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Abstract: Intelligent automation and trusted autonomy are being introduced in aerospace
cyber-physical systems to support diverse tasks including data processing, decision-making,
information sharing and mission execution. Due to the increasing level of integration/collaboration
between humans and automation in these tasks, the operational performance of closed-loop
human-machine systems can be enhanced when the machine monitors the operator’s cognitive states
and adapts to them in order to maximise the effectiveness of the Human-Machine Interfaces and
Interactions (HMI2). Technological developments have led to neurophysiological observations
becoming a reliable methodology to evaluate the human operator’s states using a variety of
wearable and remote sensors. The adoption of sensor networks can be seen as an evolution of
this approach, as there are notable advantages if these sensors collect and exchange data in real-time,
while their operation is controlled remotely and synchronised. This paper discusses recent advances
in sensor networks for aerospace cyber-physical systems, focusing on Cognitive HMI2 (CHMI2)
implementations. The key neurophysiological measurements used in this context and their relationship
with the operator’s cognitive states are discussed. Suitable data analysis techniques based on machine
learning and statistical inference are also presented, as these techniques allow processing both
neurophysiological and operational data to obtain accurate cognitive state estimations. Lastly,
to support the development of sensor networks for CHMI2 applications, the paper addresses the
performance characterisation of various state-of-the-art sensors and the propagation of measurement
uncertainties through a machine learning-based inference engine. Results show that a proper sensor
selection and integration can support the implementation of effective human-machine systems for
various challenging aerospace applications, including Air Traffic Management (ATM), commercial
airliner Single-Pilot Operations (SIPO), one-to-many Unmanned Aircraft Systems (UAS), and space
operations management.

Keywords: human-machine system; cognitive cybernetics; cognitive states; mental workload;
neurophysiology; physiological response

1. Introduction

Advances in aerospace Cyber-Physical Systems (CPS) are supporting a progressive evolution of
conventional platforms to feature higher levels of automation and information sharing. Major benefits of
these two capabilities include a progressive de-crewing of flight decks and ground control centers, as well
as the safe and efficient operations of very diverse platforms in a shared, unsegregated environment.
Important efforts are, for instance, addressing the integration of Unmanned Aircraft Systems (UAS) in
all classes of airspace, eliciting the introduction of a UAS Traffic Management (UTM) service which
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seamlessly integrates within the Air Traffic Management (ATM) framework [1], especially in lower
airspace. Similarly, the operation of space launch and re-entry platforms currently requires considerable
airspace segregation provisions, which if continued will become increasingly disruptive to civil air
traffic. Moreover, the currently limited space situational awareness is posing significant challenges to
the safety and sustainability of spaceflight due to the rapidly growing amount of resident space objects
and particularly orbital debris. The deployment of network-centric Communication, Navigation,
Surveillance and Avionics (CNS+A) systems and their functional integration with ground-based ATM
in a Space Traffic Management (STM) framework will support a much more flexible and efficient use
of the airspace with higher levels of safety [2]. In terms ofair traffic, advanced CNS+A systems will
support the transition from the two-pilot flight crews to a single pilot in commercial transport aircraft,
with the co-pilot potentially replaced by a remote pilot on the ground. A single remote pilot on the
ground, on the other hand, will no longer be restricted to controlling a single UAS and instead will
be allowed to control multiple vehicles, following the so-called One-to-Many (OTM) approach [3].
Figure 1 schematically illustrates these important evolution paths.
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Figure 1. Evolution and progressive integration of conventional and autonomous air and space
platforms in a cohesive UAS, Air and Space Traffic Management (UTM/ATM/STM).

Increases in automation complexity and in the amount of handled information are eliciting a need
for further research in Human-Machine Interfaces and Interactions (HMI2) for better human-machine
teaming to improve the overall system performance [4]. Important research and development efforts
are focusing on monitoring and supporting the appropriate cognitive workload of human operators in
complex and time-critical tasks through real-time measurement of neurophysiological variables [5,6].
In doing so, the adoption of sensor networks is both a natural and necessary evolution to effectively
exchange, synchronise and process measurement data within a customisable operational network
architecture. As conceptually illustrated in Figure 2, a sensor network implements three fundamental
components: a control element to effectively regulate its functioning and particularly to ensure
successful monitoring and recording of data from the environment through a suite of disparate
sensors, a computation element to process and fuse collected data and thus generate the desired
information; a communication element networking all sensors, databases and end users to the server to
collect raw measurement data and disseminate the processed information.
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Figure 2. Fundamental elements of a sensor network.

Collectively, these three essential elements (control, computation and communication) form the
definition of a Cyber-Physical System (CPS). CPS are engineered systems built from, and dependent
upon, the seamless integration of computational algorithms, physical components, and at the highest
level, the integration of the human-machine feedback. Practical CPS combine sensors and embedded
computing to monitor and control physical processes, with feedback loops that allow these processes to
affect computations and vice-versa. The Cognitive HMI2 (CHMI2) concept depicted in Figure 3 provides
a notable example of an advanced CPS by implementing system automation support modulated as a
function of cognitive states of both the human operator as well as relevant operational/environmental
observables. Initially described in [5,6], the foundation of the CHMI2 framework is the real-time
neurophysiological sensing of the human operator to infer cognitive states and in turn drive system
adaptation. This requires the adoption of three fundamental modules: sensing, estimation and
adaptation. Various advanced wearable and remote sensors are exploited in the CHMI2 sensing module
to track operators’ neurophysiological parameters in real time. The collected data is then passed to
the estimation module to be processed to infer the operators’ cognitive states. Prior to operational
use, the estimated cognitive states are validated in the initial calibration phase by correlating these
cognitive states with objective measures of the designed scenario, such as mission performance and
task complexity. Lastly, the inferred cognitive states are used by the CHMI2 adaptation module to
dynamically adapt the HMI2 and automation behaviour.

One important consideration when designing CHMI2 and similar systems is that each
neurophysiological parameter is sensitive to different biological processes and circumstances, and is
affected by very different disturbances. For instance, heart rate variability is sensitively influenced by
time of day, whereas blink rate and pupillometry are sensitive to ambient light stimuli. Due to the
complex nature of neurophysiological phenomena, the monitoring of multiple parameters is required
to accurately and reliably estimate the cognitive workload or other states of the human operator [7].
Moreover, there are additional difficulties associated when using multiple sensors: notably, each sensor
has different measurement performance (e.g., accuracy, resolution etc.) and sampling frequencies. Hence,
a well-designed sensor network optimisation scheme is key when designing reliable human-machine
systems, not only to ensure optimal use of multiple sensors within the sensing module but also to devise
a data fusion approach for increased overall inference accuracy of the estimation module.

The rest of the article is structured as follows: Section 2 presents the cyber-physical sensor networks
in the CHMI2 framework. Section 3 describes the main neurophysiological measurements and sensors in
detail, together with their performance parameters and relevance for aerospace human-machine systems.
In particular, eye tracking sensors are discussed in Section 3.1, and cardiorespiratory, central nervous
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sensors, face and voice recognition in Sections 3.2–3.5 respectively. Machine learning methods used in
cognitive state estimation are discussed in Section 4. Section 5 details the methodology to experimentally
characterise the performance of selected sensors and the propagation of measurement uncertainty
through machine-learning inference systems. Section 6 describes the use of neurophysiological sensors
in various aerospace applications with a focus on contemporary ones. Lastly, conclusions are drawn in
Section 7.Sensors 2019, 19, 3465 4 of 37 
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2. Sensor Networks in CHMI2 Framework

A core component of the CHMI2 sensor network introduced in Section 1 is the Human Factor
Engineering (HFE) Lab software at RMIT University, which supports the networking and data
management for all the CHMI2 sensors and data streams. The HFE Lab software supports several
aerospace cyber-physical system applications: ATM, Air Traffic Flow Management (ATFM), UTM,
pilot/remote pilot stations, spacecraft operations control centers and STM applications. As illustrated
in Figure 4, the HFE Lab software also caters for complex scenarios to be simulated and allows for
multiple participants. Neurophysiological data together with operational data (simulated mission and
scenario information) are collected and analysed offline to improve the accuracy and reliability of
cognitive state estimation models.

A sensor network is effectively realised by the HFE Lab software that fuses neurophysiological
sensor data and other environment/mission data. The information flows and data server components
are detailed in Figure 5.

