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Abstract: Acute lung injury (ALI) is a common and devastating clinical disorder with a high mor-
tality rate and no specific therapy. The pathophysiology of ALI is characterized by increased alveo-
lar/capillary permeability, lung inflammation, oxidative stress and structural damage to lung tissues,
which can progress to acute respiratory distress syndrome (ARDS). Adelmidrol (ADM), an analogue
of palmitoylethanolamide (PEA), is known for its anti-inflammatory and antioxidant functions,
which are mainly due to down-modulating mast cells (MCs) and promoting endogenous antioxidant
defense. The aim of this study is to evaluate the protective effects of ADM in a mice model of ALI,
induced by intratracheal administration of lipopolysaccharide (LPS) at the dose of 5 mg/kg. ADM 2%
was administered by aerosol 1 and 6 h after LPS instillation. In this study, we clearly demonstrated
that ADM reduced lung damage and airway infiltration induced by LPS instillation. At the same
time, ADM counteracted the increase in MC number and the expression of specific markers of MC
activation, i.e., chymase and tryptase. Moreover, ADM reduced oxidative stress by upregulating
antioxidant enzymes as well as modulating the Nf-kB pathway and the resulting pro-inflammatory
cytokine release. These results suggest that ADM could be a potential candidate in the management
of ALI.

Keywords: acute lung injury; Adelmidrol; mast cells; inflammation; oxidative stress

1. Introduction

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), two acute
inflammatory conditions, are a major cause of respiratory failure and one of the most
challenging clinical conditions with significant morbidity and mortality [1]. ALI is char-
acterized by alteration of the endothelium and alveolar epithelial barrier, resulting in
increased microvascular permeability, pulmonary edema, and polymorphonuclear neu-
trophil infiltration, all of which contribute to decreased respiratory function [2]. Evidence
has proposed that several pathophysiological pathways are activated during ALI, especially
during the early phase of the disease [3,4], in which inflammatory response plays a key
role [1]. ALI can be modeled in rodents by the administration of LPS through tracheal
instillation [5–8]. Local administration of LPS causes an acute and vigorous migration of
inflammatory cells into the lung tissue, leading to the overproduction of pro-inflammatory
cytokines, including interleukin (IL)-6, IL-1β and tumor necrosis factor (TNF)-α [9,10].
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Among the inflammatory cells, mast cells (MCs) stand out for their involvement in the
pathophysiology of ALI [11]. In particular, MCs activation induce the release of the contents
of their granules, including specific proteases such as chymase and tryptase that contribute
to the progression of inflammatory diseases on the respiratory system [12,13]. Additionally,
several studies support the role of oxidants and oxidative stress in the pathogenesis of
ALI [14–16]. In the context of ALI/ARDS, there are many potential sources of reactive
oxygen species (ROS), including leukocytes (neutrophils, monocytes, and macrophages),
parenchymal cells (endothelial and epithelial cells, fibroblasts, and myocytes) and circulat-
ing oxidant-generating enzymes [16]. Excessive ROS production generated by the injured
endothelium/epithelium, as well as recruited leukocytes, amplifies the tissue damage
and pulmonary edema [17,18]. Thus, a cross-link between inflammatory response and
oxidative stress is involved in the development of ALI [19,20]. Therefore, new approaches
are needed to improve the clinical outcomes of the patients affected with the disease. In
this regard, we investigated the properties of Adelmidrol (ADM), a palmitoylethanolamide
(PEA) analogue that belongs to the ALIAmide family (Autacoid Local Injury Antagonist
Amides) [21]. It is well known that ADM has important anti-inflammatory properties due
to the regulation of MC activation [22–24]. Recently, it has also been shown that ADM
is able to boost endogenous antioxidant defense [25], indirectly enhancing its protective
function. Therefore, the aim of this study is to evaluate the beneficial effects of ADM in an
LPS-induced ALI model, through the modulation of inflammatory and oxidative pathways.

