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VitD3 may contribute to a successful pregnancy through modulation of immune responses, so
VitD3 deficiency may have a role in the immunopathogenesis of unexplained recurrent
spontaneous abortion (URSA). However, the mechanisms of immunomodulatory actions of
VitD3 in decreasing the risk of recurrent spontaneous abortion have not been understood well.

Objective: The purpose of this research was to investigate the influence of 1,25VitD3 on
IL-25 and related cytokines of Th17 cells including IL-17A, IL-6, and IL-23 in peripheral
blood mononuclear cells of healthy women as a control group and women with
unexplained recurrent spontaneous abortion.

Method: Isolation of peripheral blood mononuclear cells (PBMCs) was performed from
peripheral blood of the subjects of the studied groups (20 women with URSA as a case
group, and 20 control women). The effects of 1,25VitD3 (50 nM, for 24 h) on the studied
parameters were evaluated and were compared to the positive and negative controls
in vitro. Flow cytometry analysis was used to determine the percentages of regulatory
T cells and Th17 cells. For gene expression measurement and cytokines assay, real-time
PCR and ELISA were carried out.

Results: The proportion of Th17 cells in women with URSA was considerably higher than in
the control group. IL-25mRNA and protein levels in cultured PBMCs fromwomenwith URSA
were lower than the controls. 1,25VitD3 increased IL-25 expressions at both the protein and
mRNA levels in PBMCs from women with URSA relative to the control group. Additionally,
1,25VitD3 treatment not only significantly decreased the percentage of Th17 cells frequency
but also reduced expressions of IL-6, IL-17A, and IL-23 in PBMCs from women with URSA.

Conclusion: 1,25VitD3 may diminish inflammatory responses cells via downregulation of
IL-25 expression. It could be an interesting subject for future researches in the field of the
immunopathology of URSA to identify molecular pathways in URSA treatment.
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INTRODUCTION

One of the most serious pregnancy complications is unexplained
recurrent spontaneous abortion (URSA), which refers to three
or more consecutive pregnancy losses before 20 completed
gestation weeks (Dimitriadis et al., 2020). URSA is usually 50%
without any recognizable endocrine, genetic, infectious, and
anatomical factor that affects 1–5% of fertile women
(Dimitriadis et al., 2020; Giannubilo et al., 2012).
Idiopathic abortions are caused by disrupted immune
responses, according to new evidence (Guerin et al., 2009;
Abdollahi et al., 2020a). Interleukin-25 (IL-17E) is a cytokine
in the IL-17 family with a sequence that is 16–20% identical to
that of IL-17A (Pan et al., 2001; Kolls and Lindén, 2004;
Iwakura et al., 2011). In terms of structure and biological
function, IL-25 is distinct from other members of the IL-17
family (Lee et al., 2001; Pan et al., 2001; Kolls and Lindén,
2004; Iwakura et al., 2011; Mantani et al., 2015). IL-25 is
released by activated Th2 cells, bone marrow-derived mast
cells, vascular endothelial cells, alveolar macrophages,
basophils, and eosinophils (Fort et al., 2001; Pan et al.,
2001; Kim et al., 2002; Wang et al., 2007; Divekar and Kita,
2015). Peripheral blood mononuclear cells (PBMCs),
especially CD4+ T cells, are the main sources of IL-25 in
the bloodstream (Licona-Limón et al., 2013; Fahy, 2015; Barati
et al., 2020). CD4+T cells, which include T helper 1 (Th1), Th2,
regulatory T cells (Tregs), and Th17 cells, play an important
role in the maternal immune response (Caruso et al., 2009;
Saito et al., 2010; Figueiredo and Schumacher, 2016; Barad
et al., 2017; Cyprian et al., 2019; Pei et al., 2019; Muyayalo et
al., 2020).

Th17 cells elicit inflammatory reactions by producing
cytokines such as IL-22, IL-21, IL-17A, IL-17 F, and TNFα as
the pro-inflammatory cytokines (Veldhoen et al., 2006; Abdollahi
et al., 2015a; Abdollahi et al., 2016a; Konkel et al., 2017; Fujimoto
et al., 2020).

