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Abstract
Deregulated metabolism is one of the characteristics of hepatocellular carcinoma. 
Sex hormone receptor signalling has been involved in the marked gender dimor-
phism of hepatocellular carcinoma pathogenesis. Oestrogen receptor (ER) has been 
reported to reduce the incidence of liver cancer. However, it remains unclear how 
oestrogen and ER regulate metabolic alterations in liver tumour cells. Our previous 
work revealed that ERα interacted with carbohydrate responsive element binding 
protein (ChREBP), which is a transcription factor promoting aerobic glycolysis and 
proliferation of hepatoma cells. Here, the data showed that ERα overexpression with 
E2 treatment reduced aerobic glycolysis and cell proliferation of hepatoma cells. In 
addition to modestly down-regulating ChREBP transcription, ERα promoted ChREBP 
degradation. ERα co-immunoprecipitated with both ChREBP-α and ChREBP-β, the 
two known subtypes of ChREBP. Although E2 promoted ERα to translocate to the 
nucleus, it did not change subcellular localization of ChREBP. In addition to inter-
acting with ChREBP-β and promoting its degradation, ERα decreased ChREBP-α–
induced ChREBP-β transcription. Taken together, we confirmed an original role of 
ERα in suppressing aerobic glycolysis in liver cancer cells and elucidated the mecha-
nism by which ERα and ChREBP-α together regulated ChREBP-β expression.
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1  | INTRODUC TION

Hepatocellular carcinoma (HCC) usually presents substantial met-
abolic rearrangements.1,2 HCC favours excessive glucose uptake 
and lactate production even under the condition of having oxygen, 
which is called aerobic glycolysis or Warburg's effect.1 Aerobic gly-
colysis supplied liver cancer cells with metabolic intermediates for 
anabolism to support rapid cell proliferation. The level of glucose-
6-phosphate, which is the first product in glycolysis, is considerably 
increased in HCC tissues.3

Due to the prominent gender disparity of HCC, sex hormone 
receptor signalling has been involved in liver cancer pathogene-
sis. Oestrogen and oestrogen receptor (ER) negatively regulate 
initiation and progression of HCC.4 Among the three oestrogen 
receptors including ERα, ERβ and G protein–coupled ER, ERα is 
the dominant oestrogen receptor in hepatocytes.5,6 There are 
many studies exploring the mechanism by which ERα reduces liver 
carcinogenesis. Oestrogen inhibits transcription of hepatitis B 
virus (HBV) genes and reduces rates of hepatocellular carcinoma 
in HBV-infected women by up-regulating ERα.7 Oestrogen re-
duces liver cancer risk in females by decreasing IL-6 production 
by Kupffer cells.8 Oestrogen and ERα block metastasis of hepato-
cellular carcinoma cells by modulating glycogen synthase kinase 
3β (GSK-3β) and E3 ligase (β-TrCP) expression.9 Moreover, it was 
reported that 17β-oestradiol (E2) and ERα reprogrammed me-
tabolism in terms of glucose usability in breast cancer cells.10-12 
However, it remains unclear how oestrogen and ER regulate aero-
bic glycolysis in HCC cells.

ERα and E2 suppress lipogenesis by inhibiting mRNA and pro-
tein expression of carbohydrate responsive element binding protein 
(ChREBP) in insulin-secreting INS-1 cells.13 Membrane ERα signalling 
inhibits triglyceride synthesis through suppressing ChREBP-α nu-
clear translocation.14 ChREBP is one of the members for the basic 
helix-loop-helix/leucine-zipper (bHLH/ZIP) transcription factor fam-
ily, mediating glucose-regulated gene transcription.15 Mammalian 
ChREBP has two subtypes transcribed from different promoters, 
ChREBP-α and ChREBP-β. ChREBP-α binds ChREBP-β at the carbo-
hydrate responsive element (ChoRE) site of its promoter and pro-
motes its transcription.16 ChREBP promotes glucose utilization of 
liver and lipogenesis independent of insulin.17,18 By regulating tran-
scription of enzyme genes in gluconeogenesis, de novo lipogenesis 
and glycolysis, ChREBP is involved in the oetiopathogenesis of met-
abolic diseases and cancers.19 In β-cells of islets, ChREBP induces 
glucose-stimulated cell propagation.20,21 ChREBP is crucial for the 
multiplication of liver cancer cell by facilitating aerobic glycolysis and 
anabolism.22

