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Abstract

This paper proposes a statistical generalized species-area model (GSAM) to represent various patterns of species-area
relationship (SAR), which is one of the fundamental patterns in ecology. The approach enables the generalization of many
preliminary models, as power-curve model, which is commonly used to mathematically describe the SAR. The GSAM is
applied to simulated data set of species diversity in areas of different sizes and a real-world data of insects of Hymenoptera
order has been modeled. We show that the GSAM enables the identification of the best statistical model and estimates the
number of species according to the area.
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Introduction

The variation in the number of species with area, known as

species-area relationship (SAR), is one of the most important

ecological patterns [1]. The models of SAR enable the prediction

of the number of species that coexist and share resources, as well as

the impact of the extinction of species caused by habitat loss.

Sampled data for a single species, or all species of a specific trophic

level within a particular site have shown that the SAR has a well-

defined shape, most often described by power and exponential

curves [2]. The number of species in an area increases with

increasing island area, but the rate of increase slows for larger

islands. Many hypotheses have been proposed to explain the SAR

[3,4,6]. For instance, some are based on the immigration and

extinction of species [4], random sampling processes [6] or the

Second Law of Thermodynamics [5].

These different hypotheses have generated many mathematical

models for the description of the SAR [1–3,7–10]. The early

models were based on deterministic modeling, which assumes that

every set of variable states is uniquely determined by the

parameters in the model. For instance, Arrhenius considered that

the number of species (S) is related to area (A) through a power law

form [11] (called the power-function), i.e. S~S0Az (or

log S~ log czz log A), where S0 represents the number of species

in a unit area (A~1) and 0vzv1. Due to the random nature of

the sampled data, statistical modeling is more suitable for SAR

description than the deterministic approach [6], therefore, many

statistical models have been developed (e.g. [2]). Moreover,

statistical models can be thought of as general cases of

deterministic models, because the mean value of the random

variable of interest yields the results of the deterministic model.

Because there exist many models to address the SAR (e.g.

[3,9,12]), a natural question is how to select the best model for a

given data set. To address this issue, here we integrate different

models within a common framework and consider the problem of

curve fitting by the transformed generalized linear model (TGLM)

[13]. We propose the use of the generalized species-area model

(GSAM) to describe the SAR. GSAM includes many models, such

as those described in [3,9] as special cases. We also consider a

model that simulates the colonization process of a region by

different species and show that the GSMA has best fitted the data

in comparison with traditional power-curve models. Finally, we

use the data on the cumulative species richness of parasitic

Hymenoptera from 25 nested plots in a beech forest on limestone

[14]. Our results show that the GSAM can determine the best

model for the data and estimate the number of species accurately.

Methods

Generalized species-area models
In species-area curves, the number of species (S) is the

dependent variable and the area (A) is the explanatory variable.

Some mathematical models of SAR propose that the number of

species is related to the area as

Si~m(Ai,b), i~1, . . . ,n, ð1Þ

where b is a p-parameter vector [1]. Function m can be derived

from laws governing the physical system that gave rise to the data.

As such models are deterministic and the properties related to the

random nature of variable S are neglected, the deterministic

models are often inadequate due to the stochastic nature of the
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data [6]. The statistical modeling usually assumes that Eq. 1 can

be written as

Si~m(Ai,b)zei, ð2Þ

where feig are independent and identically distributed random

noises (i.i.d) — usually, ei*N(0,s2). Note that the mode in Eq. 2

is a generalization of the determinic model, i.e. E(Si)~m(Ai,b).
The model given by Eq. 1 can be understood as a particular case

of the model EfL(Si,l)g~m(Ai,b), where L( � � � ,l) is a mono-

tonic transformation and l is a scalar parameter defining such a

transformation. For instance, in cases whose data suggested by Eq.

2 are unsatisfactory, the experimenter can assume a model with

logarithmic transformation, i.e.

log (Si)~m(Ai,b)zei: ð3Þ

This paper proposes a new model called generalized species-area

model (GSAM), which is based on the TGLM approach proposed

in [13]. The GSAM works with a general parametric family of

transformations from the dependent variable S to S(l)~L(S; l)

and postulates that the transformed random variable S(l) follows a

continuous probability distribution belonging to the exponential

family. Furthermore, the GSAM assumes that there exists some l

value such that S(l) satisfies the usual assumptions of the

generalized linear models (GLM) [15].