The neurophysiological sensors firstly obtain various physiological measurements which consist
of cardiorespiratory, eye, brain, face and voice features. These sensors interact with dedicated physio
clients which perform pre-processing functions such as data filtering and feature extraction prior to
sending the data to the CHMI2 server. The CHMI2 server is the sensor network’s central element
of data storage and distribution. This server synchronises incoming data from the various physio
clients. Apart from neurophysiological measurements, scenario and mission data are also logged by
the server. The server threads parse the data into separate buffers that are read by other threads, which
are then logged into different databases. The threads include recurrent data management function
as loggerThread and threadManager. In order to run different functions simultaneously in the server,
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a suitable thread management facilitates effective communication with the HMI clients. Furthermore,
the different aerospace simulators present in Figure 4 may not always allow all neurophysiological
sensors in HFE Lab to be exploited. For example, the lab’s remote eye tracking sensor is limited to use on
desktop PCs and is not applicable in the 210◦ flight simulator. Hence, the sensor network architecture
of HFE Lab provides substantial flexibility in the integration of different types of neurophysiological
sensors as the software is modular and modifications to individual sensor threads can be made to cater
for custom sensor data.
Sensors 2019, 19, 3465 5 of 37 
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3. Neurophysiological Sensors

This section describes in detail the state-of-the-art in neurophysiological sensing technologies
that are most commonly used in aerospace applications, including: eye-tracking, cardiorespiratory
and central nervous system monitoring devices. The key neurophysiological measurements used in
this context and their relationship with the operator’s cognitive states are discussed. Emotional state
estimation based on face expression and voice pattern analysis are also discussed.

3.1. Eye Tracking Sensors

Eye tracking is capable of providing both passive and active control, supporting closed-loop
human-machine interactions. Passive control supports adaptive HMI2 formats and functions by
assessing the behaviour and functional state of the operator through software running in the background,
whereas active control allows human operators to interact directly with the machine by providing
gaze-based control inputs. While passive control requires eye tracking data to be further processed
and fed into an inference engine to determine the operator’s functional state, active control directly
uses the raw data and is therefore more straightforward in terms of system implementation. A number
of issues affect both types of control and are associated to the performance of eye tracking systems.
These issues should be carefully considered before utilising eye tracking technology in aerospace
applications. For instance, these issues could include the inadvertent activation of gaze-based control,
as well as low reliability, accuracy and repeatability of eye tracking measurements. There are two types
of eye tracking technologies; wearable and remote sensors (Figure 6).
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Wearable sensors are not limited by a Field of View (FOV) and this characteristic is very
advantageous for eye tracking in open environments, such as flight decks, where the user may
be looking at displays as well as physical controls and out of the window. On the other hand, the use of
remote sensors might require limiting the movement of the operator’s head and/or gaze, and while
this can result in increased accuracy, it is typically operationally restrictive. Additionally, some remote
sensors can also detect the distance between the operator and the screen, which can be useful for HMI
design optimisation and neuro-ergonomics studies. In a recent work, we targeted the full performance
characterisation of both types of sensors. The study showed that the HFE Lab’s remote sensor performs
better in term of accuracy and precision [9]. The findings of this study are reviewed and discussed in
Section 4.1. We also note that remote sensors may enjoy greater operator acceptance in deployed systems.

Eye tracking features are sub-divided into gaze features and pupillometry. Gaze features comprise
of fixation, saccade, dwell, transition and scan path. Fixation is a gaze state that fixed or focussed on an
object (x, y) at time (t f n). The rapid and small eye movements between fixations are saccades (sn) which
can be defined by saccade velocity (vsn ) and saccade time (tsn ). In the domain of pupillometry, the three
most important features are eye closure, blink rate and pupil radius. With respect to gaze features,
the gaze position allows to derive additional features such as fixation and saccades, from which more
complex features can be extracted, such as visual entropy. The visual entropy (H) can be determined



Sensors 2019, 19, 3465 7 of 37

from gaze transitions between different Region-of-interest (ROI), which are typically represented
by a matrix. For instance, p

(
Yi j

∣∣∣Xi
)

is the probability of a transition between ROIi to ROIj given
a previous fixation on ROIi and p(Xi) is the probability of a fixation being on ROIi [10]. The Nearest
Neighbour Index (NNI), quantifies the randomness based on fixations, while the explore/exploit
ratio [11] computes the randomness based on a combination of saccades, long and short fixations.
For a given fixation distribution, the NNI is given by the ratio of the mean nearest neighbour distances
(rA) and the mean random distances (rE) [12]. Table 1 summarises the parameters used to evaluate eye
activity [10,13–16].

Table 1. Eye activity metrics adapted from [3] includes Equations (1)–(13).

Parameter Description Derived Metrics Equation Equation Number

Fixation
The state of a gaze that is focused

(fixated) on an object.

Fixation (duration,
frequency, count)

fn :
√
(xmax − xmin)

2 + (ymax − ymin)
2 < Dmax

∀ t ∈
[
t0, t f n

] (1)

Time to first fixation TFirstFixation = t( f1) − t0 (2)

Saccade
Small, rapid, involuntary eye
movements between fixations,

usually lasting 30 to 80 ms.

Saccadic length/
amplitude, frequency

sn : v
(
tsn ∈

[
ti, t j

])
≥ 30 ◦/s

with ti + 30 ms ≤ t j ≤ ti + 80 ms

and v =

√(
dx
dt

)2
+

(
dy
dt

)2
(3)

Saccade velocity
(mean/peak)

vsn = v(tsn )
vmax, sn = max( v(tsn ))

(4)

Explore/exploit
ratio (REE) REE =

saccade count + f ixation count
long f ixation count (5)

Dwell
Eye movements comprising a series

of fixation-saccade-fixation
movements, usually with reference
to (or within) a given area of interest.

Dwell count
dn : (x, y) ∈ ([xMin, xMax], [yMin, yMax])

∀ t ∈
[
ti, t j

]
with t j ≥ ti + 30 ms

(6)

Dispersion [17] D =

√
(xmax − xmin)

2 + (ymax − ymin)
2 (7)

Transition
The change of dwell from one area
of interest to another and is usually
represented in the form of a matrix.

One-/two-way
transition probability
Transition frequency

e.g., TMOW =

ROI 1 2 3
1
2
3

 − p1,2 p1,3
p2,1 − p2,3
p3,1 p3,2 −

 (8)

Scan path

The series of eye movements in
accomplishing a specified task.

A scan path can include
elements of fixations, saccades,

dwells and transitions.

Visual entropy [10] H = −
n∑

i=1
p(Xi)

m∑
j=1

p
(

Yi j
∣∣∣Xi

)
log2 p

(
Yi j

∣∣∣Xi
)

(9)

Nearest Neighbour
Index (NNI) [12]

NNI = rA
rE

, where

rA =
∑

r
N

rE = KD

2
√

N/A

(10)

Pupillo-metry Measures of pupil size
and reactivity.

Pupil dilation
spectral power Pdil =

∫ 6Hz
2Hz r(λ) dλ (11)

Blink
Measures of partial or

full eye closure.

Blink rate (BLR) BLR = nblinks
ti+nblinks−ti

× 60 (12)

Percentage
closure [18–21] %closure =

∑
tclosure, i
tTotal

(13)

Sampling frequency, accuracy, latency and precision are the most important properties for
characterising eye tracking systems [22]. As illustrated in Figure 7, the minimum sensor performance
requirements are different for each measured parameter. Saccade is the most difficult feature to measure
since it requires the sensor to have both high sampling frequency and high precision, whereas blink
rate can be captured even at lower frequencies and at very low precision.

Passive control methods can exploit various eye activity variables such as fixations, blink rate,
saccades, pupil diameter, visual entropy and dwell time, which are related to the operator’s cognitive
state [22,23] as shown in Table 2. Arrows represent the changes of the variables when there is an
augmentation of the cognitive states; an increase (↑) or decrease (↓), and dashes (-) present an
uncertain/negligible effect.
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Table 2. Qualitative relationships between eye activity variables and selected cognitive states.

Variable Mental Workload Attention Fatigue

Fixation ↑ ↑ ↑

Blink rate ↑ ↓ ↑

Saccades ↓ ↓ -
Pupil diameter ↑ ↑ ↓

Visual entropy ↓ ↑ -
Dwell time ↓ ↑ -

3.2. Cardiorespiratory Sensors

A cardiorespiratory sensor is a biological telemetering system which can be operated in either
real-time data transmitting or data logging mode. The usage of the sensor is primarily to monitor
heart and respiratory activity. The cardiac monitoring is typically based on electrocardiography (ECG),
which exploits electrodes in contact with the skin. Heart muscle depolarisations and polarisations
generates electrical waves that propagates towards the skin and can be measured by the electrodes.
Other cardiac monitoring techniques include hemodynamic sensors, which look at blood flow
characteristics such as pressure and flow rate. Conventional ECG-based cardiac sensors use electrode
pads, which have to be applied carefully and may be detached by sweat, while the latest wearable
sensors are based on conductive fabric to measure ECG. The heart impulses are represented by waves
of P-QRS-T deflection as illustrated in Figure 8. Atrial depolarisation is represented by the P wave
while the QRS wave complex obscures atrial repolarisation. Ventricular repolarisation is represented
by the T wave and ventricular depolarisation is represented by QRS wave complex [24]. The R wave is
the largest wave which allows to accurately extrapolate the time interval (in seconds) between two
consecutive heart beats, hence called R-to-R (RR) interval.

