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Medulloblastoma (MB) is the most common childhood malignant brain tumor and is

a leading cause of cancer-related death in children. DNA methylation profiling has

rapidly advanced our understanding of MB pathogenesis at the molecular level, but

assessments in Saudi Arabian (SA)-MB cases are sparse. MBs can be sub-grouped

according to methylation patterns from FPPE samples into Wingless (WNT-MB), Sonic

Hedgehog (SHH-MB), Group 3 (G3), and Group 4 (G4) tumors. The WNT-MB and

SHH-MB subgroups are characterized by gain-of function mutations that activate

oncogenic cell signaling, whilst G3/G4 tumors show recurrent chromosomal alterations.

Given that each subgroup has distinct clinical outcomes, the ability to subgroup SA-FPPE

samples holds significant prognostic and therapeutic value. Here, we performed the

first assessment of MB-DNA methylation patterns in an SA cohort using archival biopsy

material (FPPE n = 49). Of the 41 materials available for methylation assessments, 39

could be classified into the major DNA methylation subgroups (SHH, WNT, G3, and

G4). Furthermore, methylation analysis was able to reclassify tumors that could not be

sub-grouped through next-generation sequencing, highlighting its superior accuracy for

MB molecular classifications. Independent assessments demonstrated known clinical

relationships of the subgroups, exemplified by the high survival rates observed for

WNT tumors. Surprisingly, the G4 subgroup did not conform to previously identified

phenotypes, with a high prevalence in females, high metastatic rates, and a large

number of tumor-associated deaths. Taking our results together, we demonstrate

that DNA methylation profiling enables the robust sub-classification of four disease

sub-groups in archival FFPE biopsy material from SA-MB patients. Moreover, we
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show that the incorporation of DNA methylation biomarkers can significantly improve

current disease-risk stratification schemes, particularly concerning the identification of

aggressive G4 tumors. These findings have important implications for future clinical

disease management in MB cases across the Arab world.

Keywords: medulloblastoma, methylation, non-glial, pediatric, neuro-oncology

INTRODUCTION

Medulloblastoma (MB) is the most common malignant brain
tumor in children, accounting for ∼12% of childhood cancer
deaths around the globe (1–5). Over the last 10 years, integrative
genomics has rapidly advanced our understanding of the
molecular mechanisms governing MB pathogenesis, revealing
the syndrome to be more heterogeneous than previously
predicted (6–18).

Advancements in cancer genomics and genome-wide
transcription profiling now show that MBs comprise at least four
molecular subgroups, termed Wingless (WNT-MB: mutations
in CTNNB1, DDX3X, Chromatin-remodeling genes, and
TP53), Sonic Hedgehog (SHH-MB: mutations in PTCH1, SMO,
SUFU, TERT promoter, and Chromatin-remodeling genes),
Group 3 (G3: mutations in SMARCA4, chromatin-remodeling
genes, and genes of the TGF-β pathway), and Group 4 (G4:
chromatin-remodeling genes) (12). TheWNT-MB and SHH-MB
subgroups are characterized by gain-of-function mutations
that activate oncogenic cell signaling (10, 13, 18, 19). G3 and
G4 have a low incidence of recurring mutations but show
recurrent chromosomal alterations (18). These distinct genetic
features lead to diverse clinical outcomes (5, 7, 18, 20). Patients
with WNT-MB have an excellent prognosis with current
therapy schemes (5-years event-free survival ≥90%) and are
considered for the controlled reduction of treatment to minimize
radiation and chemotherapy exposure (21–25). The prognoses
of SHH-activated MBs are less favorable; SHH-MBs have an
intact blood–brain barrier (BBB) and are less responsive to
chemotherapy compared to WNT-MBs (22, 26, 27). Many
SHH-MBs are age-dependent, with those aged ≥17 months
more likely to harbor SMO and PTCH1 mutations (18, 28–32).
Subgroup-driven clinical trials are currently underway to assess
the efficacy of SHH pathway inhibitors such as vismodegib at
diagnosis or in recurrent or refractory SHH-activated tumors.