A suitable choice of the family of transformations enables the

representation of power-curves, their recent extensions (see

[11,16–19]), the models presented in [2,3,9] and the logarithmic

model described in [16] as special cases of the GSAM. We have

considered the Box-Cox power transformation [20], which is

effective at turning skewed unimodal distributions into nearly

symmetric normal-like distributions.

Let S~(s1, . . . sn)T be the vector of observations. By using

S(l)~

Sl{1

l
if l=0

log (S) if l~0,

8<
: ð4Þ

we can obtain the transformed observations S(l)~(s
(l)
1 , . . . s(l)

n )T .

The GSAM assumes that there exists some l value such that the

transformed random variables fS(l)
1 , . . . S(l)

n g can be considered

independently distributed. Each S
(l)
i follows an exponential family

distribution with a probability density function of the form

p(s
(l)
i ; hi,w)~ exp w{1 s

(l)
i hi{b(hi)

n o
zc(s

(l)
i ,w)

h i
, ð5Þ

where b(x) and c(x,w) are appropriate known functions. The

dispersion parameter w is assumed to be the same for all

observations. The mean and variance of S
(l)
i are, respectively,

EfS(l)
i g~mi~db(hi)=dhi and VarfS(l)

i g~wV (mi), where

V (mi)~d2b(hi)=dh2
i ~dmi=dhi is the variance function. Parameter

hi~
Ð

V{1(mi)dmi~q(mi) is a known one-to-one function of mi.

The GSAM also considers a systematic component given by

g(mi)~gi~xT
i b, ð6Þ

where the link function g(:) is a known one-to-one continuously

differentiable function and xi is a specified vector (p|1) of the

explained variables, which include the area, known functions of

the area, and other environmental variables. Matrix X whose rows

are vectors xT
i , i~1, . . . ,n, is a specified n|p model matrix of full

rank pvn and b~(b1, . . . ,bp)T is a set of unknown linear

parameters to be estimated. The link function is assumed to be

monotonic and differentiable.

The GSAM proposed here considers three components of

structural importance: (i) the Box-Cox family of transformations

(Eq. 4) in association with a more general form for the distribution

of the transformed variable S(l) (Eq. 5); (ii) a linear predictor

function and (iii) a possible nonlinear link function for the

regression parameters (Eq. 6). Moreover, when the variance

function V (mi) is not constant, i.e. when the variance is correlated

with mean m, some distributions of the exponential family enable

the handling of data presenting heteroscedasticity. In this context,

GSAM is a generalization of the previous mathematical models

that describe the SAR.

Species-area relationship models. Many models have

been proposed for the description of the SAR and some can be

linearized by a logarithmic transformation of the response variable

(i.e. diversity of species). Models that are special cases of the

GSAM have the following properties: (i) the transformation

parameter in Eq. 4 is l~0, i.e. a log-transformation is adopted,

S(0)~ log (S) and m~EfS(0)g~Eflog (S)g or no transformation

is considered for variable S, i.e. we assume l~1 and m~EfSg;
(ii) the distribution in Eq. 5 is the normal distribution; and (iii) the

link function is the identity function, g(m)~m and the systematic

component in Eq. 6 is given by m~Xb. The elements of matrix X
may be area A, log (A) or additional variables, as in [12]. Very

simple forms of the systematic component are given by

m~b0zb1 log A or m~b0zb1A. This special case of the GSAM

can be understood as the particular cases proposed in [11,16]. A

list of some models of SAR is provided.

1. Considering the stochastic nature of variable S, which

represents the number of species, the power model proposed

by Arrhenius [11] can be written as,

EfSg~b0Ab1 : ð7Þ

The logarithm of variable S yields

Efln (S)g~b0zb1 ln (A), ð8Þ

where the parameters of the power-curve in log-log space are

b0~ ln (b0) and b1~b1.

2. The persistence model (P1-full) proposed by Plotkin et al. [17]

is given by

EfSg~b0Ab1 exp
Xn

k~1

bkz1Ak

( )
, ð9Þ

or, considering the logarithm of variable S,

Efln (S)g~b0zb1 ln (A)z
Xn

k~1

bkz1Ak, ð10Þ

where b0~ ln (b0), b1~b1 and bkz1~bkz1, k~1, . . . ,n. A

special case, when n~1 (P1 model [17]) is given by
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EfSg~b0Ab1 exp b2Af g, ð11Þ

or, considering the logarithm of variable S,

Efln (S)g~b0zb1 ln (A)zb2A ð12Þ

where b0~ ln (b0), b1~b1 and b2~b2.