The HR is given in beats per second as:

HR =
60

RR interval
(14)

Another important cardiac activity metric is the HRV which tracks variations between two
consecutive beats. HRV can be analysed in time, frequency and geometric domains. Time-domain
measures quantify the variability in the interbeat interval (IBI), given in milliseconds (ms), which is
the time period between successive heartbeats. IBI is similar to RR and Normal-to-Normal (NN).
The difference between RR and NN is that NN refers to the RR interval of normal beats only, with the
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abnormal beats removed. Table 3 details the various HRV metrics in time-domain measurements with
associated equations.Sensors 2019, 19, 3465 9 of 37 
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Table 3. Heart rate variability time-domain variables adapted from [25], Equations (15)–(18) are included.

Parameter (Unit) Description Equation Equation Number

SDRR (ms) Standard deviation of
RR intervals SDRR =

√
1

n−1
∑n

i=1

(
RRi −RR

)2 (15)

SDNN (ms) Standard deviation of
NN intervals SDNN =

√
1

n−1
∑n

i=1

(
NNi −NN

)2 (16)

pNN50 (%)
Percentage of successive
NN intervals that differ

by more than 50 ms
pNN50 =

countn−1(|NNi+1−NNi |>50 ms)
n−1

(17)

RMSSD (ms)
Root mean square of

successive RR
interval differences

RMSSD =
√

1
n−1

∑n−1
i=1 (RRi+1 −RRi)

2 (18)

Frequency domain metrics are extracted through spectral analysis of the RR interval data to
obtain the power spectrum density (PSD) estimate of a given time series. The PSD is divided into four
frequency bands [26] as shown in Table 4: the Ultra-Low Frequency (ULF), the Very-Low Frequency
(VLF), the Low Frequency (LF) and the High Frequency (HF). In particular, the HF and LF bands
occur due to the heart’s control of the sympathetic and parasympathetic branches of the autonomic
nervous system. The HF band represents the activity of the sympathetic branch, which regulates the
relaxation (‘rest and digest’) functions of the body, while the Low Frequency (LF) component represents
the activity of the parasympathetic branch, which regulates the action (‘fight or flight’) functions in
the body. During activity (both physical and mental), the power in the LF band has been observed
to increase in proportion to the HF band, with the LF/HF ratio being an important indicator of the
relative powers between the two bands. VLF is sometimes used for recordings over five minutes,
when considering longer-term, ULF is also added in certain calculations.
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Table 4. Heart rate variability frequency-domain variables adapted from [25]. Equations (19)–(25)
are included.

Parameter (Unit) Description Equation Equation Number

ULF power (ms2)
Absolute power of the ultra-low-frequency

band (≤0.003 Hz) ULF =
∫ 0.003hz

0hz f (λ)dλ (19)

VLF power (ms2)
Absolute power of the very-low-frequency

band (0.003–0.04 Hz) VLF =
∫ 0.04hz

0.003hz f (λ)dλ (20)

LF power (ms2)
Absolute power of the low-frequency

band (0.04–0.15 Hz) LF =
∫ 0.15hz

0.04hz f (λ)dλ (21)

LF power (%) Relative power of the low-frequency band LF% =

∫ 0.15hz
0.04hz f (λ)dλ∫ 0.4hz
0hz f (λ)dλ

× 100 (22)

HF power (ms2)
Absolute power of the high-frequency

band (0.15–0.4 Hz) HF =
∫ 0.40hz

0.15hz f (λ)dλ (23)

HF power (%) Relative power of the high-frequency band HF% =

∫ 0.4hz
0.15hz f (λ)dλ∫ 0.4hz
0hz f (λ)dλ

× 100 (24)

LF/HF (%) Ratio of LF-to-HF power LF/HF =

∫ 0.15hz
0.04hz f (λ)dλ∫ 0.4hz
0.15hz f (λ)dλ

× 100 (25)

Geometric metrics analyse the HRV by converting RR intervals into geometric plots. Poincaré
plots display the correlation between consecutive RR intervals, with RR(i) plotted on the x-axis and
RR(i+1) plotted on the y-axis. The points are distributed in an elliptical manner along the plot with SD1
and SD2 respectively defined as the minor and major axes of the ellipse. SD1 reflects the short-term
characteristics of HRV (i.e., the variability over successive beats) while SD2 reflects the long-term
characteristics of HRV (i.e., the variability over multiple beats). SD1 and SD2 are given by [27]:

SD1 =
√

0.5·Varn(RRi −RRi+1) (26)

SD2 =
√

0.5·Varn(RRi + RRi+1) (27)

where n is the sample window and is usually set to 30 s. The x and y coordinates of the ellipse are
given by the parametric equation:[

x
y

]
=
√

2·
[

cos(π/4) − sin(π/4)
sin(π/4) cos(π/4)

]
·

[
SD2· cos(θ)
SD1· sin(θ)

]
+

[
RRi

RRi+1

]
, 0 < θ < 2π (28)

Concerning respiratory activity monitoring, there are two main types of devices: strain gauges
and airflow sensors, illustrated in Figure 9. The most common one is strain gauges because this system
is less expensive, unobtrusive and easier to use. The mechanical strain from the strap is converted into
voltage. An airflow technique requires participant to wear a mask or tube while breathing. It measures
the oxygen consumption and carbon dioxide production.Sensors 2019, 19, 3465 11 of 37 
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As illustrated in Figure 10 (Left), the advantage of strain gauge equipment is that it has
low intrusiveness than the airflow. However, airflow-based devices have better latency. Moreover,
the minimum sensor performance requirements are different for each parameter. The main performance
factors to be considered include resolution and sampling frequency. Compared to cardiovascular
measures, respiratory measures require lower sampling frequency since cardiovascular parameters
such as HRV require millisecond resolution. Due to their lower intrusiveness, strain gauge wearable
sensors are mainly discussed here.
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The most common respiratory variable is BR, also referred to as the breathing or respiratory rate,
which is typically expressed in breaths per minute. Other variables include the respiratory amplitude,
expressed in terms of Tidal Volume (TV) and Minute Ventilation (MV). These three variables are
detailed in Table 5.

Table 5. Fundamental respiratory variables which Equations (29)–(31) are includes.

Variables (Unit) Description Equation Equation Number

BR (1/min) Number of breaths per minute. BR = nbreaths
ti+nbreaths−ti

× 60 (29)

TV (mL) Amount of air inspired in one respiratory cycle
TVi =

Vpeak, i −Vtrough, i
(30)

MV (L/min) Amount of air inhaled within one minute MV = BR × TV (31)

A number of studies focused on the characterisation of cardiorespiratory sensor performance [28–32].
Some of the key results of an experimental characterisation activity targeting both physical and mental
workload are presented in Section 4.2. Several studies revealed that heart and respiratory parameters are
reliable measures of the operator’s cognitive states. Table 6 summarises the various cardiorespiratory
variables that used to estimate cognitive states [3,33–36]. Arrows represent the changes of the variables
when there is an augmentation of the cognitive states; an increase (↑) or decrease (↓), and dashes
(-) present an uncertain/negligible effect. For instance, when the level of Mental Workload (MWL)
increases, HR increases (↑). However, some parameters were found to be moderated by training
and experience. For instance, compared to the baseline, a substantial suppression in the HF band
in a medium task load condition could be observed. However, an ATC task of equivalent difficulty
that was undertaken by inexperienced and experienced participants demonstrated that the HR of
inexperienced participants was not noticeably affected by changes in level of complexity in ATC
tasks [37], and this might stem from lack of attention and understanding in situational awareness.
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Table 6. Qualitative relationships between cardiorespiratory variables and selected cognitive states
adapted from [3,33–36].

Variable Mental Workload Attention Fatigue

HR ↑ ↑ ↑

SDNN ↓ ↑ ↑

SDRR ↓ ↑ ↑

RMSSD ↑ ↑ ↓

pNN50 ↓ - ↓

LF ↑ - -
HF ↓ - -

LF/HF ↑ - ↓

Poincare axes ↓ - -
BR ↓ ↓ ↓

TV - - ↓

MV - - ↓

Additionally, the disadvantage of using cardiorespiratory variables is their slow response to the
rapid changes in cognitive states compares to other variables [38].