The active form of VitD3 (1,25(OH)2D3, 1,25VitD3) is a
multi-target hormone (Heyden and Wimalawansa, 2018) that
has a critical role in bone health by regulating calcium and
phosphate homeostasis (Eisman et al., 1979; Makishima et al.,
2002; Veldurthy et al., 2016). Beyond the classical function, it
was found that upon binding to vitamin D receptor, VitD3
regulates function and differentiation of different immune cells
including macrophages, B cells, dendritic cells, and T cells
(Umar et al., 2018; Wang et al., 2020). VitD3 has been
shown to contribute to decidualization and implantation via
the modulation of inflammatory and immune responses leading
to successful pregnancy (Luk et al., 2012; Dabrowski et al., 2015;
Gonçalves et al., 2018; Martens et al., 2020). In 85% of pregnant
women, VitD3 deficiency is common and may be associated
with an increased risk of pregnancy complications, such as
preeclampsia, infertility, and abortion (Vijayendra Chary
et al., 2015; Blomberg Jensen et al., 2016).

To our knowledge, no research has been carried on the
evaluation of IL-25 expression and Th17 responses in
PBMCs from women with URSA compared to the healthy
women (as the controls) in the presence of 1,25 VitD3. In

this study, we evaluated the frequency of Th17 cells, as well
as the levels of IL-25, IL-17A, and IL-6 as related cytokines in
PBMCs from women with URSA and controls, as well as the
possible correlations.

MATERIALS AND METHODS

Subjects
This was a case-control study that was conducted from 2019 to
2021 on 20 non-pregnant women with RSA (the case group), and
20 fertile non-pregnant women (the control group). The controls
had at least one normal delivery. Women in both the case and the
control groups were at reproductive age and were not pregnant as
indicated by a negative result in the blood HCG test. They were
with regular menstruation, a normal BMI, and without any
anatomical or genetic abnormalities. The women in the case
group did not have any medical problems (except for RSA) and
did not take any medication. The exclusion criteria for the case
group were fewer than three consecutive miscarriages, positive
screening tests such as hormone tests, viral infections (HIV, HBV
and, HCV), agglutination assay (TPPA) for detection of
antibodies against the causative agent of syphilis,
autoantibodies (anti-phospholipid antibodies, antinuclear
antibodies, anti-cardiolipin antibodies, lupus anticoagulant
antibodies), female and male, and karyotypes.

Inclusion criteria for the case group were normal results in the
mentioned lab test panel, VitD3 deficiency (less than 20 ng/ml),
as well as no consumption of vitamin D supplements in the
previous 3 months.

Inclusion criteria for the controls were normal results in the
routine lab test panel (as mentioned above), VitD3 deficiency, no
consumption of vitamin D supplements in the previous
3 months, no history of miscarriage, and they had at least one
healthy child.

Semen analysis was conducted for male partners of all studied
women to ensure that sperm count, sperm shape, and movement
were normal.

Isolation of PBMCs
PBMCs isolation was carried out by Ficoll, lymphosep (Biosera,
UK) from 10 ml of peripheral blood. After twice PBMC washing
with PBS (phosphate-buffered saline, Sigma-Aldrich, Israel),
106 cells/ml were cultured in media (RPMI-1640 with 10%
heat-inactivated fetal calf serum (FCS), 100 U/ml Pen-Strep,
2 mM L-Gln). For evaluation of cell viability, Trypan Blue dye
exclusion was used.

Optimization of 1,25VitD3 Concentration
1,25VitD3 (50 nM) for 24 h was selected as the optimized
concentration and time of treatment. Six-well plates were used
for PBMC culture (2 × 105/ml of media) with adding the different
concentrations of 1,25 VitD3 [10, 30, 50, 100 nM, and 0 (control)]
for 12, 24, 48 and 72 h. Optimization of the concentration of
1,25VitD3 was achieved by assessing the proportion of Tregs and
Th17 cells among isolated PBMCs from four women with RSA,
using flow cytometry analysis FACS Calibur (BD, USA).
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Cell Culture
PBMC (2×106/subject) was seeded in each well of six well plates.
For each subject (for flow cytometry and real-time PCR analyses),
there were four experiments as described in the previously
published study (Abdollahi et al., 2020b): 1. with 1,25VitD3
(Sigma, Israel, 50 nM for 24 h) treatment; 2. with PHA (Gibco
Company, USA, 10 µM) treatment; 3. with the media only (as the
baseline), 4. uncultured PBMCS.