3. The persistence model proposed by Ulrich and Buszko [18,19]

is given by

EfSg~b0Ab1 exp
b2

A

� �
, ð13Þ

or, considering the logarithm of variable S,

Efln (Sg)~b0zb1 ln (A)z
b2

A
, ð14Þ

where b0~ ln (b0), b1~b1 and b2~b2.

4. The polynomial power-function model proposed by Chiarucci

et al. [21] is defined as

EfSg~10
Pn

k~0
bkAk

� �
, ð15Þ

or, considering the logarithm of variable S,

Efln (S)g~
Xn

k~0

bkAk, ð16Þ

where bk~ ln (10bk ), k~0,1, . . . ,n. The quadratic power-

function model proposed in [21] considers n~2, i.e.

EfSg~10fb0zb1 log (A)zb2 log (A)ð Þ2g, ð17Þ

or, considering the logarithm of variable S,

Efln (S)g~b0zb1 log (A)zb2 log (A)ð Þ2, ð18Þ

where bk~ ln (10bk ), k~0,1,2..

Some species-area relationships may also be represented by

linear functions, specifically:

Figure 1. Data and fitted curve obtained by the GSMA model for the simulated species-area relationship.
doi:10.1371/journal.pone.0105132.g001
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5. Linear model proposed by MacArthur and Wilson [4]

EfSg~b0zb1A: ð19Þ

6. Logarithmic function proposed by Gleason [16]

EfSg~b0zb1 ln (A): ð20Þ

7. Quadratic logarithmic function proposed by Gitay et al. [22]

EfSg~ b0zb1 ln (A)f g2, ð21Þ

or

EfSg~b0zb1 ln (A)zb2 ln (A)ð Þ2, ð22Þ

where b0~b2
0, b1~2b0b1 and b2~b2

1

8. General power-logarithmic function proposed by Gitay et al.

[22]

EfSg~ b0zb1 ln (A)f gb2 : ð23Þ

If b2 is any real number and Db0DwDb1 ln (A)D, from Newton’s

generalized binomial expansion we obtain

b0zb1 ln (A)f gb2~ b0ð Þb2
X?
k~0

b2

k

� �
b1

b0

� �k

ln (A)ð Þk, ð24Þ

where the binomial coefficients with an arbitrary upper index can

be defined as

b2

k

� �
~

b2(b2{1) � � � (b2{kz1))

k!
~

(b2)k

k!
: ð25Þ

Therefore, the logarithmic function model can be written as

EfSg~b0z
X?
k~1

bk ln (A)ð Þk, ð26Þ

where b0~ b0ð Þb2 , bk~ b0ð Þb2 (b2)k=k!f g b1=b0ð Þk.

Full-scale generalized species-area relationship

model. The right side of all equations presented in the previous

section always involves polynomial terms, such as ln (A), A and/or

1=A. Here, we propose a generalization of these models by

considering the right side of the full-scale model consists of three

polynomials, i.e.

P1(A)~
Xm

k~1

bk ln (A)ð Þk, ð27Þ

Table 1. Some of the traditional models adjusted with Gaussian errors.

m~EfSg Selection Criteria

Models AIC BIC {2logL MSE MAPE

[4] 406:59 424:09 400:59 0:608 0:305

[16] 297:87 315:34 291:87 0:069 0:086

[22] 228:63 251:93 220:63 0:016 0:050

m~Eflog(S)g Selection Criteria

Models AIC BIC {2logL MSE MAPE

[11] 405:91 423:38 399:91 0:340 0:155

[17]) 358:24 381:54 350:25 0:123 0:091

[18] 331:76 355:05 323:76 0:082 0:071

[21] 221:09 244:39 213:09 0:010 0:025

doi:10.1371/journal.pone.0105132.t001

Table 2. The GSAMs fitted with different models according to the likelihood method.

Models g(m) Systematic component

normal m b0zb1 ln (A)zb2( ln A)2zb3=A

gamma 1

m
b0zb1 ln (A)zb2( ln A)2zb3=Azb4=A2

I.G. 1

m2

b0zb1 ln (A)zb2( ln A)2zb3=Azb4A2

doi:10.1371/journal.pone.0105132.t002
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P2(A)~
Xn

k~mz1

bk

1

A

� �k{m

, ð28Þ

and

P3(A)~
Xq

k~mznz1

bkAk{(mzn): ð29Þ

The left sides of those equations have the number of species (S) or

ln (S). In order to generalize them, we have assumed that S is a

random variable and considered the Box-Cox power transforma-

tion (Eq. 4).