Patients with non-WNT G3 tumors have an unfavorable
prognosis, particularly if associated with MYC amplifications
(33), with ≥50% of cases metastatic at the time of diagnosis
(18, 27). G3 MBs are more common in males and infants and
currently lack defined precision therapeutics. In contrast, G4
patients (also known as glutamatergic) are the most common
molecular MB subgroup (20, 34–37) and show excellent survival
with current standard-of-care treatment (2, 19, 38–40).

Neuro-epithelial brain tumors are thought to affect younger
populations in Saudi Arabia (SA) compared to Western
countries; MBs are the second most prevalent tumors (∼13.3%)
after Glioblastoma multiforme (∼32%) (41). Despite advances in
the use of complementary molecular genetic techniques in SA,
themolecular events in SA-MB cases have not been characterized,

and there is a lack of validated prognostic biomarkers. In this
regard, studies assessing the DNA methylation profiles of adult
brain tumors have demonstrated great promise in sub-classifying
the disease and predicting clinical outcomes (42, 43). However,
the methylation events in MBs have been restricted to specific
genes and small cohorts, and its wider role in MB, specifically in
the Arab world, remains poorly characterized.

In this study, we report the first examination of MB-DNA
methylation patterns in SA using an extensive primary tumor
cohort (n = 49). We assessed DNA methylation patterns in
archival biopsy material (FPPE) to sub-classify SA-MBs and to
explore the applicability of such testing to clinical applications.
We herein establish methylation events as clinically useful
biomarkers and demonstrate how their incorporation into
current risk-stratification schemes could significantly improve
the accuracy of survival predictions in SA. This holds potential
for future precision therapeutic approaches aimed at improving
the outcomes of afflicted SA-MB patients.

MATERIALS AND METHODS

Patient Material
Both patient material and clinical data (n = 49) were obtained
from the KFMC according to protocols approved by the
institutional review board. Tumors were histopathologically re-
assessed according to the 2016 WHO classifications. Areas
of high tumor cell content (≥70%) were selected for DNA
extraction. We collected essential demographic and disease-
specific characteristics from the patient’s electronic medical
charts and radiology images to assess the extent of tumor
resection. Information on neurosurgical management was
obtained from operative records and standardized neurosurgical
reports. Archived pathology specimens were reviewed by a
board-certified neuropathologist (MA). All relevant ethical
regulations were followed.

DNA Methylation Profiling of the Saudi MB
Cohort
The 450 k or EPIC (850 k) methylation array was used to
obtain genome-wide DNA methylation profiles for FFPE tumor
samples, according to the manufacturer’s instructions (Illumina).
To investigate sample stability, samples were assessed using the
successor Methylation BeadChip (EPIC) array or whole-genome
bisulfite sequencing. Established molecular characteristics of the
WNT subgroup (CTNNB1 mutations, chromosome 6 loss),
MYC and MYCN amplifications, and chromosome 17 status
were assessed as previously described (13, 21–24, 27). Each MB
subgroup was assessed by immunohistochemistry and mRNA

Frontiers in Neurology | www.frontiersin.org 2 March 2020 | Volume 11 | Article 167

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Alharbi et al. Clincal Methylation Profiling of Medulloblastoma

expression signature assays. Methylation array processing was
performed on the 450 k array to obtain genome-wide DNA
methylation profiles for tumor samples. Data were generated
from formalin-fixed paraffin-embedded (FFPE) tissue samples.
A total of 250 ng of DNA was used for all FFPE tissues.
On-chip quality metrics of all samples were controlled. Copy-
number variation (CNV) analyses from the 450 k methylation
datasets were performed using the conumee Bioconductor
package version 1.3.0. Control samples displaying a balanced
copy-number profile from both male and female donors were
used for normalization.