2. Materials and Methods
2.1. Animals

Male CD1 mice (25–30 g, Envigo, Milan, Italy) were housed in a controlled environ-
ment, with food and water ad libitum. The University of Messina Review Board for animal
care (OPBA) approved the study (ethical protocol code: 266/2021-PR). All in vivo experi-
ments followed the new directives of the USA, Europe, Italy, and the ARRIVE guidelines.

2.2. Induction of Acute Lung Injury

For intratracheal (i.t.) instillation, animals were anesthetized with isoflurane (2%),
and LPS was instilled as previously described [26,27]. Briefly, a 1 cm long ventral midline
cervical incision was used to expose the trachea, and LPS was injected using a bent 27-
gauge tuberculin needle. Escherichia coli LPS (026: B6L3755, Sigma Aldrich, St. Louis,
MO, USA) was administered by a single i.t. instillation at the dose of 5 mg/kg suspended
in saline solution (total volume = 0.05 mL per animal) [1]. Sham animals were subjected
to the same procedure but received saline instead of LPS. ADM 2% in isotonic solution
was administered by aerosol, with a Lovelace nebulizer (In-Tox Products, Albuquerque,
NM, USA) being used to create an atmosphere in an exposure chamber (Research and
Consulting Co., AG, Basel, Switzerland), as previously described by D’Amico et al. [28].

2.3. Experimental Groups

Mice were randomized into the following experimental groups (n = 12/group):

- LPS group: Mice received LPS i.t. and were treated with the vehicle (saline);
- LPS + ADM group: Mice received LPS i.t. and were treated with ADM 2% aerosol 1 h

and 6 h after LPS instillation;
- Sham group: Similar to LPS group, but mice received saline i.t. instead of LPS;
- Sham + ADM: Mice received saline i.t. and were treated with ADM 2% aerosol 1 h

and 6 h after saline instillation (data not shown, as no significant difference was ever
observed between Sham and Sham + ADM).

At 24 h after induction, all animals were sacrificed, and bronchoalveolar lavage fluid
(BALF) as well as lung tissues were collected for further analysis.
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2.4. Proteins Concentration and Cell Counts in BALF

The cell count in BALF was carried out as previously described [1]. Briefly, BALF was
collected by cannulating the trachea and lavaging the lung twice with 0.7 mL of phosphate-
buffered saline (PBS) [1]. The washing solution were removed by aspiration and BALF was
centrifugated at 800 rpm [29]. The supernatant was stored at −20 ◦C, while the pelleted
cells were resuspended in PBS. Then, the total cells in BALF were enumerated by counting
with a hemocytometer in the presence of the trypan blue stain. For differential cell counting,
Wright’s Giemsa stain was performed, and the leukocyte and macrophage populations
present in BALF were counted. After staining, the differential count was carried out by
the standard morphological protocol under a light microscope [30]. To determine the
protein concentration and to measure the pro-inflammatory cytokines, the supernatants
in BALF were analyzed by a BCA Protein Assay Kit (ThermoFisher, 00161, Rome, Italy.
while the levels of IL-6 (#DKW12-2060; Dakewe Biotech Co., Ltd., Bensheim, Germany),
IL-1β (#MBS8800273; Biosource International, Camarillo, CA, USA) and TNF-α (#30907;
BioLegend, San Diego, CA, USA)) were detected using ELISA [1,31].

2.5. Measurement of Lung Edema

At the end of experiment, wet lung weights were recorded. The lungs were subse-
quently dried for 48 h at 80 ◦C and weighed again. The water content in the lung tissues
was calculated as the ratio of wet/dry weight of the lung [32].

2.6. Histological Examination

Lung sections were stained with Hematoxylin and Eosin (H&E) for histological analy-
sis [33–36] and with toluidine blue to determine MC degranulation [37]. Every section was
examined using a Leica DM6 microscope; (Leica Microsystems SpA, Milan, Italy) associ-
ated with Leica LAS X Navigator software (Leica Microsystems SpA, Milan, Italy). Every
slide was viewed at a magnification of 10× and morphological changes were evaluated by
two blinded investigators [38–41]. Lung injury score was measured according to the meth-
ods reported previously [42,43]. The criteria are as follows: 0 = no damage, l = mild damage,
2 = moderate damage, 3 = severe damage, 4 = very severe histologic changes.