The curves defined by the GSAM assume a linear predictor

function and a nonlinear link function g(m) for the systematic

component (Eq. 6). The systematic component of the GSAM is

given by

g(m)~P1(A)zP2(A)zP2(A)

~b0z
Xm

k~1

bk ln (A)ð Þkz
Xn

k~1

bmzk

1

A

� �k

z
Xq

k~1

bmznzkAk:

ð30Þ

The GSAM has other models as special cases. For instance, the

persistence function, P2-full model, is a special case of GSMA if we

consider the identity link function g(m)~m, where m~E log (S)f g, i.e.

m~b0zb1 ln (A)z
Xn

k~1

bkz1

1

A

� �k

: ð31Þ

The persistence model, P2-full, can be written as

m~b0z
Xm

k~1

bk ln (A)ð Þkz
Xn

k~1

bmzk

1

A

� �k

, ð32Þ

where b0~ ln (b0), b1~b1 and bkz1~bkz1, k~1, . . . ,n.

Although the model defined by Eq. 30 has a large number of

parameters (theoretically, it can have an infinite number of

parameters), in practice the fitted models have no more than six

parameters. The advantage of such a model is that it enables the

formulation of hypothesis testing for the choice of the parameters

to be removed from those that are significant for better describing

the SAR.

Model fitting. The parameters to be estimated in the GSAM

are l, b and w (Eqs. 4 and 6). In order to obtain maximum

likelihood estimates for the vector of parameters b and dispersion

parameter w, we have defined a profiled likelihood function for l
and used the same algorithm proposed in [13]. By assuming the

model given by Eq. 5, the log-likelihood function for the vector of

the transformed observations S(l)~(s
(l)
1 , . . . ,s(l)

n )T can be written

as

L(b,w,l)~
1

w

Xn

i~1

s
(l)
i hi{b(hi)

n o

z
Xn

i~1

c(s
(l)
i ,w)z log J(l,si)f g

h i
,

ð33Þ

where hi~
Ð

V{1(mi)dmi~q(mi) and J(l,si)~Dsi D(l{1),

i~1, . . . ,n is the Jacobian of the transformation from S to S(l).

The procedure described in [13] is used for making inferences

about parameters (b,w) first assuming that l is fixed and obtains

the log-likelihood equations for estimating b(l) and w(l)
. The

maximum likelihood estimates (MLE) of b, g, m and w for a given l

are denoted by b̂b(l), ĝg(l)~X b̂b(l), m̂m(l)~g{1(ĝg(l)) and ŵw(l)
,

respectively. b̂b(l) can be calculated, without knowledge on w(l)
,

adjusting the GSAM (Eqs. 5–6) to S(l) by iteration.

The iteration starts with an initial set of values b̂b(l)(k), k~1,

used to evaluate W (l)(k) and z(l)(k), where W (l)(k)~

diagfw(l)(k)
1 , . . . ,w(l)(k)

n g is a diagonal matrix with weights

w
(l)(k)
i ~V (m

(l)(k)
i ){1(dm

(l)(k)
i =dg

(l)(k)
i )2 ð34Þ

Table 3. Selection criteria for the GSAMs fitted with l̂l adjusted according to the likelihood method.

Model Parameter Selection Criteria

l̂l AIC BIC {2logL MSE MAPE

normal 0:822(0:729; 0:922) 79:90 109:02 69:90 0:08 0:61

gamma 0:328({0:003,0:680) 116:82 151:76 104:82 0:09 0:64

I.G. {0:089({0:322,0:141) 142:87 177:82 130:88 0:11 0:68

doi:10.1371/journal.pone.0105132.t003

Table 4. Normal GSAM model fitted by the systematic component shown in Table 2.

b0 b1 b2 b3

Coefficients 210.0405 14.1548 20.9251 15.3104

(SD) (0.4593) (0.1713) (0.0154) (0.5575)

doi:10.1371/journal.pone.0105132.t004
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and z(l)(k)~(z
(l)(k)
1 , . . . ,z(l)(k)

n )T is a working vector whose

components are given by

z
(l)(k)
i ~g

(l)(k)
i z(s

(l)(k)
i {m

(l)(k)
i )

dg(l)(k)
i

dm(l)(k)
i

 !
: ð35Þ

The next estimate b̂b(l)(kz1) can be obtained by

b̂b(l)(kz1)~(XT ŴW (l)(k)X){1XT ŴW (l)(k)ẑz(l)(k): ð36Þ

This new value is used to update W (l)(kz1) and z(l)(kz1) and the

procedures are repeated until convergence has been achieved.