Flow Cytometry Detection of Th17 Cells
PBMCs (1×106) were treated with 50 ng/ml PMA (eBioscience,
USA) and 1 μg/ml ionomycin (eBioscience, USA) to stimulate for
intracellular cytokine production (for 5 h in the presence of
brefeldin A (eBioscience, USA) at 37°C and 5% CO2). After
that, cells were stained for surface of the markers with anti-
CD8 conjugated with FITC and anti-CD3 conjugated with PE-
Cy5 (BD Biosciences, USA) using the required buffers. The cells
were fixed/permeabilized buffer (eBioscience, USA). Isotype
control or anti-IL17 (PE-conjugated) was used for intracellular
staining of Th17 cells (eBiosciences, USA).

Flow Cytometry Assessment
FACS Calibur system was used for flow cytometry assessment
(1×105 cells). The data were analyzed by the Cell Quest software
(Becton Dickinson, USA).

Real-Time PCR
RNA extraction kit (Invitek, Germany) was used for total RNA
extraction from PBMCs according to the manufacturer’s
instructions. Reverse transcriptions were performed by
RevertAid™ Hprimers (Germany). Primer-BLAST was
performed to verify the specificity of primers. Checking RNA
quality was carried out by agarose gel (2%) electrophoresis that
appeared 5.8, 18, and 28 S bands by a UV light transilluminator.
The total volume of all PCR reactions was 20 μl containing 10 µl
of Real-time PCR -SYBR Green Master Mix (Takara, Japan),
0.3 µl of each primer (Table 1), and 7.4 µl of RNase-free water.
Rotor-Gene Q cycler (Qiagen, Germany) performed real-time
PCR. The following standard PCR reaction conditions were used
for all transcripts: 10 min at 95°C, 15 s at 95°C (45 cycles), 30 s at
57°C, and 1 min at 60°C.

Logarithmic dilution series of the total RNA was used to
construct 10-fold dilution standard curves for IL-23, IL-6, IL-
25, and IL-17A. B2M was used as the internal control gene to
normalize mRNA levels between the mentioned cytokines.

ELISA
Serum VitD3 levels and sex hormones (FSH, LH, Estradiol,
Progesterone, and Prolactin) of all subjects were measured by

ELISA (25-Hydroxy vitamin kit, EuroImmune, Germany)
following the manufacturer’s protocol.

To measure the levels of cytokines, PBMCs (1 × 106 cells/ml)
were cultured in RPMI media (which was described previously)
with 50 nM 1,25VitD3 or absence of that. Cell culture
supernatants were collected after 72 h and were assayed for
concentrations of soluble IL-10, IL-25, IL6, IL-17A, and IL-23
by linked immunosorbent assay using ELISA kits (Biolegend,
USA). All samples were run in duplicate. The sensitivity of each
assay was as follows: 0.8 pg/ml (IL-17A), 1.6 pg/ml (IL-6), 3.5 pg/
ml (IL-25), and 2.45 pg/ml for IL-23. Coefficients of variation
(CV) were <10% and <5% for inter-assay and intra-assay,
respectively.

Analysis of Statistics
SPSS 16.0 software was used for statistical analysis. Mean data
were compared by ANOVA and parametric T-test. P-values of
less than 0.05 were regarded as significant. For analyzing all of the
inter-group comparisons (the comparison of the studied
parameters between the case and the control groups), and for
accurate normalization, 1,25VitD3/untreated relative gene
expression of between two groups was compared. The data is
presented as mean ± standard error (SE).