Our former work indicated that ChREBP-α interacted with both 
ERα and its cofactor flightless I homolog (FLII), and FLII also inter-
acted with ChREBP-β.23 However, it remains unknown whether the 
ERα-ChREBP complex regulates metabolism and proliferation of liver 
cancer cells. Here, we found that E2 and ERα decreased aerobic gly-
colysis and cell multiplication in HepG2 hepatoma carcinoma cells. 
ERα co-immunoprecipitated and colocalized with both ChREBP-α 

and ChREBP-β. ERα decreased ChREBP-α–induced ChREBP-β tran-
scription. Our results demonstrated ERα, ChREBP-α and ChREBP-β 
are in the same complex. The ERα-ChREBP complex might be a po-
tential target in the therapy of hepatoma carcinoma.

2  | MATERIAL S AND METHODS

2.1 | Cell culture and materials

The human ChREBP-α and ChREBP-β cDNA was generated as de-
scribed.16 The cDNA clones comprising different regions of ChREBP-α 
and ERα were made, including ChREBP-α 1-251, ChREBP-α 252-625 
and ChREBP-α 626-852; and ERα 1-180, ERα 181-282 and ERα 283-
594. Table S1 listed all the primers for above cloning. Dr Xiaoying 
Li at Zhongshan Hospital of Fudan University School of Medicine 
kindly provided the ERα plasmid. Protease inhibitor cocktail tablets 
(EDTA-free) were bought from Roche (Switzerland). NP-40 (Nonidet 
P-40) and Triton X-100 were purchased from Sigma. Dulbecco's 
modified Eagle's medium (DMEM) and Opti-MEM were purchased 
from HyClone and Invitrogen, respectively. Foetal bovine serum 
(FBS) was got from Biochrom. Primary antibodies used were as fol-
lows: ChREBP (Novus; NB400-135), HA and Myc (MBL International; 
M180-3 and M047-3), ERα (Cell Signaling Technology; 8644), GLUT2 
Polyclonal Antibody (Proteintech; 20436-1-AP), GLUT4 Monoclonal 
Antibody (Proteintech; 66846-1-Ig), Tubulin and FLAG (Sigma; 
T5201 and F1804) and PARP (Invitrogen; 436400).

293T human embryonic kidney cells, human hepatocellular car-
cinoma cells HepG2 and SMMC7721, and HeLa human cervical can-
cer cells were cultured in DMEM containing 2 mmol/L L-glutamine, 
1 mmol/L sodium pyruvate, 10% FBS, 100 μg/mL streptomycin and 
100 unit/mL penicillin at 37℃ in humidified 5% CO2 atmosphere. 
17β-oestradiol (E2) of 10 nM was used to treat cells.

2.2 | Nuclear and cytosolic fractionation

HA-ChREBP-α and Flag-ERα were transfected into 293T cells. E2 
was used to treat the transfected cells. The preparation of buffer 
A and buffer B, and the operating steps were handled as presented 
previously.23 All the procedures were performed at 4℃.

2.3 | Co-immunoprecipitation

Triton X-100 buffer contained 1% Triton X-100, 100  mM NaCl, 
40 mM Tris-HCl, pH 8, 1 mM EDTA and 0.5% NP-40. Using Triton 
X-100 buffer to lyse fresh cells, primary antibody incubation was 
performed overnight at 4℃, followed by an additional incubation for 
2 hours together with protein A/G agarose beads (Santa Cruz) at 4℃. 
Triton X-100 buffer was applied to wash the beads for four times and 
then to boil the beads in 2 × SDS protein loading buffer. Then, the 
Western blotting analysis was carried out.
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2.4 | Luciferase assays

Flag-ERα, HA-ChREBP-α, HA-ChREBP-β, β-galactosidase, ChREBP-
α-Luc reporter and ChREBP-β-Luc reporter were transiently 
transfected into 293T cells using Lipofectamine 2000 (Invitrogen). Beta-
galactosidase was employed as a reference for normalizing transfection 
efficiency. pcDNA3 was used to normalize the total amount of trans-
fected DNA. At 48  hours post-transfection, cells were collected and 
analysed by means of Beta-Gal Assay Kit (Clontech) and the luciferase 
reporter assay system (Promega) according to the reagent specification.