Estimating parameter w(l)
is more difficult than estimating b(l).

In principle, w(l)
could also be estimated by maximum likelihood,

although there may be practical difficulties associated with this task

for some members of Eq. 5. Details about the technique used for

finding the MLE ŵw(l)
for a fixed l can be found in [13].

In order to obtain the MLE l̂l, we replace MLE b̂b(l) and ŵw(l)
in

(33), which results in the profile log-likelihood function

lP(l)~l(b̂b(l),ŵw(l),l). The plot of the profile likelihood function

lP(l) against l for a sequence of values of l numerically

determines the MLE for l. Once the MLE for l̂l has been

obtained, it can be used to produce the unrestricted estimates

b̂b~b̂b(l̂l) and ŵw~ŵw(l̂l)
.

Assuming that the estimated l̂l is known, the confidence

intervals for parameters b(l) and w(l)
can be calculated in the

usual context of the GLM and using the adjusted values b̂b(l) and

ŵw(l)
. We consider the approximate covariance matrix of b̂b(l̂l) and

the variance of ŵw(l̂l)
given in [13] to make inferences about these

parameters. Here, we have considered the gamma, Gaussian and

inverse Gaussian distributions for the probability density function

(Eq. 5)

We also performed likelihood ratio (LR) tests [23] using a

statistic w~2flP(l̂l){lP(l(0))g, which has an asymptotic x2
1

distribution for testing l~l(0) and constructed a large sample

confidence interval for l by inverting the LR test.

Results and Discussion

Simulation of the colonization process of a region
The parameters of SAR curves are determined from the survey

data. As a proof of concept we first used simulated data for 80

species placed in a 50|50 cell lattice according to a neutral model

[24] without dispersal limitation, as applied in [25]. This lattice

was then resampled so as to establish the shape of the SAR

(Figure 1).

The adjusted models are variations of the full-scale model with

six parameters, given by

g(m)~b0zb1 ln (A)zb2 ln Að Þ2

zb3=Azb4=A2zb5Azb6A2:
ð37Þ

The following canonical link functions were considered: (i)

g(m)~m for the normal GSAM, (ii) g(m)~1=m for the gamma

GSAM and (iii) g(m)~1=m2 for the inverse Gaussian GSAM.
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Moreover, the traditional models presented in the previous section

were considered by assuming that the random variable S is

normally distributed. We could estimate the mean of the

transformed data E(S(l))~m, but to predict the expected value

of the untransformed dependent variable S, when the GSAM is

adjusted to the data, E(S) must be estimated. The dependent

variable S can be explained by subtracting m on both sides of Eq. 4

and solving this equation for S. When l=0 we can write

S~(lS(l)z1)1=l~~(lS(l){lm(l)z1zlm(l))1=l~

~½1zlm(l)�1=l
1z

l

1zlm(l)
(S(l){m(l))

� �1=l

:
ð38Þ

The expected value of the species number S, on the original

scale, can be evaluated by a first-order approximation of the

binomial expansion (Eq. 38), as given in detail in [13]:

E(S)~(1zlm)1=l 1z
(1{l)wV

2(1zlm)2

� �
: ð39Þ

The best model can be chosen by using the AIC and BIC

criteria [26], which are measurements of the relative goodness of

fit of a statistical model for a given set of data. The mean square

error (MSE) and mean absolute percent error (MAPE) are given,

respectively, by

Figure 2. Data and fitted model for the real species-area relationship of Hymenoptera in a beech forest on limestone.
doi:10.1371/journal.pone.0105132.g002

Table 6. Normal GSAM model fitted to SAR of Hymenoptera.

b0 b1 b2

Coefficients 101.9707 20.6625 246.1669

(SD) (9.4348) (0.8211) (22.3287)

doi:10.1371/journal.pone.0105132.t006
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MSE~
100%

n ŝs2
s

Xn

i~1

(si{ŝsi)
2 ð40Þ

and

MAPE~
100%

n

Xn

i~1
Dsi{ŝsi

si
D, ð41Þ

where ŝs2
s is the sample variance of S and ŝsi is the estimate of si

given by Eq. 39.