RESULTS

There was no significant difference in mean age between the
control group [27.23 ± 3.5 years (range 24–31 years)] and women
with RSA [29.72 ± 2.9 years (range 26–32 years)] (p > 0.05). No
significant variations were found in the serum level of sexual
hormones between the case and the control groups (Table 2).
VitD3 serum levels were statically similar between the two groups
(7.8 ng/ml ± 1.2 versus 6.9 ng/ml ± 1.0; p > 0.05).

1,25VitD3 increased IL-25 expressions at both protein and
mRNA levels in women with URSA relative to the control group.

IL-25 serum levels were significantly lower in women with
URSA than in the control group. IL-25 concentrations in the cell

TABLE 1 | Primer sequences used in real-time quantitative reverse transcriptase polymerase chain reaction analysis.

Target gene Sequence 5–39 Purpose Product length (bp)

β2M 5′-TTGTCTTTCAGCAAGGACTGG-3′ Forward Reverse 127
5′-CCACTTAACTATCTTGGGCTGTG-3′

IL-25 5′-ACTACTTCAAGTTCCACAACATGC-3′ Forward Reverse 112
5′GAGTGTCCGCTGCTTCTCTG-3′

TABLE 2 | Sex hormone levels of the case and control groups.

Sex hormone Case group Control group P value

N = 20 N = 20

FSH(mIU/ml) 4.6 ± 3.8 5.4 ± 3.66 0.36
LH (mIU/ml) 12.8 ± 17.8 12.1 ± 16.4 0.89
Prolactin (ng/ml) 21.4 ± 22.8 16.0 ± 20.6 0.24
Progesterone (ng/ml) 4.5 ± 6.8 5.2 ± 5.4 0.72
Estradiol (pg/ml) 15.1 ± 19.0 14.7 ± 19.3 0.73
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culture supernatants were significantly lower in women with
URSA relative to the control group (105.320 ± 22.2 versus.
324.147 ± 18.500, p � 0.02; Figure 1A). Furthermore, IL-25
levels (1,25VitD3/Untreated) decreased in women with URSA
relative to the control group (3.05 ± 0.20 versus. 0.94 ± 0.09; p �
0.0001; Figure 1B).

In the case group, 1,25VitD3 treatment significantly improved
IL-25 expression at both levels of mRNA (336.82 ± 28.5 versus.

110.14 ± 25.05; p � 0.02; Figure 1C) and protein (336.82 ± 28.51
versus. 110.14 ± 25.05; p � 0.02; Figure 1A) compared to the
untreated PBMCs.

The relative gene expression of IL-25 (1,25VitD3/untreated)
increased in the case group in comparison to the control group
(2.52 ± 0.60 versus. 0.94 ± 0.09; p � 0.01; Figure 1D).

1,25VitD3 decreased the percentage of Th17 cells in women
with RSA.

FIGURE 1 | IL-25 expression at mRNA and protein levels. (A). IL-25 serum levels were significantly lower in women with URSA than in the control group. IL-25
concentrations in the cell culture supernatants were significantly lower in women with URSA relative to the control group. (B).1,25VitD3/Untreated relative gene
expression for IL-25 levels decreased in women with URSA relative to the control group. (C).1,25VitD3 treatment significantly improved IL-25 expression at mRNA level
compared to the untreated PBMCs in URSA patients. (D). 1,25VitD3 treatment significantly improved IL-25 expression at protein level compared to the untreated
PBMCs in URSA patients IL-25 relative gene expression (1,25VitD3/untreated) increased in the case group in comparison to the control group (2.52 ± 0.60 versus.
0.94 ± 0.09; p � 0.01; Figure 1D).