2.5 | Real-time quantitative PCR

TRIzol (Invitrogen Life Technologies) was used to isolate total RNA 
from cells with or without E2 treatment in accordance with the 
manufacturer's recommendations. The PrimeScript™ RT Reagent Kit 
(Takara Bio Inc) with 10  mL assay mix containing 2  mg total RNA 
was applied to synthesize cDNA. The reaction mixture was kept at 
−20℃ until the PCR analysis. β-actin was applied to the endogenous 
reference. The primer sequences of ChREBP-α and ChREBP-β were 
described previously.16 Table 1 listed other primer sequences.

Real-time PCR was analysed using a StepOnePlus™ Real-Time 
PCR System (Applied Biosystems). Relative quantification of mRNA 
amount was obtained in the light of the user manual of Applied 
Biosystems.

2.6 | Western blotting

Cell lysates were collected. BCA Protein Assay Kit (Pierce) was 
used to quantify protein concentration. Protein bands were visual-
ized with an enhanced chemiluminescent solution (Millipore) using 
Amersham Imager 600 (GE).

2.7 | Metabolic assays

Cells in 10-cm dishes grew to about 80% confluence and then were 
trypsinized and resuspended in 3 mL of culture solution. An Oxytherm 
System (Hansatech) was applied to detect oxygen consumption.

Glucose uptake and lactate production were measured at 
48 hours after cells were laid in 6-well plates or treated, and then 
collected and investigated culture medium. Lactate production and 
glucose uptake were analysed using Lactate Assay Kit (Sigma) and 
Glucose Assay Kit (Shanghai Rongsheng Biotech), respectively, ac-
cording to product specification.

2.8 | Cell viability assay

A total of 2000, 4000, 6000, 10 000 or 20 000 cells were laid in 
6-well plates in triplicate. After cell adherence, CCK8 reagent was 

added and incubated for 2 hours, followed by OD measurement at 
450 nm. The standard curve was drawn according to cell numbers 
and OD values. The four groups are cells stably expressing GFP or 
ERα cDNA with or without E2 treatment. Each group of 4000 cells 
were plated and cultured at 37℃ with 5% CO2. A number of cells 
were measured at days 0, 2, 4 and 6 after plating.

2.9 | Immunofluorescent staining

Cells were grown on coverslips, rinsed twice with phosphate buffer 
saline (PBS), each for 5 minutes. Then, cells were treated with 4% 
paraformaldehyde for 15 minutes, rinsed twice with PBS, permea-
bilized with 0.3% Triton X-100 for 20 minutes at room temperature 
and blocked in 2% goat serum for 30 minutes at room temperature 
and primary antibodies were incubated overnight at 4℃. Alexa 488 
and 555 Fluor®, which were conjugated secondary antibodies, were 
added to the cells and reared for 30 minutes at room temperature 
away from light. In the final 5  minutes, DAPI (40728ES03) was 
added. The coverslips were mounted with nail polish after being 
washed twice in PBS, and images were taken using an LSM 710 laser 
scanning confocal microscope (Zeiss) and a confocal microscope 
(Leica, TCS SP8 STED).

2.10 | Statistical analysis

Experiments were done at least three times independently; one 
representative experiment was displayed. Data were presented as 
mean ± standard deviation (SD) using Prism 5 (GraphPad Software). 
Student's t test was used to analyse the difference between the 
treatment group and the control group. P value < .05 was regarded 
as statistically significant.

3  | RESULTS

3.1 | ERα with E2 treatment reduced aerobic 
glycolysis and cell multiplication in HepG2 cells