Bioinformatics and Statistical Analyses
Array data analysis was performed in R version 3.2.0 34, using a
number of packages from Bioconductor and other repositories.
A Random Forest classifier that was compatible with both
450 k and EPIC platforms was generated that calculated the
class probabilities from Random Forest scores. Data (idat files)
were uploaded to the Classifier (www.molecularneuropathology.
org). Following the upload, the classification result was
returned automatically. All datasets were submitted to the GEO
database (GSE142627 https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE142627). For survival analysis, data were right-
censored at 3 years. Overall survival (OS) and progression-
free survival (PFS) were analyzed by the Kaplan-Meier (KM)
method. P-values were found using the log-rank test. All
statistical analyses were performed using SPSS 25.0 software
(SPSS Inc., Chicago, IL, USA). A two-tailed p-value of 0.05 was
considered significant.

RESULTS

Patient Demographics
Forty-nine patients were assessed (30 males, 19 females) with
a median age at diagnosis of 90.61 months (range: 39–152
months). Histopathological assessment by a board-certified
neuropathologist (MA) for all cases confirmed medulloblastoma,
grade IV, using 2016 WHO criteria (Figures 1A,B). The majority
of diagnoses (37/49 cases) had a classic histology; 8/49 patients
were classified with desmoplastic/nodular tumors, 3/49 had
LC/anaplastic tumors, and a single patient showed extensive
nodularity (Figure 1B). Amongst the patients, 39/49 had Gross
Total Resection (GTR), of whom 7/39 had relapse/progression
(Figure 1C). In total, 4/49 patients received Sub-Total Resection
(STR, relapse in 2/4 patients), 4/49 received near GTR (relapse in
2/4 patients), and 2/49 received Partial Resection (PR, relapse in
1/2 patients) (Figure 1C). Nine residual tumors were observed
after surgery/radiation therapy (Figure 1D). The average
radiation dose was 29.341 CSI, with an average radiation boost of
27.75 CSI, which did not differ across the subgroups. All patients,
excluding a single patient, received the same chemotherapeutic
regimen. Medulloblastoma DNA methylation subgroups were
closely related in the SA cohort. All patient characteristics have
been summarized in Supplementary Table 1.

We next examined whether the SA cohort could be
sub-classified by its DNA methylation patterns in archival

diagnostic FFPE samples (11, 12, 18, 44–46). From next-
generation sequencing (NGS) assessments, 45/49 tumors had
been previously assigned to knownWNT, SHH, G3,G4, and non-
WNT-SHH subgroups (Figure 2A) using the NGS method and
classification criteria as previously described (47, 48). Of the
tumors, 15 were non-WNT-SHH, 1 failed due to sample quality,
and 1 was unclassifiable. To assess the efficacy of methylation
sub-grouping, DNA methylation events were then profiled
using the Illumina Infinium HumanMethylation450 BeadChip
(450 k) arrays using established molecular characteristics of DNA
methylation events (42, 43). This permitted repeat analysis of
the cohort to compare the NGS and methylation methods
and to reclassify the “non-WNT-SHH cases” observed from
NGS analysis.

Materials were available for 41/49 cases, all of which were
classified, excluding a single sample that we deemed as a “non-
match.” Thus, 40/41 tumors could be sub-grouped (Figure 2A).
In total, 68.42% of the tumors were in agreement between
NGS and methylation status (Figure 2B). The fact that DNA
methylation can control several genes that could contribute to
MB progression may have accounted for the tumors that did
not correlate. Of these, nine of the non-WNT-SHH cases from
NGS assessments were classified by methylation as either G3
(five cases) or G4 (four cases). All WNT and SHH groups were
matched by the two methods. Of note, a case that failed in NGS
passed the methylation assay as a G4 tumor. This highlighted
the accuracy for MB subgrouping to classify tumors that
were deemed unambiguous molecular subgroups that could be
neither assigned nor classified by the molecular neuropathology
classifier. The high prevalence of G4 tumors was consistent with
reports of this subtype having the highest occurrence in other
cohorts (20, 34–37).