FIGURE 2 | Frequency of Th17 cells and ROR-γt gene expression in URSA and control groups. (A). The proportion of Th17 cells in PBMCs of women with URSA
cells were significantly higher compared to the control group. In PBMCs of women with URSA, the percentage of Th17 cells decreased after treatment with 1,25VitD3
relative to untreated PBMCs (B). ROR-γt gene expression was higher in PBMCs of women with URSA than in PBMCs of controls. Treatment with 1,25VitD3 decreased
ROR-γt gene expression at the mRNA level relative to untreated PBMCs in women with URSA.
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In contrast to PBMCs of the controls, the proportion of Th17
cells in PBMCs of women with URSA cells were significantly
higher (2.94 ± 0.24 vs. 1.01 ± 0.09, p � 0.0001; Figure 2A). In
PBMCs of women with URSA, the percentage of Th17 cells
decreased after treatment with 1,25VitD3 relative to untreated
PBMCs (1.02 ± 0.28 vs. 3.450 ± 0.34, p � 0.0001; Figure 2A),
while 1,25VitD3 treatment did not change significantly the
frequency of Th17 cells compared to untreated PBMCs in
the control group (0.98 ± 0.12 vs. 1.37 ± 0.16, p > 0.05;
Figure 2A).

1,25VitD3 decreased ROR-γt gene expression in women
with URSA.

ROR-γt gene expression was higher in PBMCs of women with
URSA than in PBMCs of controls (314.24 ± 58.7 vs. 138.14 ± 25.5,
p � 0.006; Figure 2B). Treatment with 1,25VitD3 decreased
ROR-γt gene expression at the mRNA level relative to
untreated PBMCs in women with URSA (139.09 ± 50.99 vs.
316.41 ± 50.99; p � 0.002; Figure 3B) but not in PBMCs from
controls (61.25 ± 19.08 vs. 145.94 ± 40.21; p > 0.05; Figure 2B).

1,25VitD3 decreased IL-6 levels in cell culture supernatants in
women with URSA relative to the control group.

IL-6 levels in the cell culture supernatant increased
significantly in the case group in comparison to the control
group (1,120.28 pg/ml ±118.67 versus 1,099.27 pg/ml±118.67;
p � 0.0001; Figure 3A).

In cell culture supernatants, 1,25VitD3 treatment decreased
IL-6 levels compared to untreated PBMCs only in the case group
(649.25 pg/ml±99.56 versus 1,120.28 pg/ml ±118.67; p � 0.0009;
Figure 3A), but not in the control group (p > 0.05; Figure 3A).
IL-6 levels in the presence of 1,25VitD3 to the baseline decreased
in women with RSA relative to the control group (0.63 ± 0.17
versus 0.579 ± 0.09; p � 0.0009, Figure 3B).

1,25VitD3 diminished IL-17A levels in women with URSA
relative to the control group.

IL-17A serum levels significantly increased in the case group
in comparison to the control group (98.12 ± 15.4 versus 48.5 ±
10.5; p � 0.03, Figure 4A). IL-17A levels significantly increased in
the cell culture supernatants in the case group in comparison to
the control group (108.29 ± 10.4 versus 55.52 ± 7.53; p � 0.01,
Figure 4A).

IL-17A levels decreased in the presence of 1,25VitD3
compared to the absence of that in the case group (48.6 pg/ml

±10.04 versus 108.29 pg/ml±10.40; p � 0.0006; Figure 4A).
1,25VitD3/untreated relative gene expression for IL-17A levels
non-significantly decreased in women with URSA relative to the
control group (p > 0.05, Figure 4B).

1,25VitD3 decreased IL-23 levels in women with URSA
relative to the control group.

IL-23 serum levels were higher in women with RSA than in the
control group (74/4 pg/ml ± 14/4 versus 245/45 pg/ml± 24/4; p �
0.0001; Figure 5A). IL-23 levels were higher in cell culture
supernatants in women with RSA than in the control group
(268/85 pg/ml ±18/15 versus 87/24 pg/ml±12/86; p � 0.0001;
Figure 5B).

1,25VitD3 reduced IL-23 levels in the cell culture supernatants
in women with URSA in comparison to the control group
(89.26 pg/ml±16.47 versus 162.85 pg/ml±19.15; p � 0.02;
Figure 5B).

DISCUSSION

Pregnancy is normally considered a state of immunological
tolerance, and a break in maternal tolerance may lead to
reproductive failure including implantation failure,
preeclampsia, preterm birth, and pregnancy loss (Witkin et al.,
2011; Ghaneifar et al., 2020). The regulated immune responses
are required to protect against harmful pathogens and tolerate a
semi-allogeneic fetus expressing paternal antigens in a successful
pregnancy (Tsuda et al., 2019). It has been shown that a variety of
different immune cells and cytokines maintain maternal immune
tolerance to fetal alloantigens during pregnancy (Ali et al., 2020).
In a successful pregnancy, a delicate balance has been indicated
between various subsets of effector T cells with different secretory
cytokines.