2.7. Myeloperoxidase (MPO) Assay

The MPO activity was measured as previously described [44–46] and represented
in units per gram of wet tissue weight, defined as the amount of enzyme capable of
decomposing 1 µmol of peroxide per minute at 37 ◦C.

2.8. Immunohistochemical Localization of Chymase and Tryptase

Immunohistochemical analysis was performed as previously described [47–49]. Pri-
mary antibodies anti-MC chymase (1:100, Santa Cruz Biotechnology (SCB) Heidelberg,
Germany, #sc59586) and anti-MC tryptase (1:100, SCB, #sc59587) were incubated overnight
on the lung tissue sections. Images were collected using a Leica DM6 microscope; a 10×
magnification is shown (Leica Microsystems SpA, Milan, Italy) following a typical proce-
dure [50–53]. The positive pixel intensity value obtained was connected to the histogram
profile [54,55].

2.9. Measurement of Oxidative Stress

The malondialdehyde (MDA; #A003-1-2, Nanjing, China), glutathione (GSH; #A006-2-1,
Nanjing, China) and catalase (CAT; #A007-1-1, Nanjing, China) levels in the lung tissues were
measured using activity assay kits (Nanjing Jiancheng Bioengineering Institute) [52,56–58].

2.10. Analysis of Western Blots

Western blots were performed on lung samples as described in our previous stud-
ies [59–61]. The following antibodies were used: anti-IkBα (1:1000, SCB, #sc1643), anti-NF-
kB p65 (1:1000; SCB, #sc8414), anti-Nrf2 (1:5000; SCB, #sc365949), anti-HO-1 (1:5000; SCB,
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#sc136960), MnSOD (1:5000 SCB #sc137254), anti-β-actin (1:5000; SCB, #sc8432) and anti-
lamin A/C antibody (1:5000; Sigma-Aldrich, St. Louis, MO, USA). The membranes were
then incubated with IgG peroxidase-conjugated secondary antibody-conjugated bovine
mouse IgG or IgG peroxidase-conjugated goat anti-rabbit (1:2000, Jackson ImmunoResearch,
Baltimore, MD, USA) [58,62–64]. Protein expression was quantified by densitometry with
BIORAD ChemiDocTM XRS + software and normalized to housekeeping genes β-actin
and lamin A/C as previously reported [64,65]. Images of blot signals were imported to
analysis software (Image Quant TL, v2003, Rome, Italy.) [41,60].

2.11. Materials

Unless, otherwise stated, all compounds used in this study were purchased from
Sigma-Aldrich Company Ltd. (Milan, Italy). ADM was obtained from Epitech Group SpA.

2.12. Statistical Evaluation

All values are expressed as mean ± standard error of the mean (SEM) of N obser-
vations. The images shown are representative of the last three experiments performed
on diverse experimental days on tissue sections collected from all animals in each group.
For in vivo studies, N represents the number of animals used. The results were analyzed
by one-way ANOVA followed by a Bonferroni post hoc test for multiple comparisons. A
p value less than 0.05 was considered significant.

3. Results
3.1. ADM 2% Aerosol on Histopathological Analysis and Neutrophil Activity

First, we analyzed the ADM effects on histopathological damage, including alveo-
lar congestion, bleeding, neutrophil infiltration and thickness of alveolar wall/hyaline
membrane formation. H&E exhibited extensive tissue damage and extracellular matrix
deposition in the lungs of LPS-treated animals (Figure 1B,D) compared to the sham groups
(Figure 1A,D). Aerosol treatment with ADM 2% significantly minimized lung damage
(Figure 1C,D). We also evaluated the presence of lung edema by the ratio of wet/dry
weight of the lung and neutrophil infiltration by the MPO assay. The ratio of wet/dry
weight of the lung and MPO activity were increased by i.t. injection of LPS, while ADM 2%
significantly reduced both parameters. (Figure 1E,F).