Methylation Subgroups Show Distinct
Clinical and Pathological Features
We next investigated whether the clinico-pathological features
of the methylation subgroups were consistent with those
reported in previous cohorts (12, 18, 46). SHH-MB subgroups
showed significant enrichment for desmoplastic/nodular
(DN) pathology, which was consistent with previous
studies (24) (Figure 3A). G3, G4, and WNT tumors were
predominantly of classic histology (Figure 3A). All subgroups
were predominantly males, excluding G4 tumors, which
approached an uncharacteristic 50:50 male/female ratio
(Figure 3B). G3 MBs are more common in males, consistent
with what was observed in our cohort, but the high prevalence
of female G4 sub-grouped patients has not, to our knowledge,
been reported previously and may be unique to the SA cohort.
WNT and SHH subgroups showed favorable outcomes, as
previously reported from IHC studies, showing low levels of
tumor recurrence (Figure 3C). Recurrence was most prevalent
in G4 groups, which again was surprising. Dissemination via
the cerebrospinal fluid (CSF) is indicative of tumor malignancy
and was most prevalent in G3, followed by G4 (Figure 3D).
Whilst the aggressive nature of G3 tumors would be expected
(particularly when associated with MYC amplifications), the
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FIGURE 1 | (A–D) Patient characteristics.

high metastatic rates in G4 tumors were unexpected and again
may represent a unique feature of the SA cohort.

Methylation Subgroups Can Dictate
Survival Outcomes for SA-MB Patients
In view of the changes in clinical and pathological features
observed, we investigated the prognostic potential of the
individual DNA methylation subgroups in our SA cohort
(Figure 4). We first examined the extent of tumor resection
based on post-operative imaging, which we classified as gross
total (GTR), near GTR (≥90%), subtotal (STR 51–91%), or
partial (PR 10–50%). Whilst most patients underwent GTR,
STRs were prevalent in the WNT subgroups (Figures 4A,B).
There was no obvious benefit of GTR over STR, as previously
reported, but such comparisons were limited by the small
sample size (49). In terms of treatment, G4 and SHH subgroups
received the most prolonged radiotherapy regimens (≥30 days,
Figure 4B), though the radiation doses were comparable between
the groups. The percentage of deaths were, as expected, highest
in the G3-MB subgroup (Figure 4C). Consistent with the CSF
findings, G4 tumors showed a surprisingly high percentage of
deaths, exceeding those of the SHH subgroup, which typically
respond poorly to MB therapy (Figure 4D). No deaths were
observed in the WNT-MB subgroup, consistent with the limited

aggressiveness of these tumors. These findings were confirmed by
Kaplan Meier (KM) analysis (Figure 5). The 3-years OS for the
entire cohort was 0.707 (95% CI: 0.540–0.823) and the 3-years
PFS was 0.685 (95% CI: 0.519, 0.804). We observed a significant
difference in survival amongst the molecular subgroups from
pooled analysis (p = 0.028). The 3-years OS for the SHH
subgroup was 0.778 (95% CI: 0.365–0.939) compared to 0.375
for G3 (95% CI: 0.087–0.674) and 0.759 for G4 (95% CI: 0.670–
0.975), which was again surprising. Additionally, the 3-years
PFS for the SHH subgroup was 0.778 (95% CI: 0.470–0.939)
compared to 0.375 for G3 (95% CI: 0.087–0.674) and 0.714 for
G4 (95% CI: 0.472–0.860) (p = 0.035 across all four subgroups).
No events were observed in the WNT group. It is therefore
advised that patients with WNT-MB in SA be considered for
the controlled reduction of treatment to minimize radiation and
chemotherapy side effects (21–25).

DISCUSSION

Medulloblastoma (MB) is the most common pediatric brain
tumor in SA, with a high incidence amongst children aged ≤5
years (41). Disease dissemination is an early event inMB, with up
to ∼40% of patients showing metastases at diagnosis, with poor
survival. Metastatic disease and tumor recurrence are responsible
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FIGURE 2 | (A) Medulloblastoma next-generation sequencing (NGS) and DNA methylation profiling. (B) Classifications are shown according to the accepted coding

for MB tumors: G3 (yellow), G4 (green), SHH (red), WNT (blue), and non-WNT/SHH (gray). A sample not classified by NGS (black) was classed as a G4 tumor through

methylation analysis. Purple represents G3/G4 subgrouping by NGS that were subclassed as G3 tumors through methylation profiling. The correlation between NGS

and methylation status was 68.42%. A total of eight samples could not be classified for methylation subgrouping due to insufficient sample material.

for the low survival rates, and those who survive frequently show
treatment-related adverse effects (5, 20, 35, 36, 38, 40, 50–53).