It was known that ChREBP enhanced aerobic glycolysis and cell 
multiplication in tumour cells.22 Previously, we found that ERα 
interacts with ChREBP,23 and we further wondered whether 
ERα adjusted metabolic activity and multiplication capacity of 
hepatoma carcinoma cells. We constructed HepG2 stable cells 
with Flag-tagged GFP cDNA (Flag-GFP) and Flag-tagged ERα 
cDNA (Flag-ERα) and compared their metabolic activity and mul-
tiplication capacity. We compared glucose uptake of Flag-GFP 
with E2 treatment for 24  hours and Flag-ERα with or without 
E2 treatment for 24 hours. HepG2 cells stably expressing Flag-
ERα with E2 treatment for 24  hours showed reduced glucose 
uptake (Figure  1A). HepG2 cells stably expressing Flag-ERα 
with E2 treatment displayed lower lactate production when 
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compared with no E2 treatment (Figure 1B). To investigate the 
effect of ERα overexpression with or without E2 treatment on 
liver cancer cell viability, cell number was counted at days 0, 2, 
4 and 6 after plating. We found that the overexpression of ERα 
with E2 treatment slowed cell growth in comparison with the 
control (Figure  1C). We also examined cell cycle and apoptosis 
of Flag-GFP with E2 treatment or Flag-ERα with or without E2 
treatment. ERα with E2 treatment showed a decreased percent-
age of S-phase cells (Figure  1D) and increased percentage of 
apoptotic cells (Figure 1E,F). In brief, our findings indicate that 

ectopic expression of ERα with E2 treatment reduced aerobic 
glycolysis and cell multiplication in hepatoma carcinoma cells. 
SMMC7721 cells stably expressing Flag-ERα with E2 treatment 
showed reduced expression of glucose transporter Glut2 and 
Glut4 (Figure S2B,C), which might contribute to decreased glu-
cose uptake.

3.2 | ERα co-immunoprecipitated and colocalized 
with both ChREBP-α and ChREBP-β

ERα and E2 can inhibit transcription and translation of ChREBP-α.13 
Our previous results showed that ectopically expressed ERα 
interacted with ChREBP-α.23 Now, we discovered that authi-
genic ChREBP-α and ERα protein also co-immunoprecipitated 
in SMMC7721 hepatoma carcinoma cells (Figure  2A). Herman 
et al found that ChREBP had ChREBP-α and ChREBP-β isoforms.16 
We also investigated whether ERα interacted with ChREBP-β and 
confirmed that ERα co-immunoprecipitated with ChREBP-β and 
ChREBP-α (Figure 2B).

In order to examine whether ERα colocalized with either ChREBP-α 
or ChREBP-β, Flag-ERα and HA-ChREBP-α, Flag-ERα and HA-
ChREBP-β were ectopically expressed in HeLa cells and their subcel-
lular localization was detected using immunofluorescent staining. Our 
data showed that HA-ChREBP-α or HA-ChREBP-β colocalized with 
Flag-ERα in both cytoplasm and nucleus, respectively (Figure 2C-F).

F I G U R E  1   ERα overexpression with E2 treatment reduced aerobic glycolysis and cell proliferation in HepG2 cells. A, Glucose uptake, B, 
Lactate production of HepG2 cells stably expressing either Flag-GFP with E2 treatment for 24 h or Flag-ERα with or without E2 treatment 
for 24 h. C, Cell proliferation of HepG2 cells stably expressing either Flag-GFP with E2 treatment for 24 h or Flag-ERα with or without E2 
treatment for 2, 4 and 6 d. D, Percentage of S phase of HepG2 cells stably expressing either Flag-GFP with E2 treatment for 24 h or Flag-
ERα with or without E2 treatment (n = 3 biological replicates). E, Flow cytometry analysis for apoptosis of HepG2 cells stably expressing 
either Flag-GFP with E2 treatment for 24 h or Flag-ERα with or without E2 treatment. F, Percentage of apoptotic cells as indicated in E (n = 3 
biological replicates). Statistical significance was calculated by unpaired Student's t test (mean ± SD). *P < .05, **P < .01

TA B L E  1   List of quantitative PCR primers and relevant 
information

Gene Sequence (5'-3')
Product 
size (bp)