In this study, we found that IL-25 levels in serum and
supernatants of cell culture were considerably lower in women
with URPL than in the healthy women, while IL-17A, IL-23, and
IL-6 levels were significantly higher compared to the controls.
After PBMCs treatment with 1,25VitD3, IL-25 levels increased,
while IL-17A, IL-6, and IL-23 levels decreased in cell culture
supernatants in women with URSA relative to the controls. As we
previously demonstrated, 1,25VitD3 may reduce the frequency of
Th17 cells in PBMCs in women with URPL (Abdollahi et al.,

FIGURE 3 | IL-6 levels in serum and cell culture supernatants in women with URSA and the control group (A). IL-6 levels in the cell culture supernatant increased
significantly in the case group in comparison to the control group. In cell culture supernatants, 1,25VitD3 treatment decreased IL-6 levels compared to untreated PBMCs
only in the case group. (B). IL-6 levels in the presence of 1,25VitD3 to the baseline decreased in women with URSA relative to the control group.
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2020b; Abdollahi et al., 2020c). Inflammation has already been
identified as the main contributor to inflammatory disorders and
pregnancy complications like recurrent spontaneous abortion
(Tincati et al., 2009; Pizzola et al., 2016; Karakuş and Çalışkan,
2020). Th17 cells elicit inflammatory reactions by producing IL-
17A as the most prominent pro-inflammatory cytokine with a
role in URSA occurrence (Veldhoen et al., 2006; Konkel et al.,
2017; Fujimoto et al., 2020; Abdollahi et al., 2020d) 63). IL-17A
and chemokines including CXCLs attract myeloid cells such as
neutrophils to the infection site and activate matrix
metalloproteinase, which results in the recruitment of more
inflammatory cells such as Th1 and Th17 cells and, as a
consequence, a positive loop in amplifying inflammatory
reactions (Corrigan et al., 2011; Liu et al., 2016; Abdollahi
et al., 2020d).

IL-25 plays an anti-inflammatory role in Th1 and Th17 related
disorders, including autoimmune diseases (Selvaraja et al.,
2019Fallon et al., 2006). Similar to the URSA, inflammatory

responses of Th17 cells play a key role in the
immunopathogenesis of autoimmune disorders such as
rheumatoid arthritis (RA), inflammatory bowel disease (IBD),
and autoimmune encephalomyelitis. It was found that IL-25
inhibited Th17 cell responses via reduction of IL-17A levels
and ROR-γt gene expression in PBMCs from patients with RA
(Liu et al., 2016; Lavocat et al., 2017). PBMCs are the mixture of
mononuclear cells including T cells and monocytes are the
appropriate cells for exploring the underlying cellular and
molecular mechanisms in immune-mediated diseases including
URSA (Ji et al., 19892019; Abdollahi et al., 2015b; Abdollahi et al.,
2016b; Abdollahi et al., 2020a; Abdollahi et al., 2020d; Griffiths
et al., 2020). Additionally, IL-25 may suppress Th17 cell
responses through downregulation of IL-23, IL-1β, and IL-6
expression in activated dendritic cells which may protect mice
from severe experimental autoimmune encephalomyelitis
(Kleinschek et al., 2007). Furthermore, the deletion of an IL-
25-dependent gene resulted in increased Th17 cell function by

FIGURE 4 | IL-17A levels in serum and cell culture supernatants in women with URSA and the control group (A). IL-17A serum levels significantly increased in the
case group in comparison to the control group. IL-17A levels significantly increased in the cell culture supernatants in the case group in comparison to the control group.
IL-17A levels decreased in the presence of 1,25VitD3 compared to the absence of that in the case group. (B). IL-17A levels non-significantly decreased in women with
URSA relative to the control group.