Table 1 shows some of the traditional models adjusted with

normal error. The selected model was the logarithmic quadratic

function proposed by [21], with minimum AIC~221:09,

BIC~244:39, MSE~1:02% and MAPE~2:50%.

Table 2 shows the selected models adjusted by the GSAM with

normal, gamma and inverse Gaussian (I.G.) distributions. Note

that the adjusted models are variations of the full-scale model.

Table 3 shows the GSAM models fitted with l̂l adjusted by the

profile likelihood. The selected normal GSAM has minimum

AIC~79:90 and BIC~109:02, which are the lowest values

among the adjusted models. MSE and MAPE of the model are

also smaller than those of the adjusted model with gamma and

inverse Gaussian distributions. The adjusted value of parameter l

is l̂l~0:822 with confidence interval (0:729; 0:922). Because l is

different from zero or one, there is a significant difference between

the results achieved with this model or by using the traditional

models given in Table 1. Therefore, for this data set, the normal

GSAM is the model that has best fitted the analyzed data. The

MLE estimates of the systematic component and standard-

deviation (SD) of the systematic component are shown in Table 4.

Figure 1 shows the systematic observation of SAR on the

original scale and the fitted curve with the adjusted GSMA

models. E(S) was calculated by Eq. 39 and for the adjusted

GSAM we obtained MSE~0:08% and MAPE~0:61%, respec-

tively.

Application to real data
The GSAM model was applied to a data set that consisted of 25

observations of parasitic insects of the Hymenoptera order in a

beech forest on limestone. Hymenoptera is one of the largest orders

of insects that comprise sawflies, wasps, bees and ants. The total

number of Hymenopteran species in Europe exceeds 20,000. The

data considered here contain the summary of a long-term study of

the ecology of parasitic Hymenoptera in a German beech forest,

i.e. the Göttingen forest, which is approximately 120 years old and

has grown over a ground limestone. The climate of the forest is

typical of Central Europe and the work area covered approxi-

mately four acres. The study was conducted for 8 years (starting in

1980) in 144 square meters of forest soil.

The analysis of the SAR for Hymenoptera is essential, because

the insects that belong to this order are the most important

environmental agents fundamental for nutrient recycling and

control of harmful species. The group is ubiquitous and it is

common sense to assume that there is at least one species of

parasitic insects for each species of herbivore insects [14]. Many of

such species can be considered for the biological control of plague

in agriculture. For instance, wasps, from Symphyta suborder, are

plague conifers in the Northern hemisphere and several species of

ants cause losses of millions of dollars for agriculture. Such insects

act as special indicators and enable the inference of the diversity of

arthropods of a broad spectrum of niches. Hymenoptera parasit-

oids are sensitive to environmental pollution, therefore fluctuations

in their population are observed earlier than in their hosts [27].

This sensitivity makes this group an ideal candidate for studies on

conservation. Therefore, the knowledge on how the number of

species scales with area is fundamental for the prediction of the

impact of such insect parasitic on both ecosystems and agriculture.

Table 5 shows the species richness in different sample areas (see

also [14]). We modeled the data by taking into account all the

models presented in previous sections. The results show that the

normal GSAM with l̂l~1 was the best fitted model. No

transformation of the original data was necessary:

E(S)~b0zb1( ln A)2zb2=A:

The parameters of the fitted model are shown in Table 6. The

fitted mean together with the data provided in Table 5 are shown

in Figure 2. The adjusted model resulted in AIC~220,

BIC~238, MSE~1:86% and MAPE~6:69%, therefore, the

GSMA model has proved very accurate. Our fit has provided a

very good description of the increase observed in species richness

and differs from the simple power-function presented in [14].

Interestingly our best fitting model includes features of the

modified persistence model [18], but it has not been predicted

by any recent macroecological theory, which calls for a fresh look

on the patterns and constraints of spatial species distribution.

Conclusions

The generalized species-area model (GSAM) proposed here has

provided a generalized model to mathematically describe the

SAR. The GSMA can reduce the efforts devoted to finding the

best model and can more accurately represent the effect of the

area over the diversity of species than the power-curve models

commonly used. This fact has been verified in simulated and real-

world data.
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