3.2. ADM 2% Aerosol on Inflammatory Cells and Pro-Inflammatory Cytokines in BALF

To determine whether ADM was able to reduce cell infiltration, we measured inflamma-
tory cell counts in the BALF 24 h after LPS i.t. instillation. We found a substantial increase in total
cell counts (Figure 2A), macrophages (Figure 2B) and neutrophils (Figure 2C) in BALF taken
from LPS-treated animals compared to Sham mice. The number of inflammatory cells in BALF
was significantly reduced after ADM 2% aerosol (Figure 2A–C). Additionally, we examined
BALF levels of the pro-inflammatory cytokines. TNF-α (Figure 2D), IL-1β (Figure 2E) and
IL-6 (Figure 2F) levels were significantly increased in the LPS group compared to Sham
mice. On the contrary, cytokines release in BALF was markedly reduced in mice treated
with ADM (Figure 2D–F).

3.3. ADM 2% Aerosol on MC Number

Toluidine blue staining of lung sections was used to assess the MC number. We
detected a higher number of MCs in the LPS group (Figure 3B,B1,D), compared to Sham an-
imals (Figure 3A,A1,D). ADM 2% aerosol reduced in a significant manner MC hyperplasia
in lung tissues (Figure 3C,C1,D).

3.4. ADM 2% Aerosol on Chymase and Tryptase Expression

To confirm the activity of MCs and their activation, we evaluated the chymase and
tryptase expressions by immunohistochemical analysis. LPS instillation enhanced chymase
activity in the lungs (Figure 4B,B1,D), compared to Sham mice (Figure 4A,A1,D). At the
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same way, LPS increased tryptase expression in the lungs (Figure 5B,B1,D) compared
to Sham mice (Figure 5A,A1,D). ADM 2% aerosol was able to reduce both preformed
mediators expression (Figure 4C,C1,D for chymase; Figure 5C,C1,D for tryptase).

Figure 1. Histological analysis: sham (A), LPS (B), LPS + ADM 2% (C). Histological score (D).
Wet/dry lung weight ratio (E). MPO activity (F). A 10× magnification is shown. Data are expressed
as the mean ± SEM of N = 6 mice/group. *** p < 0.001 vs. sham; # p < 0.05 vs. LPS; ## p < 0.01 vs.
LPS; ### p < 0.001 vs. LPS.

Figure 2. Cell infiltration expression in BALF. Total cell number (A), Macrophages (B), Neutrophils
(C). Expression of proinflammatory cytokine: TNF-α (D), IL-1β (E), IL-6 (F). Data are expressed as
the mean ± SEM of N = 6 mice/group. *** p < 0.001 vs. sham; # p < 0.05 vs. LPS; ## p < 0.01 vs. LPS;
### p < 0.001 vs. LPS.
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Figure 3. Mast cells indicated by toluidine blue staining: Sham (A), LPS (B), LPS + ADM 2% (C),
mast cell count (D). A 20× and 100× magnification is shown. Data are expressed as the mean ± SEM
of N = 6 mice/group. *** p < 0.001 vs. sham; # p < 0.05 vs. LPS.

3.5. ADM 2% Aerosol on Oxidative Stress

To evaluate the effect of ADM on oxidative stress, we performed MDA activity as an
indicator of lipid peroxidation. LPS-treated mice showed increased MDA levels, while the
LPS + ADM group showed lower levels of MDA (Figure 6A). Additionally, we investigated
CAT and GSH levels for the oxidative response. LPS induced an important decrease in
CAT (Figure 6B) and GSH (Figure 6C) levels, compared to the Sham groups. Both levels of
antioxidant indicators were markedly increased by ADM 2% aerosol treatment.