3.3. Neuroimaging Sensors

Neuroimaging technologies are used to monitor and better understand the brain workings.
The recent technological developments in this domain are opening new avenues for aerospace human
factors engineering research and development. The increasing commercial availability of mobile/wearable
brain sensing devices (Figure 11) has resulted in many opportunities for neuroergonomic studies.
This paper however only focusses on two techniques [39]: EEG including its spectral analysis and
Functional near-infrared spectroscopy (fNIRS).
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These techniques can be divided into two main categories for achieving neuroimaging, namely
the direct observation of neural activity in a response to stimuli, and the indirect metabolic indicators
of neural activity [39]. The former technique includes sensors such as EEG that record the electrical
activity in the brain generated by firing neurons [40]. The latter technique includes sensors such as
fNIR which uses a spectroscopic method to determine levels of blood oxygenation in the cortex of the
brain [41]. Neuroergonomics differs from traditional neuroscience in the way that it investigates the
brains function in response to work. Hence, the neuroergonomic method implemented is required to
be flexible so that it can adapt to the specific application [39]. Table 7 details further categorisations of
the two techniques based on their temporal and spatial resolution.
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Table 7. Comparison of temporal and spatial specifications on electrical and neuroimaging monitoring
methods [3].

Category Electrical Response Hemodynamic Response

Temporal resolution High (limited by sampling
frequency) [42,43]

Limited (limited by sampling
frequency) [44,45]

Temporal sensitivity High (limited by sampling
frequency) [42,43]

Limited (limited by the
hemodynamic response

of the brain) [46,47]

Spatial sensitivity Limited (depends on no. of
electrodes) [42,48] High (fNIRS) [45]

Sensitive to movement
Sensitive to eye, head, body and
etc. movement. Noise filtering

algorithms are required.

Might need to filter out
heart activity from the

raw measurements.

Intrusiveness More intrusive [42] Low

Table 8 summarises brain-related estimation techniques related to cognitive states. Conventional
EEG techniques utilise spectral analysis, decomposing the raw signal into different frequency bands
and comparing the relative strength between different bands. For instance, attention can be determined
when the beta spectrum is high and alpha spectrum is low in the pre-frontal (Fp1) position [49,50].
More advanced techniques such as regression and neural networks were later introduced for large
data analysis.

Table 8. Summary of neuroimaging techniques as indicators of cognitive states [3].

Mental Workload Engagement/Attention/
Vigilance

Working
Memory Fatigue

EEG

Spectral ratio [51–53]
Spectral bands [54–60]

Regression [61]
Bayesian modelling [53]
Neural networks [62–67]

Multivariate analysis [68–70]
Discriminant analysis [66,71–76]

Spectral ratio [77–79]
Spectral bands [52,56,80,81]

Committee machines [82–84]
Discriminant analysis [75,85]

-

Multivariate
analysis [69]
Discriminant
analysis [75]

fNIRS oxy-hemoglobin (HbO),
deoxy-hemoglobin (HbR) [86–94] Oxygenation wave size [91,95,96] HbO, HbR [97–99] HbO, HbR [100]

Additional challenges associated with the EEG specifically includes the artifacts and Electromagnetic
Interference (EMI). The EEG signals of interest have a frequency ranging from 0.01 to approximately
100 Hz with a voltage changing from a few microvolts to around 100 µV [101]. As the amplitude is very
small, the EEG signal is especially prone to EMI. The noise attributed to the EEG signal can come from a
variety of different artifacts and can either be electromagnetic noise caused by neurophysiological or
non-neurophysiological sources [102]. The neurophysiological artifacts most frequently originate from
ocular, muscular or cardiac contaminants [101]. Non-neurophysiological sources stem from external
artifacts that are prominently caused by power line interference, this can be observed at 50/60 Hz in the
spectral analysis [102,103]. As schematically illustrated by the electric circuit diagram in Figure 12 the
result of this is a parasitic capacitance between the power line and subject/measurement equipment.
The EMI thus interacts with the human body and the measurement cables which function as an
antenna for the electromagnetic contamination [103]. Some of the more prominent causes for power
line interference stems from fluorescent lamps 1–2 m away from the EEG device [102,104]. Additional
non-neurophysiological artifacts include instrumentation artifacts. These are artifacts that stem from
within the electronics, and are observed as thermal noise, shot noise or 1/f (pink) noise [103]. As the
EEG equipment is highly susceptible to artifacts, proper procedures to prevent these effects need to be
considered to obtain accurate EEG recordings.
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3.4. Voice Patterns

In most aerospace applications, voice communications have a key role in various operational
tasks. It is therefore desirable to implement speech recognition and pattern analysis due to its various
advantages; chiefly the fact that specific equipment is not required and it is an inherently unobtrusive
process. Early studies mainly focused on speech emotion recognition [105–109]. A prototypical speech
analysis system based on pitch and energy is presented in Figure 13. Other prosodic and linguistic
features can also be exploited for voice pattern analysis.

Sensors 2019, 19, 3465 14 of 37 

 

between the power line and subject/measurement equipment. The EMI thus interacts with the human 

body and the measurement cables which function as an antenna for the electromagnetic 

contamination [103]. Some of the more prominent causes for power line interference stems from 

fluorescent lamps 1–2 m away from the EEG device [102,104]. Additional non-neurophysiological 

artifacts include instrumentation artifacts. These are artifacts that stem from within the electronics, 

and are observed as thermal noise, shot noise or 1/f (pink) noise [103]. As the EEG equipment is highly 

susceptible to artifacts, proper procedures to prevent these effects need to be considered to obtain 

accurate EEG recordings. 

 

Figure 12. EMI induced by mains power. Adapted from [102]. 

3.4. Voice Patterns 

In most aerospace applications, voice communications have a key role in various operational 

tasks. It is therefore desirable to implement speech recognition and pattern analysis due to its various 

advantages; chiefly the fact that specific equipment is not required and it is an inherently unobtrusive 

process. Early studies mainly focused on speech emotion recognition [105–109]. A prototypical 

speech analysis system based on pitch and energy is presented in Figure 13. Other prosodic and 

linguistic features can also be exploited for voice pattern analysis. 

 

Figure 13. Top level architecture of speech analysis systems based on pitch and energy. Adapted from 

[105]. 

The most common speech analysis methodology is to firstly convert input sound signals into 

power spectrum by different filter banks such as Mel-Frequency Cepstrum Coefficients (MFCCs), 

log-frequency power coefficients (LFPCs) and Two-Layered Cascaded Subband Cepstral Coefficients 

(TLCS). The MFCCs exploits Fast Fourier Transform (FFT) to get a power spectrum, which then maps 

the power to the mel-scale. Hence, the MFCCs represents the amplitude of the spectrum by taking 

discrete cosine transform to the log power of mel frequencies [110]. LFPCs are similar to MFCCs but 

consider all frequency ranges equally unlike MFCCs [111]. By comparing three of these filters, TLCS 

outperform MFCCs and LFPC because it cover wider ranges of frequency and consider both inter-

Figure 13. Top level architecture of speech analysis systems based on pitch and energy. Adapted
from [105].

The most common speech analysis methodology is to firstly convert input sound signals into
power spectrum by different filter banks such as Mel-Frequency Cepstrum Coefficients (MFCCs),
log-frequency power coefficients (LFPCs) and Two-Layered Cascaded Subband Cepstral Coefficients
(TLCS). The MFCCs exploits Fast Fourier Transform (FFT) to get a power spectrum, which then maps
the power to the mel-scale. Hence, the MFCCs represents the amplitude of the spectrum by taking
discrete cosine transform to the log power of mel frequencies [110]. LFPCs are similar to MFCCs
but consider all frequency ranges equally unlike MFCCs [111]. By comparing three of these filters,
TLCS outperform MFCCs and LFPC because it cover wider ranges of frequency and consider both
inter-subband and intra-subband energy [112]. The largest emotion diversity occurs at 0–250 Hz in low
frequency and 2.5 kHz–4 kHz in high frequency [113]. Moreover, the spectrogram representation can
also assist in determining the range of frequencies representing in red high amplitude, in green mid
amplitude and in blue low amplitude signals [113]. After completing feature extraction, a machine
learning algorithm is employed to infer emotions from spectrograms. Deep neural networks have
been used rather successfully for this particular process. The most common architectures are recurrent
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neural networks and feed-forward neural networks. For feed-forward architectures, the Convolution
Neural Network (CNN) is increasingly used [105].