In this study, we report the first comprehensive investigation
of gene-specific DNA methylation profiles in SA. Our hospital
is a major referral center for pediatric oncology, and the cases
represent most regions of SA. The SA MB cohort highlights the
potential of epigenetics to improve disease management in the
Arab world. Using cross-validated class-discovery approaches, we
demonstrate that MBs in SA can be subdivided into the four
major DNAmethylation subgroups SHH, WNT, G3, and G4 (12,
18, 46). Independent assessments of each subgroup demonstrated
a series of previously described relationships, exemplified by
the excellent responsiveness and high survival of WNT patients
under standard treatment protocols (13, 18, 21–25, 27, 45, 54, 55).
Unique features were also identified, namely the aggressiveness of
G4 tumors, leading to ∼1/3 deaths. This expands our knowledge
of themolecular aberrations involved inMB tumorigenesis in SA.

DNA methylation assessments allowed the robust
discrimination of subgroup status in 39/41 tumors in FFPE
biopsies, which were comparable to the rates of transcriptomic

methods (43/49). This offered accurate distinctions in the
sub-classification of SA patients from archival cohorts (33). A
subset of 8/49 samples could not be classified due to insufficient
material for our analysis. Thus, our methylation assessments
were more accurate than the ∼6% reported in previous cohorts
(22, 24, 43, 55, 56). Importantly, methylation analysis permitted
the classification of tumors that could not be sub-grouped
through NGS assessments, highlighting its higher accuracy for
MB sub-grouping.

G4MBs are the most prevalent biological subtype, comprising
∼40% of all MB tumors, which predominantly occur in those
aged 3 to 16 years (22, 23, 50, 57, 58). G4 is reportedly 3-
fold more frequent in males than females across all age groups,
with an intermediate prognosis and 5-years survival reaching
∼80% with standard therapy, although non-metastatic tumors
with chromosome 11 loss have an excellent prognosis, with >

90% survival (18, 44, 59). Up to 30–40% of G4MB patients have
metastases at diagnosis and are treated as high risk (7, 49). Adults
with G4 MBs have a significantly poorer prognosis compared
to the SHH- or WNT-subtypes (22, 23, 57). In our cohort,
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FIGURE 3 | Clinical and pathological data of the medulloblastoma methylation subgroups. (A) Histological classification in each subtype. (B) Gender percentage in

each subtype. (C) Percentage of recurrence in each subtype. (D) CSF percentage dissemination in each subtype.

the male/female ratio was close to 50:50 in the G4 subgroup,
arguing against a high gender preference in the SA population.
This was discordant with the male/female ratios reported in
previous cohorts, in which 80–90% of G4 cases are males. The
majority of G4 tumors were of classic histology, with the rest of
large cell/anaplastic histology 2, consistent with previous findings
(7, 10, 18, 44, 49, 59). A high number of tumors showed CSF
dissemination, suggestive of metastasis. The number of deaths in
the G4 subgroup was surprisingly high (36.36%), indicative of a
lower prognosis that the> 90% survival reported in other cohorts
(7). These results imply a more aggressive nature of G4 MBs in
SA carriers that may result from both genetic and environmental

factors. The discrepancies may also be, in part, due to study
limitations, including our small sample size (n = 21 G4 tumors),
lack of adjustment for disease characteristics, cancer treatment
modalities, or the length of follow-up. In addition, we did not
re-evaluate the cases for additional molecular diagnostics such as
copy number profiling, and such analyses may further explain
the unique features observed in G4-SA tumors. Future studies
needed to further evaluate this observation.