Figure 4. Immunohistochemical analysis for chymase: Sham (A,A1), LPS (B,B1), LPS + ADM 2%
(C,C1), graphical quantification (D). A 20× and 100× magnification is shown. Data are expressed as
the mean ± SEM of N = 6 mice/group. *** p < 0.001 vs. sham; ## p < 0.01 vs. LPS.
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Figure 5. Immunohistochemical analysis for tryptase: Sham (A,A1), LPS (B,B1), LPS + ADM 2%
(C,C1), graphical quantification (D). A 20× and 100× magnification is shown. Data are expressed as
the mean ± SEM of N = 6 mice/group. *** p < 0.001 vs. sham; ## p < 0.01 vs. LPS.

Figure 6. Markers of oxidative stress: MDA (A), CAT (B), and GSH (C). Data are expressed as the
mean ± SEM of N = 6 mice/group. *** p < 0.001 vs. sham; # p < 0.05 vs. LPS; ## p < 0.01 vs. LPS;
### p < 0.001 vs. LPS.

3.6. ADM 2% Aerosol on Nrf2 Pathway

To confirm the antioxidant effect of ADM, we evaluated the Nrf2 pathway by Western
blot analysis. Our results showed an important reduction in Nrf2 expression in the vehicle
group compared to the sham group, while ADM was able to upregulate Nrf2 expression
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(Figure 7A). Consequently, we evaluated HO-1 (Figure 7B) and MnSOD (Figure 7C) expres-
sion, which are regulated by the Nrf-2 pathway. Our results showed an important decrease
in HO-1 and MnSOD expression in the LPS group, compared to sham mice; on the contrary,
ADM partially restored the expression of both endogenous enzymes (Figure 7B,C).

3.7. ADM 2% Aerosol on Inflammatory Pathway

Additionally, we investigated one of the key inflammatory pathways involved in LPS-
induced ALI, the NF-κB pathway. Our Western blot analysis showed a basal expression of
IκB-α in Sham mice, while LPS i.t. instillation significantly decreased IκB-α expression in
lung samples (Figure 8A). At the same time, nuclear NF-κB expression was significantly
higher in LPS-treated animals compared to the sham group (Figure 8B). ADM treatment
reduced IKB-α degradation and, consequently, nuclear translocation of NF-κB induced
by LPS (Figure 8A,B). Additionally, to confirm the anti-inflammatory effect of ADM, we
measured the levels of pro-inflammatory cytokines in lung tissues. We found that IL-1β
(Figure 8C), IL-6 (Figure 8D) and TNF-α (Figure 8E) levels were markedly increased in the
LPS group, compared to the sham mice. On the contrary, ADM was able to decrease the
lung levels of these pro-inflammatory cytokines (Figure 8C–E).

Figure 7. Western blot analysis for: Nrf2 (A); HO-1 (B); MnSOD (C). A demonstrative blot of lysates
with a densitometric analysis for all animals is shown. Data are expressed as the mean ± SEM of
N = 6 mice/group. *** p < 0.001 vs. sham; # p < 0.05 vs. LPS; ## p < 0.01 vs. LPS.
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Figure 8. Western blot analysis for NF-κB (B) and IκB-α (A). Levels of inflammatory cytokine in
lung tissues: IL-1β (C) IL-6 (D), TNF-α (E). A demonstrative blot of lysates for NF-kB and IκB-α
with a densitometric analysis for all animals is shown. Data are expressed as the mean ± SEM of
N = 6 mice/group. ** p < 0.01 vs. sham; *** p < 0.001 vs. sham; # p< 0.05 vs. LPS; ## p < 0.01 vs. LPS;
### p < 0.001 vs. LPS.