ChREBP-total

Forward primer AACTGGAAGTTCTGGGTGTTC 164

Reverse primer AGGGAGTTCAGGACAGTTGG

ERα

Forward primer ACCATATCCACCGAGTCCTG 194

Reverse primer ATAGAGGGGCACCACGTTC

β-actin

Forward primer GGACTTCGAGCAAGAGATGG 234

Reverse primer AGCACTGTGTTGGCGTACAG
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F I G U R E  2   ERα colocalized and co-immunoprecipitated with both ChREBP-α and ChREBP-β. A, Endogenous ERα co-immunoprecipitated 
with ChREBP in HepG2 and SMMC7721 cells. B, Ectopically expressed Flag-ERα co-immunoprecipitated with either HA-ChREBP-α or 
HA-ChREBP-β in 293T cells. C, Ectopically expressed Flag-ERα colocalized with HA-ChREBP-α in HeLa cells. The scale bar is 10 µm. Red: 
Flag-ERα; green: HA-ChREBP-α; blue: DAPI. D, Upper panel: scatter plot of colocalization between HA-ChREBP-α and Flag-ERα as indicated 
in C. Lower panel: A bar graph summarizes Pearson's correlation coefficients of HA-ChREBP-α and Flag-ERα (n = 3 biological replicates). E, 
Ectopically expressed Flag-ERα colocalized with HA-ChREBP-β in HeLa cells. The scale bar is 10 µm. Red: Flag-ERα; green: HA-ChREBP-β; 
blue: DAPI. F, Upper panel: scatter plot of colocalization between HA-ChREBP-β and Flag-ERα as indicated in E. Lower panel: a bar graph 
summarizes Pearson's correlation coefficients of HA-ChREBP-β and Flag-ERα (n = 3 biological replicates). G, The schematic diagram shows 
the domain structure of ChREBP-α and ChREBP-β. Flag-ChREBP-α 1-251, but not Flag-ChREBP-α 252-625 or Flag-ChREBP-α 626-852, co-
immunoprecipitated with Myc-ERα in 293T cells. NES, nuclear export signal; NLS, nuclear localization signal; Pro-rich, Proline-rich domain; 
bHLH/ZIP, basic helix-loop-helix leucine-zipper domain; ZIP-like, leucine-zipper-like domain. H, The schematic diagram shows the domain 
structure of ERα. Flag-ERα 181-282 and Flag-ERα 283-594, but not Flag-ERα 1-180 co-immunoprecipitated with HA-ChREBP in 293T cells. 
AF-1, ligand-independent transcriptional activation function domain 1; DBD, DNA-binding domain; AF-2, ligand-dependent transcriptional 
activation function domain 2
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Next, we further analysed which domains of ChREBP-α inter-
act with ERα. On the basis of the structural domains of human 
ChREBP-α protein, we generated three ChREBP-α truncates in-
cluding Flag-tagged N-terminal NES and NLS domains of ChREBP 
(Flag-ChREBP-α 1-251), Flag-tagged Pro-rich domain of ChREBP 
(Flag-ChREBP-α 252-625) and Flag-tagged bHLH/ZIP and ZIP-like 
of ChREBP (Flag-ChREBP-α 626-852). We discovered that only 
the Flag-ChREBP-α 1-251 truncate co-immunoprecipitated with 
Myc-ERα (Figure 2G). As ERα co-immunoprecipitated with both 
ChREBP-β and ChREBP-α (Figure 2B) and ChREBP-β did not have 
the N-terminal 177 amino acids of ChREBP-α,16 we deduced that 
ERα interacted with ChREBP-α 178-251, which is equivalent to 
ChREBP-β 1-74 (Figure 2H). We also constructed Flag-tagged N-
terminal AF-1 domain of ERα (Flag-ERα 1-180), Flag-tagged DBD 
domain of ERα (Flag-ERα 181-282) and Flag-tagged C-terminal 
AF-2 domain of ERα (Flag-ERα 283-595), in terms of the struc-
tural domains of human ERα protein. Our data showed that both 
Flag-ERα 181-282 and Flag-ERα 283-594 co-immunoprecipitated 
with HA-ChREBP-α (Figure 2H). The discovery indicated an inter-
action between ChREBP-α 178-251 and DBD and AF-2 domains 
of ERα.

3.3 | Influence of oestrogen on the localization and 
expression of ERα and ChREBP-α

We next analysed whether E2 affected the subcellular localization 
of ChREBP-α and ERα. We overexpressed HA-ChREBP-α and Flag-
ERα in HeLa cells with or without E2 treatment and investigated the 
distribution of ChREBP-α and ERα using immunofluorescent stain-
ing. Without E2 treatment, ERα was distributed in both cytoplasm 
and nucleus (Figure 3A). However, most of ERα translocated to the 
nucleus after E2 treatment and nuclear colocalization of ERα and 
ChREBP-α was increased (Figure 3B,C and E). For ChREBP-α, there 
was nearly no effect on its localization with or without E2 treatment 
(Figure 3A,B and E). There was similar effect to ChREBP-β with E2 
treatment (Figure S1).