FIGURE 5 | IL-23 levels in serum and cell culture supernatants in womenwith URSA and the control group (A). IL-23 serum levels were higher in womenwith RSA than
in the control group. IL-23 levels were higher in cell culture supernatants in women with RSA than in the control group. 1,25VitD3 reduced IL-23 levels in the cell culture
supernatants in women with URSA in comparison to the control group. (B). IL-123 levels non-significantly decreased in women with URSA relative to the control group.
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secreting pro-inflammatory cytokines such as IL-17A leading to
exacerbation of CNS disease (Kleinschek et al., 2007).

Of note, IL-25 has been suggested to support successful
pregnancy by promoting the proliferation of decidual γδT cells
as well as the release of Th2 cytokines like IL-10 (Wang et al.,
2012). This resulted in enhancing maternal tolerance (Corrigan
et al., 2011; Wang et al., 2014). Decidual γδT cells promote the
proliferation and invasion of trophoblast cells as well as suppress
the apoptosis via IL-10 production (Fan et al., 2011).

IL-25/IL-17RB expression, as the IL-25 receptor, in decidual
cells was reported to decrease in women with recurrent abortion
compared to normal pregnant women. In early pregnancy,
trophoblast-secreted human chorionic gonadotropin (hCG)
increased the expression of IL-25 and IL-17RB in decidual
stromal cells (Wang et al., 2014; Zhang et al., 2018). This may
lead to increased cell proliferation by activating c Jun n terminal
kinase (JNK) and protein kinase B (AKT) signals, which could
further stimulate DSC proliferation and lead to an increase in the
number of DSCs (Wang et al., 2014; Lam et al., 2015).

Additionally, IL-25 may promote human umbilical vein
endothelial cell proliferation so it can promote angiogenesis
(Corrigan et al., 2011; Wang et al., 2012). In the current study,
we indicated that IL-25 levels in the PBMC culture supernatants
of the controls were higher than URSA women.

We previously indicated that the active form of VitD3,
1,25VitD3 (50 nm), increased the frequency of Tregs but
decreased parentage of Th17 cells at the same dose in vitro in
women experiencing URSA (Abdollahi et al., 2020d). We also
implicated that 1,25VitD3 could increase Treg/Th17 through
promoting Treg differentiation and proliferation via
upregulation of FOXP3 and GITR gene expressions in women
with URSA (Ji et al., 2019; Abdollahi et al., 2020c). FOXP3 is a
master transcription factor that regulates Treg development and
differentiation (van der Veeken et al., 2020). GITR is a marker of
the characteristic of Tregs that induces co-stimulatory signals
involved in Treg activity (Abdollahi et al., 2020c). As a result,
1,25VitD3 acted as a modulator of the immune system through
balancing of Treg/Th17 axis in women with URSA.

Here, we assumed that one of the underlying immunomodulatory
mechanisms of 1,25VitD3 may be upregulation of IL-25
expression in PBMCs from patients with URSA. This may
inhibit production of Th17 cell inflammatory cytokines
including IL-6 and IL-23 in PBMCs from women with URSA.

CONCLUDING REMARKS

Our findings showed that IL-25 expression was lower, while
Th17 cell frequency and related cytokines including IL-17A,

IL-6, and IL-23 were higher in PBMCs from women with
URSA, suggesting that decreasing IL-25 expression in the
concordance with increasing inflammatory responses of Th17
cells in PBMCs form women with URPL may involve the
immunopathogenesis of URSA. 1,25VitD3 acts as a modulator
of the immune system by enhancing the expression of IL-25
that may result in reducing Th17 cells activity.
1,25VitD3enhanced the expression of IL-25 as the anti-
inflammatory cytokine. On the other hand, 1,25VitD3
decreased cytokine expressions that were associated with the
differentiation or maintenance of Th17 cells (IL-6 and IL-23).
Therefore, 1,25VitD3 may decrease inflammatory responses
cells via down regulating if IL-25 expression in PBMCs
from women with URSA. However, more studies with the
mechanistic view are warranted to establish this concept. It
could be an interesting subject for future clinical trials in the
field of the immunopathology of URSA to identify molecular
pathways in URSA treatment.
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