4. Discussion

ALI is an acute inflammatory illness that can advance to a severe stage known as ARDS,
which is marked by a high death rate. These clinical syndromes are characterized by a loss
of barrier functionality by alveolar epithelial and pulmonary capillary endothelial cells, re-
sulting in respiratory failure in critically ill individuals. To study the molecular mechanisms
underlying ALI, the experimental endotoxin (bacterial LPS) model by intratracheal instilla-
tion in mice was used [7,66]. In experimental ALI, the lung parenchyma is damaged by
the generation of a complex network of inflammatory cytokines and chemokine, including
IL-1β, IL-6, and TNF-α [9]. Moreover, activation of oxidative stress with excessive release of
ROS produced by activated pulmonary macrophages and transmigrated neutrophils in the
interstitial and alveolar compartments has been demonstrated [66,67]. Then, an imbalance
is created between the oxidant/antioxidant system, which, combined with the activated
inflammatory response, causes diffuse alveolar damage with intrapulmonary hemorrhage,
edema and fibrin deposition. Therefore, this study was designed to evaluate the effects of
ADM in controlling the inflammatory and oxidative response in LPS-induced ALI. The anti-
inflammatory and antioxidant properties of ADM, a member of the ALIAmide family, have
been extensively demonstrated in previous studies [23,25,34,50,68,69]. First, histopatho-
logical investigation showed that ADM 2% aerosol administration significantly repaired
the morphological and histological alterations in lung tissue, induced by LPS instillation.
Extensive neutrophil infiltration, the large release of inflammatory mediators, an increase in
capillary permeability, and severe interstitial edema are all thought to play important roles
in the pathogenesis of ALI [70–73]. ADM 2% treatment was able to reduce all these parame-
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ters, as demonstrated by a reduction in MPO activity and levels of cell infiltration in BALF,
as well as significant decrease in pro-inflammatory cytokines and lung edema. ALI and
ARDS are often characterized by inappropriately/chronically activated MCs [74]. Many
proteases, such as chymase and tryptase, are substances secreted by MCs activation, and
contribute to inflammatory cells infiltration, cytokine production, and increased vascular
permeability, exacerbating inflammation [75]. At this regard, the anti-inflammatory proper-
ties of ADM are mainly due to the control of MC activation and, as expected, our results
confirmed a reduced number of MCs after ADM treatment. Consequently, we observed an
important reduction in chymase and tryptase expression after ADM 2% administration,
confirming the control of ADM on MCs activity. Additionally, it has also been demonstrated
that ADM increased endogenous levels of antioxidant enzymes [25], indirectly modulating
the NF-κB pathway. Indeed, ALI is characterized by excessive ROS production, causing
imbalance to antioxidant system, and resulting in the release of substances modulating the
endothelial dysfunction and disruption responsible for the principal clinical manifestations
of the syndrome. ADM 2% aerosol administration also had positive results on endoge-
nous levels of enzymes involved in oxidative stress; in fact, the treatment significantly
counteracted the LPS-induced down-regulation of antioxidant indicators, as shown by the
effect of CAT and GSH levels, as well as HO-1 and MnSOD expressions. These antioxidant
enzymes are regulated by the Nrf2 pathway. Moreover, the functional crosstalk between
Nrf2 and NF-κB is well known. The absence of Nrf2 is associated with increased oxidative
stress, leading to an increase in cytokine production, as NF-κB is more readily activated in
oxidative conditions [76,77]. Our Western blot analysis showed that ADM 2% was able to
upregulate Nrf2 expression, responsible for antioxidant response, as well as to modulate
the NF-κB pathway. To confirm the protective function of ADM, we also investigated the
levels of proinflammatory cytokines in lung tissue. Again, ADM treatment significantly
counteracted the LPS-induced increase in inflammatory mediator levels.

5. Conclusions

In conclusion, our data demonstrated that ADM 2% aerosol was able to reduce lung
damage and cell infiltration, as well as the overexpression of proinflammatory cytokines.
The protective effects of ADM 2% aerosol, probably due to the control of MC degranulation
and the upregulation of endogenous antioxidant enzymes, modulate the inflammatory and
oxidative response. Therefore, we suggest that ADM 2% aerosol can be considered as a
potential candidate in the management of ALI.
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