However, emotional states are potentially related to cognitive states and a recent study presented
the estimated cognitive load from voice pattern [114], though the methodology used was different
from emotion recognition, and involved a Support-Vector Machine (SVM). SVM is a machine learning
algorithm which requires labelled trained data. In order to define cognitive load, self-assessed workload
was involved in the scenario to label the training data. The participant can rate the level of workload
in real time. This can determine when the operator is overloaded which is a very important feature in
human-machine systems.

3.5. Face Expressions

Face expression analysis is another common method to evaluate human emotional states. Similarly
to voice patterns, face expression analysis does not require specialised equipment beyond an optical
camera (e.g., RGB) and it is unobtrusive. Face expression mainly relies on a deep neural network,
and the most popular model is the CNN. In such approach, the input image is convolved in the
convolution layers to generate a feature map through a filter collection. Fully connected networks are
then combined into feature maps. The last layer before the output layer is softmax algorithm which
recognises face expressions by their class-based layers [115].

The primary step of face expressions recognition is face detection by detecting eyes, mouth and
nose as reference points [116]. Action Units (AU) are commonly used to classify the changes in
facial features [117]. AU-based recognition is a group of basic face muscles actions, with each action
represented by a number. For instance, AU01 is inner brows raise and AU07 is lower eyelids raise [118].
The neural network is used for detection, tracking and further analys of emotional or cognitive
states [119]. One frequently used open source software is OpenFace which supports various advanced
functionalities such as real-time analysis and does not require calibration [120]. Figure 14 presents the
facial behaviour analysis architecture of OpenFace.
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For face detection and facial landmark detection, Conditional Local Neural Fields (CLNF) are used
in this software. CLNF exploit advanced patch experts that capture the variations of local appearance.
This model works well on webcam and allows real-time processing. Gaze estimation is additional
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feature that makes OpenFace different from other software [120]. The results from OpenFace are AUs
which needs a further analysis for emotional or cognitive states. Different combinations of AUs are
associated to specific emotional states. Basic emotions comprise of happiness, anger, sadness, fear,
surprise, neutral and disgust. In addition, compound emotions include a combination of two basic
emotions [121].

4. Machine Learning in Estimation Modules

The uses of each sensor and the performance characterisation were described in previous
sections. This section discusses the techniques to make use of the collected data from the sensors to
estimate cognitive states, as in the estimation module in CHMI2 framework. Particular importance
lies in the fusion of the data from multiple sensors because, as discussed in Section 1, the various
neurophysiological variables are indicative of different cognitive states and are characterised by different
uncertainties and characteristic times. The fusion of data from multiple neurophysiological sensors
to estimate cognitive states can follow three fundamental approaches: (A) independently estimating
cognitive states from each sensor then fusing these estimates; (B) cognitive state estimation based on a
fused pool of extracted features from each sensors, and (C) using data from one or more sensors to extract
more/different information from another sensor and/or for sanity checks. Approach (A) supports the use
of simpler legacy statistical methods and data analytics techniques for the data fusion, but is less robust
as individual observed extracted features can be caused by multiple combinations of cognitive states.
Approach (B) is more reliable than (A) as the simultaneous observation of different features mitigates
the ambiguity in cognitive state estimation, however it requires more complex data fusion techniques
to account for a high number of frequently nonlinear relationships. Approach C is potentially the most
reliable and robust, however requires a much deeper understanding of neurophysiological processes,
partly not yet achieved at this stage. A well-designed multi-sensor system yields a minimal uncertainty
in the cognitive state estimation, hence supports a more reliable and robust inference of cognitive
states to drive system reconfiguration. The CHMI2 estimation module emulates the mathematical
correlations between the sensed neurophysiological variables and the cognitive state variables that
are passed to the adaptation layer. However, in addition to the limited consent in the literature on
the nature of the mathematical correlation between neurophysiological measurements and cognitive
states, differences in individual characteristics can be very significant in terms of neurophysiological
response and maximum endurable workload and fatigue levels. These important factors prompted
researchers in this domain to explore suitable classification techniques from statistics or computer
science (machine learning), which can support both the determination of the overall correlation and
also their fine-tuning to the particular conditions of the individual. The most commonly adopted
methods to estimate human cognitive states from psycho-physiological data include: artificial neural
networks [64,67], fuzzy systems [122,123], discriminant analysis [71,124], Bayesian models [53,125,126],
SVM [127,128], and committee machines [82,129].

Artificial neural networks attempt to emulate the workings of the human neurons, each acting as
a node performing simple functions, but which can be combined in a very large number of neurons.
The connections between nodes are governed by weights, which are to be tuned during a preliminary
training phase, allowing the machine to ‘learn’. Fuzzy logics attempt to mimic the human brain in
software, employing logical reasoning to make inferences from observed states based on how close to
the expectation is a recorded value. Expert knowledge is stored in an “if-then” rules database which
maps a fuzzy set of input data to a fuzzy set of output data. The linguistic structure of the rule base offers
a primitive explanation of the system’s reasoning from both the researcher and end-user perspectives;
however, the usability and significance of this explanation is quickly lost when increasing the number
of inputs and outputs and the complexity of the fuzzy membership functions. Neural-Fuzzy Systems
(NFS) [130,131], are conceived to combine the advantages of both artificial neural networks and fuzzy
inference systems. NFS are an effective method of determining the unknown correlations in presence
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of high measurement uncertainties and show much better repeatability and technological maturity
compared to other techniques.

4.1. Neuro-Fuzzy Inference Concept

The estimation module of the CHMI2 infers the cognitive states (e.g., workload, fatigue,
attention, etc.) based on a combination of neurophysiological, environmental and task-specific input data
streams following approach (B) described in the previous paragraph. A neuro-fuzzy implementation
allows these input-output relationships to be described through fuzzy IF-ELSE rules, which provides
greater diagnosticity and transparency than other machine learning methods. Fuzzy systems provides
some flexibility in adapting the system parameters to individual users so that the correlations exploited
by the CHMI2 are unique to different individuals and their daily neurophysiological/mental state.
Fuzzy logic provides a simple structure to the classifier and support a greater degree of result
interpretability when compared to other machine learning approaches such as deep learning. The fuzzy
logic is encoded in a simple neural network, allowing the fuzzy system to be fine-tuned using offline or
online learning. The offline calibration of CHMI2 inference system is presented in Figure 15.
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Fuzzy logic captures well some aspects of the ambiguity and subjectiveness of human thinking,
and is used to model specific aspects of uncertainty. Unlike probability, which expresses the likelihood
of an event’s occurrence, fuzzy logic expresses the degree of truth of that event occurring. As an
example, the MWL of an operator can be expressed in the following manner:

• MWL has a probability of 0.15 to be high and 0.85 to be medium.
• MWL is high to a degree of 0.15 and medium to a degree of 0.85.

The categories of high, medium and low can be expressed by fuzzy sets. The degree to which an
observed event belongs to each category is described by the membership value of each fuzzy set.

4.2. Fuzzy Sets

In the context of the CHMI2 research, fuzzy sets are used to describe specific characteristics of
the human user, such as their neurophysiological or cognitive features. Fuzzy rules are then used to
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describe the relationship between the user’s neurophysiological and cognitive states, such as in the
case of HR, BLR, Dwell Time (DT), MFA in:

R1: IF [(HR is Low) AND (BLR is High) AND (DT is High)] THEN [(MFA is High)]
R2: IF [(HR is High) AND (BLR is Low) AND (DT is High)] THEN [(MWL is High)]

and so on. The parameters of the fuzzy sets (such as a set’s centres and spreads) are assumed to differ
across individuals. For example, a novice operator might have a workload tolerance as characterised
by the fuzzy set shown in Figure 16a while an experienced operator might have a workload tolerance
as characterised by the fuzzy set shown in Figure 16b.
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A suitable fuzzy inference system for CHMI2 then needs to specify (1) the number for fuzzy
sets used to represent each input feature, (2) the type and parameters of the membership function
used to describe each fuzzy set, (3) the rules which characterise the relationship between the input
features and output cognitive states, as well as (4) the inference method employed. Figure 16
illustrates typical Trapezoidal membership functions—“fuzziness” derives from the overlaps in the
membership functions.

4.3. Neuro-Fuzzy Networks

Neural fuzzy systems allow the structure of fuzzy inference systems to be expressed as a neural
network. Neural-fuzzy systems networks afford a high degree of flexibility in optimising the parameters
of the fuzzy inference system, given suitable training data. The architecture of a basic neural-fuzzy
network typically contains the following layers:

• Input layer: each node passes the input values to the next layer.
• Antecedent layer: each node fuzzifies the inputs using a membership function. The node output

is the fuzzy set membership for a given input parameter.
• Rule layer: each node combines the fuzzified inputs using a fuzzy AND operator. The node output

is the rule firing strength. For example, K Sugeno-type rules, where the rules can be formulated
as [9]:

Rule k: If x1 is A1n and x2 is A2n and . . . and xi is Ain then fj = pk0 + pk1×1 + pk2x2 + . . . + pkixi

where Ain is the nth membership function of input xi, fj is the output node function associated
with output j and pki denotes the coefficients of this node function for rule k and input i.

