22Na uptake in rabbit cortical basolateral membrane 
vesicles occurs in the presence of acetazolamide (Akiba et al., 1986; Soleimani 
and Aronson, 1987), a direct influence of acetazolamide on the Na/base cotrans- 
porter seems improbable. The results of these studies and the effect of acetazol- 
amide on the rate of the Na-coupled base exit observed in our study would argue 
against an Na/OH and favor an Na/HCO3 cotransport mechanism. 

Even more convincing is the dependence of the basolateral membrane trans- 
porter in the absence of exogenous CO~/HCO~ on metabolism. In the absence 
of exogenous COJHCO~', inhibition of metabolism by bath cyanide completely 
inhibited basolateral membrane Na/HCOs cotransport. To prove that this was 
not due to a direct effect on the transporter, we showed that cyanide was without 
effect in the presence of exogenous CO~/HCOs. Thus, sensitivity to acetazol- 
amide and cyanide, in the absence of exogenous CO~/HCO~, proves that the 
transporter is dependent on CO2/HCO~, a dependence that is probably due to 
the fact that HCOs is the transported base species. 

The observations that, in the absence of exogenous CO2/HCO~, (a) changes 
in bath Na concentration were able to affect changes in transport rate and (b) 
changes in bath pH were reversible suggest that there is a significant local CO2/ 
HCOs concentration next to the outside of the basolateral membrane. This 
could be due to the effect of unstirred layers. Based on calculations of metabolic 
CO2 production, the intracellular HCO~ concentration can be estimated to be 
<0.37 mM, ~ while the local extracellular concentration of HCO~ would be even 

The HCO] concentration generated from metabolic production was estimated assuming that 
endogenous CO2 production (Qco~) by metabolism is 6.0 ttmol-g -t .min -l (Burg and Orloff, 
1962). The weight of a tubule with an inner and outer diameter of 25 and 60 ttm, respectively, 
is 23.4 x 1 0  -6  g.cm -1. With minutes converted to seconds, Qco~ is then 2.34 • 10 -9 mmol. 
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lower. In  the  p resence  o f  e x o g e n o u s  C O 2 / H C O g ,  the  int racel lular  H C O ~  con-  
cen t r a t ion  at a p H  o f  7.3 is ~ 1 9  mM.  H o w e v e r ,  in the  absence  o f  e x o g e n o u s  
C O 2 / H C O ~ ,  the  t r a n s p o r t e r  is able to r un  at ~ 3 0 %  o f  its con t ro l  ra te  in the  
p resence  o f  a m b i e n t  C O 2 / H C O ~ .  Th i s  obse rva t ion  suggests  tha t  the  t r a n s p o r t e r  
is sensitive to very  low concen t r a t i ons  o f  b ica rbona te .  Th i s  migh t  o c c u r  if  one  o r  
two o f  the  b i ca rbona t e -b ind ing  sites had  a h igh affini ty for  b ica rbona te ,  p robab ly  
in the  m i c r o m o l a r  range .  H o w e v e r ,  no t  all o f  the  b i ca rbona te -b ind ing  sites can 
have such a h igh  affinity,  because  the  t r a n s p o r t e r  wou ld  b e c o m e  sa tu ra ted  at low 
concen t r a t i ons  a nd  its ra te  wou ld  be insensitive to  changes  in cell and  ba th  
b i ca rbona te  c onc e n t r a t i ons  f r o m  25 to 5 raM. 

In  conclus ion,  o u r  studies d e m o n s t r a t e  the  p resence  o f  a sti lbene-sensitive N a /  
base c o t r a n s p o r t e r  on  the  basolateral  m e m b r a n e  o f  the  rabbi t  P C T .  Th i s  co t rans-  
p o r t e r  has an absolu te  r e q u i r e m e n t  for  C O ~ / H C O g ,  which suggests  tha t  H C O ~  
is at least one  o f  the  t r a n s p o r t e d  base species. 
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