To confirm the findings, we performed nuclear and cytoplasm 
separation experiment. Subcellular fractionation showed that Flag-
ERα and HA-ChREBP-α existed in both cytoplasm and nucleus. It is 
interesting that ERα increased ChREBP-α protein level in the cytosol 
when there was no E2 present. However, ERα reduced ChREBP-α 
protein level significantly no matter in the cytosol or nucleus 
when there was E2 (Figure  3E). In HepG2 cells stably expressing 

F I G U R E  3   The effect of oestrogen on the localization and expression of ERα and ChREBP. A, Without E2 treatment, ectopically 
expressed Flag-ERα and HA-ChREBP-α colocalized in both cytosol and nucleus of 293T cells. The scale bar is 10 µm. Green: HA-ChREBP-α; 
red: Flag-ERα; blue: DAPI. B, E2 promoted the translocation of ERα from cytoplasm to nucleus without affecting subcellular localization of 
ChREBP in 293T cells. The scale bar is 10 µm. Green: HA-ChREBP-α; red: Flag-ERα; blue: DAPI. C, Quantification of Pearson's correlation 
coefficients between nuclear HA-ChREBP-α and Flag-ERα with or without E2 treatment. D, Real-time PCR analysis for mRNA levels of 
ChREBP-α, ChREBP-β and ChREBP-total at 24 h in HepG2 cells stably expressing Flag-ERα with or without E2 treatment. E, Nuclear and 
cytosolic fractionation analysis showed that E2 promoted the translocation of ERα from cytoplasm to nucleus without affecting subcellular 
localization of ChREBP in 293T cells. Tubulin and PARP serve as loading controls for the cytosolic and nuclear fraction, respectively. 
Statistical significance was calculated by unpaired Student's t test (mean ± SD). *P < .05
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Flag-tagged ERα, ERα overexpression with E2 treatment reduced 
mRNA levels of ChREBP-α, ChREBP-β and ChREBP-total, with a 
more significant reduction in the ChREBP-β mRNA level (Figure 3D). 
Western blot analyses showing ERα transfection and E2 treatment 
down-regulated endogenous protein level of ChREBP (Figure S2A).

3.4 | ChREBP-α or ChREBP-β with ERα and E2 
inhibited ChREBP-β transcription

Herman et al reported that one isoform of ChREBP, ChREBP-α, 
transcriptionally activated the other isoform, ChREBP-β.16 We next 
investigated whether ERα regulated the ability of ChREBP-α to 
transcriptionally activate ChREBP-β. The luciferase assay showed 
that ERα and ChREBP-α or ChREBP-β with E2 treatment sharply 
decreased ChREBP-β reporter transcriptional activity (Figure 4A,C 
and F), but there was no significant effect on the transcriptional ac-
tivity of ChREBP-β mutant reporter (Figure 4B). Moreover, ERα and 
ChREBP-α or ChREBP-β with E2 treatment did not affect ChREBP-α 
reporter transcriptional activity (Figure  4D,E). To assess whether 
there was specificity that ERα and ChREBP-α or ChREBP-β with E2 
treatment reduced ChREBP-β reporter transcriptional activity, we 
co-transfected ERα and FLII to determine their effect on ChREBP-β 
reporter transcriptional activity. The results revealed there was 

no obvious difference for the effect of ERα and FLII on ChREBP-β 
reporter transcriptional activity with or without E2 treatment 
(Figure 4G).

We found that ERα weakened the interaction between ChREBP-α 
and ChREBP-β, and ERα with E2 treatment further weakened the 
association (Figure 5). These results suggested that ERα, ChREBP-α 
and ChREBP-β might be in the same complex.

In summary, ERα with E2 treatment reduced aerobic glycolysis 
and inhibited cell multiplication in liver cancer cells. One of the un-
derlying mechanisms is that ERα suppressed ChREBP activity, in-
cluding ChREBP-α–mediated ChREBP-β transcription (Figure 6).