• Consequent layer: each node combines the fired rules using a fuzzy OR operator. The node output
is the membership value of the output parameter.

• Output layer: each node acts as a defuzzifier for the consequent nodes to obtain a crisp output.
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4.4. Membership Functions

As conceptually depicted in Figure 17, the fuzzy set is characterised by its membership functions.
These can assume various forms, which yield different advantages and disadvantages. The most
common types include Trapezoidal, Gaussian, and Sigmoidal functions, which are described below.
Additionally, Figure 18 only shows an example of some different membership function types but in the
real system, these three different types cannot be used together.
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(1). Trapezoidal membership function

The trapezoidal membership is defined by four different parameters (a, b, c, d), with a < b < c < d, as:

µ(x) =



0, x ≤ a
x− a
b− a

, a ≤ x ≤ b

1, b ≤ x ≤ c
d− x
d− c

, c ≤ x ≤ d

0, x ≥ d

(32)

(2). Gaussian membership function

The Gaussian membership function is defined by parameters (c, σ) as:

µ(x) = exp

− (x− c)2

2σ2

 (33)

(3). Sigmoidal membership function

The sigmoidal membership function is defined by parameters (a, c) as:

µ(x) =
1

1 + exp(−a(x− c))
(34)
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5. Sensor Performance Characterisation

Sufficient accuracy and reliability of neurophysiological measurements is essential to successfully
realise the human-machine system concepts described in Section 1. The uncertainties from sensors
are discussed in this section. Moreover, this section also presents the performance characterisation
methodologies for two neurophysiological sensors that are being used to support the development of the
CHMI2 concept: eye-tracking sensors and wearable cardiorespiratory sensors. Lastly, the propagation
of uncertainty from eye activity and cardiorespiratory from inference system are discussed.

5.1. Eye-Tracking Sensors

The eye tracking performance is commonly characterised by three parameters: sampling frequency,
accuracy and precision. Sampling frequency is number of measurements per second (Hz). Accuracy
is the difference between true eye position and measured position (in◦). Precision is the measured
gaze consistency (in◦). The precision of each cluster is calculated based on Equation (5) and the mean
accuracy computed from Equation (6):

θRMS =

√
θ2

1 + θ2
2 + . . .+ θ2

n

n
(35)

where θi denotes the angular distance of the i-th sample:

θacc = θi − θ
∗

i (36)

where θi is the mean location of all the points in cluster i, while θ∗i is the cluster’s actual location.
Additionally, the uncertainty analysis can be studied from the measured scene camera’s Field of

View (FOV). FOV is geometric distance from the object to the camera. The propagation of uncertainty
given by:

σFOV =

√
σ2

l +
(

l
d

)2
σ2

d −
2l
d σld

d
[
1 +

(
l

2d

)2
] (37)

where σl is uncertainty from the object measurement, σd is uncertainty from distance measurement, l is
the object known dimensions and d is the distance from the object to the camera. σld is the covariance
of measured distance. In order to get a conservative σFOV, σld is assumed to be zero.

In a recent study, we investigated the experimental characterisation of remote and wearable
eye-tracking sensors in detail [9]. The study covered the mentioned three parameters and the uncertainty
of FOV. The methodology for static performance is that subjects fixate on 16 static different points
spacing around with larger gaze angles. The precision and accuracy of gaze angles for both type of
sensors are presented in Figure 18. The accuracy of wearable sensor is consistent with a value of 1.7◦

across the gaze angle ranges while precision of the remote sensor is consistent with a value of 1◦ across
the gaze angle ranges.

The dynamic performance was studied by having participants track a moving object along a given
trajectory. Human error had a significant influence on the tracking performance since the results
revealed gaze trails that were leading or lagging the moving object, leading to poorer performance
compared to the static case. The 2-sigma accuracy with approximately 95% of all gaze points (Figure 19)
was calculated to 8.6◦ and 5.9◦ for the wearable and remote eye tracker, respectively.

Although not addressed by this study, blink rate performance is also an important aspect for
human-machine systems. The true blink rate can be quantified by manual counting from the recorded
video of the sensors. Using this, the blink rate error can then be calculated by:

BLRerror =
f alse positive + f alse negative

total no. o f blink
(38)
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5.2. Cardiac Sensors

The performance criteria for cardiorespiratory sensors are validity, reliability and sampling
frequency. Validity is the difference between the baseline and measured data. Reliability is the consistency
of the results within the variable. Sampling frequency is the same as described in Section 4.1. A common
methodology of characterising the performance of such sensors is to compare the measurements of
clinically validated sensors with the sensor of interest [29,30]. The validity can be calculated given by
Equations (9) and (10):

RMSerror =

√
1
n

∑n

i=1

(
xre f

i − xmeasured
i

)2
(39)

where n is the number of data and xre f
i and xmeasured

i are the reference and the measured values
respectively. The Correlation Coefficient (CC) is given by:
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where n is the number of data and x and y are the reference datum and the measured values respectively.
A comparative evaluation of the wearable sensor data against a clinically validated device is

pursued in the characterisation experiment. For heart activity, a clinically validated ECG sensor is
used as baseline while a spirometer is used for respiratory monitoring. Two types of exercises are
conducted, involving high physical and mental workload respectively. The physical exercise can be
subdivided into three parts: pre-exercises, exercise and post-exercise, lasting one minute, three minutes
and one minute, respectively. In the mental exercise, three sub-sections are carried out, including
Mental Rotation, Hampshire Tree Task and N-back Task. Consistently with the raw signal treatment used in
a majority of cardiac monitoring devices, Butterworth low-pass filtering is applied to the collected data,
so that signals higher than a selected cut-off frequency are lessened. This type of low-pass filter is the
most consistent noise removal process for most neurophysiological measurements, as it removes any
high-frequency content, which cannot be physically generated by biological processes. Such process
increases the accuracy of the neurophysiological measurement and is included in the experimental
characterisation as there would be little interest in characterising the raw data.

Table 9 presents the comparison of HRV measurements between a commercial wearable device and
a clinical-validated one. Overall, the RMS error is lower than 0.1 which means that there are minimal
errors between the two devices. Concerning the CC, the result shows good correlation (i.e., CC ≥ 0.75).

Table 9. Summary of validity of BioHarness in heart rate measurement.

Subject
Physical Testing Mental Testing

RMS Error CC RMS Error CC

1 0.0953 0.9153 0.0345 0.7878
2 0.0276 0.8839 0.0148 0.8997
3 0.1386 0.6312 0.1113 0.7008

5.3. EEG Sensors

The EEG performs measurements by using differential amplifiers, as schematically illustrated
in Figure 20. The circuit functions by comparing two input voltages from two different electrodes
and giving an output voltage that amplifies the difference between the two voltages and cancels out
common voltages. This is described by the equation below. The input signals can be compared in
various arrangements referred to as montages. A commonly adopted layout is the referential montage,
where all channels are compared with a common reference:

Vout = A
(
V+

in −V−in
)

(41)

The raw EEG signal measured is displayed in Figure 21. The shown measurement is performed
using 16 data electrodes, one reference electrode and one ground electrode. The placement of electrodes
is described following the 10–20 international system. Generally, the amplitude of the EEG signals
is up to 100 µV [101], however the amplitude of raw signals in the figure is much larger as they are
affected by a large interference from the mains power (240 V/50 Hz), which is discussed in Section 3.3.
Some blink artifacts are observed on several channels and particularly Fp1, Fpz and Fp2 but since these
raw measurements underwent no filtering, they are contaminated with a high interference from the
mains power.
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By applying suitable filters to the raw data, it is possible to extract the desired EEG signals,
as shown in Figure 22. Both windows in the figure display the EEG signals that are passed through
a 50 Hz notch filter. However, in addition to the notch filter, the signals in the right window are also
processed through a 0.1 Hz high pass filter and a 30 Hz low pass filter. The raw data gathered from
the EEG electrodes are processed with software filters for the high pass, low pass and notch filters,
where the digitized signals amplitude of the corresponding frequencies are reduced. The software uses
a Butterworth filter, with a slope of 12 dB/octave for the high and low pass filters. While the amplitude
of signals in both windows remains mostly within 100 µV, the signal in the left one is noisier compared
to the right window. Most importantly, the lack of the low-frequency high pass filter causes signals
in the left window do drift from the initial value. Henceforth, the filtered measurements in the right
window are the closest estimation of the electrical activity originated in the subject’s brain. Applying
the low pass and high pass filters eliminates the undesired components, as the signals of interest
mainly lie within 0.1 Hz to 30 Hz [132]. After frequency filtering, blink and other movement-related
artifacts are however still imbedded in the signal. These can most clearly be seen in the first three
channels as dips in the signal. Such neurophysiological artifacts are undesirable as these electrical
signals do not originate from within the brain [101,103]. Subsequent signal processing focusses on the
frequency domain as different cognitive states can be determined from the subject by using a power
spectrum analysis [132].Sensors 2019, 19, 3465 25 of 37 

 

 

Figure 22. Left: EEG signal with notch filter only. Right: EEG signal with notch, low pass and high 

pass filters. 