Our study was performed in an all-SA cohort where all study
participants underwent the samemethylation-based assessments.
The follow-ups were extensive, and tumor characteristics and
outcome data were collected in a prospective manner. The
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FIGURE 4 | Therapeutic strategy and outcomes of the SA medulloblastoma methylation subgroups. (A) Number of cases received GTR, STR, near GTR, and PR

surgical resection. (B) Percentage of cases in each subtypes which received radiotherapy. (C) Percentage of deaths in each subtype. (D) Percentage of GTR, STR,

near GTR, PR in each molecular subtype.

majority of MB patients received treatment in a single cancer
center with consistent treatment guidelines. This homogeneity of
data collection strengthens the validity of our prognostic analysis,
revealing G4 tumors in SA to represent an aggressiveMB subtype.

Our cohort displayed similar features to previous studies
regarding the aggressiveness of G3 tumors (23, 30, 50, 57, 58, 60).
G3 and G4 MBs were more closely related than WNT and SHH
and appear as non-WNT/non-SHH in the revised 2016 WHO
classification, but historically these tumors are molecularly and
clinically heterogeneous (10, 18, 44, 49, 50, 59, 61). G3MBs cause
∼25% of all cases of MB (16.32% in our cohort) predominantly
amongst infants, with a peak diagnosis between ages 3–5 years.

In our cohort, the mean age at diagnosis was 90.61 months,
suggestive of delayed disease progression. The male-to-female
ratio of these tumors has been reported as 1:2, with a∼60 5-years
overall survival in children and a 45% 5-years overall survival
in infants (7). The poor prognosis of G3 MBs is related to the
young age of metastases (∼50% of patients vs. 55.55% in our
cohort) at diagnosis, large cell/anaplastic (LCA) histology (25%
of tumors in our cohort), and MYC amplification (33). G3 MYC-
amplified tumors confer an especially short survival, with only
1 in 5 patients surviving 5 years. G3 MBs also rarely recur at
the original tumor site, consistent with the ≤10% recurrence
observed in this study. G3 tumor metastases are frequent, but the
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FIGURE 5 | Overall survival (OS) and progression-free survival (PFS) analyzed

by the Kaplan-Meier method.

rates do not dictate survival. Significant differences in survival
amongst the molecular subgroups from pooled analysis (p =

0.028) was also evident; the 3-years OS for the SHH subgroup
was 0.778 (95% CI: 0.365–0.939) compared to 0.375 for G3
(95% CI: 0.087–0.674) and 0.759 for G4 (95% CI: 0.670–0.975),
highlighting the aggressive nature of G4 tumors in the cohort.
The 3-years PFS for the SHH subgroup was 0.778 (95%CI: 0.470–
0.939) compared to 0.375 for G3 (95% CI: 0.087–0.674) and
0.714 for G4 (95% CI: 0.472–0.860) (p = 0.035 across all four
subgroups). Given the close association of SA G3 cohorts to those
previously reported, we recommend that SA G3-MB children
in the presence/absence of disease spread should be assigned
to standard-risk groups to avoid under-treatment. Precision
therapies are yet to be developed for G3 tumors due to our limited
understanding of tumorigenesis. A consistent finding was the
low number of deaths observed in WNT subgroups, which we
confirmed through KM analysis (18, 25, 62). Given these low
rates, we recommend that this tumor subgroup should receive
reduction therapy in SA, thus avoiding unnecessary treatments
that have physical consequences for patients and their families
and place a substantial financial burden on SA healthcare centers.
The development of rational treatment approaches should also
be focused on high-risk and metastatic non-WNT/non-SHH
patients to suppress the poor survival rates of these subgroups in
SA. As precision therapeutics for G3 and G4 tumors improve, the
addition of DNAmethylation biomarkers is likely to significantly
improve survival predictions at diagnosis in SA, as described for
previous cohorts (63–65). Our SA cohort further highlights the
essential role of the methylation array as a prognostic tool to
improve clinicians’ ability to manage MB patients.
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