4  | DISCUSSION

ERα and oestrogen negatively regulate liver cancer cell proliferation.4 
Here, we provided a novel mechanism by showing that ERα with E2 
treatment reduced aerobic glycolysis by suppressing ChREBP activ-
ity. We found ERα and oestrogen could regulate metabolism and 
multiplication of hepatoma carcinoma cells by reducing ChREBP pro-
tein levels. ChREBP was discovered to be a major regulator of vital 
genes related to glycolysis, lipogenesis and gluconeogenesis in meta-
bolic tissues.15,17,18,24-29 Additionally, ChREBP facilitated the prolif-
eration of liver and colorectal cancer cells.22 It was known ChREBP 

F I G U R E  4   ERα and E2 reduced ChREBP-α or ChREBP-β–induced ChREBP-β transcription. A, Luciferase reporter assay showed that 
co-expression of ERα and ChREBP-α with E2 treatment decreased the transcriptional activity of ChREBP-β promoter. B, Luciferase reporter 
assay showed that co-expression of ERα and ChREBP-α with E2 treatment did not decrease the transcriptional activity of mutant ChREBP-β 
promoter, which did not contain ChoRE sites. C, Luciferase reporter assay showed that co-expression of ERα and ChREBP-β with E2 
treatment decreased the transcriptional activity of ChREBP-β promoter. D, Luciferase reporter assay showed that co-expression of ERα and 
ChREBP-α with E2 treatment did not change the transcriptional activity of ChREBP-α promoter. E, Luciferase reporter assay showed that co-
expression of ERα and ChREBP-β with E2 treatment did not change the transcriptional activity of ChREBP-α promoter. F, Luciferase reporter 
assay showed that co-expression of ERα, ChREBP-α and ChREBP-β with E2 treatment decreased the transcriptional activity of ChREBP-β 
promoter. G, Luciferase reporter assay showed that co-expression of ERα and GFP-FLII with E2 treatment hardly changed the transcriptional 
activity of ChREBP-β promoter. Statistical significance was calculated by unpaired Student's t test (mean ± SD). *P < .05
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has two subtypes: ChREBP-α and ChREBP-β; ChREBP-β is a target 
gene of ChREBP-α.16 ChREBP reported in previous studies is actu-
ally ChREBP-α. Our finding showed that ERα suppressed ChREBP-
α–mediated ChREBP-β transcription provided another regulatory 
mechanism for the two isoforms of ChREBP.

ChREBP was down-regulated in human breast tumour in com-
parison with vicinal normal tissues.30 Moreover, ChREBP signifi-
cantly correlated with increased survival in breast cancer.31,32 The 
study suggested that ChREBP might play different roles in regulating 
cell proliferation in breast and liver cancers. Therefore, it is worth-
while to find out why the ERα-ChREBP axis plays distinct roles in 
breast and liver cancers.

ERα regulates ChREBP at both transcriptional and post-
transcriptional levels. ERα suppressed fatty acid and glycerolipid 
synthesis by inhibiting mRNA and protein expression of ChREBP in 
pancreatic islet β-cells.13 Oestrogen, which opposed excessive lipid 
synthesis in the liver and gluconeogenesis, may partially occur from 
membrane ERα signalling, to suppress ChREBP and triglycerides 
in mature fat cells.14,33,34 Our data suggested that E2 treatment 

promoted nuclear translocation of ERα and dampened the binding 
between ChREBP-α and ChREBP-β. The interaction of ChREBP-α 
and ChREBP-β is indispensable for ChREBP-α–induced ChREBP-β 
transcription. Our findings mainly focused on the effect of ERα on 
ChREBP transcriptional activity. Going forward, a ChIP-seq analysis 
of ERα should be conducted in liver cancer cell lines to investigate 
the direct transcriptional regulation in the promoter or enhancer of 
ChREBP gene.

Taken together, we uncovered a novel mechanism for ERα de-
creasing aerobic glycolysis and cell multiplication in liver cancer cells. 
The data showed that ERα, ChREBP-α and ChREBP-β coexisted in 
a complex, and ERα inhibited ChREBP-α–mediated ChREBP-β tran-
scription. The ERα-ChREBP axis might be a potential target in the 
therapy of liver cancer.
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