5.4. Propagation of Uncertainty 

This section describes the analysis of uncertainty propagated through the estimation module of 

CHMI2. The methodology of this analysis was introduced in [9]. Adaptive Neuro-Fuzzy Inference 

Systems (ANFIS) [133] are considered in this analysis. The propagation of uncertainty is calculated 

through five layers. The final uncertainty from the output layer is given by: 

 𝑦𝑗 = √∑(𝑓𝑖 ∙  �̅�𝑘
)
2
+ (

∏  𝐴�̂�(𝑥�̂�)𝑖∗

∑ ∏  𝐴�̂�(𝑥�̂�)𝑖∗𝑘∗
)

2

∙∑(𝑝𝑘�̂� ∙  𝑥�̂�)
2

�̂�≠0𝑘∗

 (42) 

where, i represents input, j represents output, 𝑓𝑖  and 𝑝𝑘�̂�  are known from K Sugeno-type rules 

describes in Section 4.3, k is number of rules,  𝐴�̂� is membership function from input layer which 

Gaussian membership function (Equation (33)) is used, 𝑖̂  denotes an iterator,  𝑥�̂�  is known 

uncertainty input and  �̅�𝑘
 is the uncertainty associated with normalisation layer, which was 

discussed in detail in [9]. 

In MWL case study, the participant has to accept new arrival or departure traffic from upstream 

ATM sectors by himself in this event. The ANFIS-based system was prompted to identify the 

correlation between the HR and BR in mental workload condition: 

1. If HR is high and BR is low, then MWL = 1 

2. If HR is mid and BR is mid then MWL = 0.5 

3. If HR is low and BR is high, then MWL = 0.1 

MWL is quantified by the number of aircraft in the scenario. Table 10 details the cluster centres 

for the participant. 

Figure 22. Left: EEG signal with notch filter only. Right: EEG signal with notch, low pass and high
pass filters.

5.4. Propagation of Uncertainty

This section describes the analysis of uncertainty propagated through the estimation module of
CHMI2. The methodology of this analysis was introduced in [9]. Adaptive Neuro-Fuzzy Inference



Sensors 2019, 19, 3465 25 of 37

Systems (ANFIS) [133] are considered in this analysis. The propagation of uncertainty is calculated
through five layers. The final uncertainty from the output layer is given by:

σy j =

√√√√√∑
k∗

(
fi · σwk

)2
+


∏

i∗ µAî

(
xî

)
∑

k∗
∏

i∗ µAî

(
xî

) 
2

·

∑
î,0

(
pkî · σxî

)2
(42)

where, i represents input, j represents output, fi and pkî are known from K Sugeno-type rules describes
in Section 4.3, k is number of rules, µAî

is membership function from input layer which Gaussian
membership function (Equation (33)) is used, î denotes an iterator, σxî

is known uncertainty input and
σwk

is the uncertainty associated with normalisation layer, which was discussed in detail in [9].
In MWL case study, the participant has to accept new arrival or departure traffic from upstream

ATM sectors by himself in this event. The ANFIS-based system was prompted to identify the correlation
between the HR and BR in mental workload condition:

1. If HR is high and BR is low, then MWL = 1
2. If HR is mid and BR is mid then MWL = 0.5
3. If HR is low and BR is high, then MWL = 0.1

MWL is quantified by the number of aircraft in the scenario. Table 10 details the cluster centres
for the participant.

Table 10. Cluster centres for heart rate and breathing rate for mental workload in ATM scenario.

HR (L/min) BR (L/min)

Low 63.2 11.5
Medium 64.9 14.6

High 68.3 15.3

The uncertainty input of HR σHR = 5.5 min−1 and BR σBR = 1.6 min−1 are applied to define the
output uncertainty of the fuzzy system which is illustrated on Figure 23. The high uncertainty region
occurs mostly where the rules get conflicted.
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6. Aerospace Applications

In recent years, the RMIT Cyber-Physical Systems (CPS) Group has conducted several Research
and Development (R&D) projects supported by the Australian Government and high-calibre industry
partners in the area of Cognitive Human-Machine Systems (CHMS) and Neuroergonomics for
avionics, Air Traffic Management (ATM), and defence/space systems. Numerous lessons were learned
from contemporary human factors/ergonomics and medical studies demonstrating that human
performance in complex and demanding tasks is affected by a variety of neurophysiological and
environmental factors, which can be readily measured and analysed using advanced cyber-physical
system architectures, including sensor networks and Artificial Intelligene (AI)/ML techniques.

Neurotechnology is a promising field of research attracting increased attention and resources.
Australia is an emerging player in this field, with several ongoing aerospace/defence and transportation
R&D initiatives and with various new-entrant enterprises, which have been founded to develop
neurotechnologies predominantly for precision/preventive medicine and advanced therapeutic
applications. In parallel with evolutions driven by a deeper understanding of the human brain
and its functions, intelligent automation and trusted autonomy are being introduced in present
day cyber-physical systems to support diverse tasks including data processing, decision-making,
information sharing and mission execution.

Due to the increasing level of integration/collaboration between humans and automation in these
tasks, the operational performance of closed-loop human-machine systems can be enhanced when the
machine monitors human stressors and cognitive states and adapts to them in order to maximise the
effectiveness of the Human-Machine Teaming (HMT). Recent technological developments have led to
neurophysiological observations becoming an increasingly reliable methodology to evaluate human
cognitive states (e.g., workload, fatigue and situational awareness) using a variety of wearable and
remote sensors. The adoption of ad-hoc sensor networks can be seen as an evolution of this approach,
as there are notable advantages if these sensors collect and exchange data in real-time, while their
operation is controlled remotely and synchronised.

6.1. Single Pilot Operation and Unmanned Aircraft Systems

Single Pilot Operations SPO are currently possible only in the military, general aviation and
business jet domains, whereas a crew of at least two pilots is currently mandated for airline transport
aircraft, i.e., the ones certified under the so-called Part 25 of the various national airworthiness policies.
Due to the substantial growth in commercial air travel demand and an aggravating global shortage
of qualified airline pilots [134], SPO is becoming an attractive option for airline transport aircraft
within the next two decades [135]. However, single pilot operated transport aircraft are faced with
great challenges, as the pilot on board may become incapacitated, thus resulting in potentially fatal
accidents. Moreover, SPO may in certain conditions pose an excessive cognitive demand on the single
on-board pilot, as the capacity for cognitive work is limited in humans. To address these challenges,
SPO concepts include novel avionics systems such as a Virtual Pilot Assistant (VPA) and a Ground
Pilot (GP) [136]. The combination of a VPA and GP provides a promising solution to perform the
functions normally accomplished by the Pilot Not Flying (PNF) in airline transport aircraft. The VPA
shall support advanced and highly automated surveillance, communication and flight management
capabilities, including adaptive task allocation through CHMI2. For instance, the VPA interfaces
with the Separation Assurance and Conflict Avoidance (SA&CA) function of the Next Generation
Flight Management System (NG-FMS), which supports autonomous flight planning, deconfliction
and real-time re-optimisation capabilities. Additionally, the VPA system shall promptly detect an
incapacitation event, thus triggering a reallocation of all tasks and giving the VPA autonomous
control while at the same instant alerting and transferring the human control authority to the GP.
The VPA shall therefore monitor the on-board pilot using non-intrusive sensors. Early VPA research
and experimentation will include a variety of monitoring devices for measuring central nervous
parameters, eye movements, cardiorespiratory parameters, facial expression and voice patterns.
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SPO involves various modes of operation, as discussed in [137] (see Figure 24). The first and
nominal mode includes the single on-board pilot and the VPA cooperating regarding the decision
making and flying tasks, while the GP provides dispatch information and communication with Air
Traffic Control (ATC).
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In nominal operation the GP will act in this role for a dynamically varying number of SPO aircraft
determined by the adaptive CHMI2 framework. Hence, if a GP is under high or low cognitive workload
the number of aircraft assigned will be adjusted. How the GP will maintain ongoing situational
awareness of, and switch context amongst, the assigned aircraft are important issues for the CHMI2

to address. Under a circumstance where the on-board pilot is under high workload, such as take-off,
landing and unforeseen events, a GP will be specifically allocated to the aircraft, so that the GP then
provides dedicated assistance. Hence the GP will act as a ground located PNF, where both human
operators would continuously monitor the instruments, radio communication and perform crosschecks
when notified about changes by the VPA. In the third mode the on-board pilot has become partially or
fully incapacitated. Here the VPA has full autonomy of the aircraft until a team of two GP take over
control authority and supervise the aircraft to a safe landing at the nearest airport available.

The main components of the VPA include the flight management, communication, surveillance
and CHMI2 modules, the corresponding system architecture can be seen in Figure 25 [136]. The CHMI2

is a crucial component of the VPA system, providing the necessary reductions in workload as well
as incapacitation-detecting capabilities that will support the case for SPO certification. The CHMI2

assists the pilot with several intelligent functions such as information management, adaptive alerting,
situation assessment as well as dynamic task allocation. The combination and the interactions between
these modules to support the on-board pilot and the GP is the core VPA. The system has some
important capabilities that includes a reliable, secure and high-speed Command and Control (C2) link,
where the GP can take direct control of the aircraft from the Ground Control Station (GCS) similarly to
a medium-large UAS, and an Airborne Surveillance and Separation Assurance Processing (ASSAP),
which provides autonomous SA&CA.
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6.2. One-to-Many and Air Traffic Management

The One-to-Many (OTM) concept refers to a situation in which multiple UAV are controlled and
commanded by a single operator. As of today, OTM operations are still challenging for the human
operator since they can induce an excessive mental workload due to cognitively demanding and
time-critical tasks [138]. The design of HMI2 for the supervisory control of multiple UAV is therefore
a main area of research. The HMI2 for supervisory control shall provide suitable information and level
of automation to maintain the cognitive states of the human operator within a desirable range [139].
Hence, the application of the CHMI2 concept is particularly promising for OTM ground control stations.
Applying the CHMI2 concept, the real-time adaptation in HMI2 ground control station is driven by the
human operator’s cognitive states: Mental Fatigue (MFA), Mental Workload (MWL) and Situation
Awareness (SA) to enhance decision making and mission performance [140,141].

The concept of a single human operator coordinating multiple assets is key to ATM, which however
deals only with a limited subset of functions: deconfliction, advisory/information/alert services and
traffic flow optimisation. Air Traffic Control (ATC), a major component of ATM is deemed one of the
most demanding cognitive tasks for human beings as it involves complex and time-critical situation
assessment and decision-making related to multiple aircraft. The MWL of Air Traffic Controllers
(ATCo) has been the main focus of several studies to improve the safety and efficiency of the ATM
system [61,142]. In order to quantify the MWL of ATCos, early studies used Electrocardiograph (ECG)
devices to monitor sinus arrhythmia as a measure [143]. One main limitation of this approach is that
the ATC task requires verbal communication, which affects the sinus arrhythmia measurements. Thus,
various other sensors were used to investigate MWL of ATCos. The neurophysiological sensors include
ECG, eye tracking and Electroencephalography (EEG) devices [57]. Most of the neurophysiological
parameters changed as expected during MWL increasing: Heart Rate (HR), Breathing Rate (BR),
Heart Rate Variability (HRV), and blood pressure. Likewise, a suitable set of neurophysiological sensors
are continuously studied with respect to MWL of ATCos feasibility and sensitivity.

The complexity of the ATC task correlation with spectral power was studied by EEG [72].
Additionally, fNIRS, one of neuroimaging sensors, also uses to study MWL in ATC mission; certified
professional controllers under realistic scenarios with emergent and typical condition were monitored.
The results show the relation of fNIRS and MWL in real scenarios [92]. Apart from MWL, Situation
Awareness is one of the key important cognitive states for ATCos. The eye tracking sensor was started
to monitor operators’ eye activities since visual workload is the main causes of MWL for ATCos [144].
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However, the use of a single sensor is not optimal. Hence, the deployment of neurophysiological
sensors to operational settings could help evaluate the cognitive state of staff assigned to perform
critical tasks and contribute to improving the safety and efficiency of human-machine systems [145].
The CHMI2 concept was applied successfully to the ATM domain, which has the important advantage
of involving reasonably standardised scanning patterns and phraseology, benefiting eye-tracking and
voice pattern analysis techniques respectively.

6.3. Space Applications

The CHMI2 concept and the associated neurophysiological sensor network implementations have
a clear potential in the space application domain. Since the NASA Mercury, Gemini, and Apollo
programs, sensor systems have been used to collect astronaut neurophysiological data to identify and
plan for support activities that counteract the effects of degraded performance on mission safety [146].
Likewise, during the shuttle era, an ECG system known as the Operational Bioinstrumentation System
(OBS) was used to monitor astronaut neurophysiological health during launch and re-entry phases [147].
Today, the International Space Station (ISS) contains the most comprehensive neurophysiological
sensor system known as the Crew Healthcare Systems (CHeCs) and is the primary means of astronaut
neurophysiological monitoring [148]. The CHeCs is comprised of a suite of neurophysiological sensors
including blood pressure (BP), electrocardiograph (ECG), and heart rate monitoring (HRM) systems.
The measurements from the CHeCs system are solely used to infer the real-time physical health state of
astronauts during periodic fitness and health evaluations, as well as to support scientific experiments on
cardiovascular physiology. Similarly, neurophysiological sensors are incorporated into the spacesuits
used during Extra-Vehicular-Activities (EVA) as well as other forms of advanced life support. As of
today, neurophysiological observations from the CHeCS and EVA spacesuit systems are not used to
infer astronaut cognitive state, but rather via a self-administered neurocognitive assessment [149].
The Spaceflight Cognitive Assessment Tool for Windows (WinSCAT) is a time constrained cognitive
battery comprised of well understood neurophysiological tests including verbal and visual memory,
mental arithmetic, sustained attention and spatial imagery [150]. The test is performed approximately
on a monthly basis and is assessed against the baseline performance of the individual determined in
pre-flight conditions to provide a “fitness-for-duty” assessment as opposed to real time monitoring.

In combination with state-of-the-art research into the development of comprehensive, wearable and
non-invasive neurophysiological sensors such as NASA Lifeguard system [151], existing space-based
neurophysiological sensor networks and cognitive assessment tools form in part the underlying sensor
framework to address the evolution towards human-machine systems based on real time cognitive
assessment for safety and mission critical systems. Additionally, the success (although limited) of
previous research [149] into inferring cosmonaut and astronaut cognitive state through voice pattern
analysis should be capitalized on, as current state-of-the-art neurophysiological sensor networks show
promise in removing previously encountered limitations in the system’s ability to deterministically
distinguish between stress or emotional arousal in recorded voice. Most importantly, and in direct
alignment to the requirements set in NASA’s Bioastronautics roadmap [152], the employment of closed
loop human machine systems and associated cyber-physical sensor networks will play a key part in
meeting the current challenges to mitigate human factors risks with low earth orbit (LEO) space flight
along with new and exciting challenges associated with lunar and long-term planetary missions.

7. Conclusions

This article addressed the increasingly important role of sensor networks in aerospace
cyber-physical system applications, focusing on the sensors used to enhance human-machine teaming,
such as those enabling the implementation ofCognitive Human-Machine Interfaces and Interactions
(CHMI2) system concepts. Many safety-critical tasks are inherent in aerospace applications such
as Air Traffic Management (ATM) and a reliable monitoring of the human operator will be highly
instrumental in the future due to the severe consequences of reduced performance. On the other
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hand, space applications currently mainly use sensor networks for medical monitoring purposes.
However, human-machine interactions in space are expected to evolve considerably in the future.
The main aspects associated with neurophysiological sensors were described: the state of art,
neurophysiological parameters and their relationship to human cognitive states. Depending on
the adopted neurophysiological measures, the minimum performance requirements are different.
Moreover, some of the measures can be affected by the operator’s level of training and experience such
as in the case of Heart Rate (HR) and Heart Rate Variability (HRV). The summary of cognitive states
shows that the combined use of diverse sensors in a network can improve the reliability and accuracy
of cognitive states estimation with respect to using only single measures, since the change in one
measure is typically correlated to several cognitive states. It is essential that the suite of sensors records
neurophysiological data reliably and accurately. This paper also briefly discusses the characterisation
of an eye tracking and cardiorespiratory sensor being used in the CHMI2 framework. The results show
that the sensors have an adequate performance for use in the framework.
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