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Abstract 

Background:  The program to eradicate malaria is at a critical juncture as a new wave of insecticides for mosquito 
control enter their final stages of development. Previous insecticides have been deployed one-at-a-time until their 
utility was compromised, without the strategic management of resistance. Recent investment has led to the near-
synchronous development of new insecticides, and with it the current opportunity to build resistance management 
into mosquito-control methods to maximize the chance of eradicating malaria.

Methods:  Here, building on the parameter framework of an existing mathematical model, resistance-management 
strategies using multiple insecticides are compared to suggest how to deploy combinations of available and new 
insecticides on bed nets to achieve maximum impact.

Results:  Although results support the use of different strategies in different settings, deploying new insecticides ide-
ally together in (or at least as a part of ) a mixture is shown to be a robust strategy across most settings.

Conclusions:  Substantially building on previous works, alternative solutions for the resistance management of 
new insecticides to be used in bed nets for malaria vector control are found. The results support a mixture product 
concept as the most robust way to deploy new insecticides, even if they are mixed with a pyrethroid that has lower 
effectiveness due to pre-existing resistance. This can help deciding on deployment strategies and policies around the 
sustainable use of these new anti-malaria tools.

Keywords:  Resistance evolution, Modelling, Resistance management, Vector control, ITNs, Insecticides, Bed nets

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Malaria is a debilitating infectious disease that contin-
ues to carry a significant burden on the poorest commu-
nities and most vulnerable people around the world; in 
2019, 94% of the estimated 229 million cases of malaria 
across the world were in Africa and 67% of the estimated 
409,000 deaths occurred in children aged under 5 years 
[1]. Malaria is caused by Plasmodium parasites that 
have vector-borne transmission between human hosts 

via mosquitoes. In Africa, Plasmodium falciparum is 
the most prevalent parasite accounting for 99.7% of the 
cases of malaria in 2018, which is mostly transmitted by 
Anopheles mosquitoes (especially Anopheles gambiae and 
Anopheles funestus) [2]. Over the last two decades there 
has been significant investment and progress toward 
eliminating malaria through vector control; between 
2000 and 2015, the international financing of malaria 
interventions has increased 20-fold, resulting in a 40% 
decrease in the clinical incidence of malaria and averting 
an estimated 663 million cases of malaria [3]. The greatest 
contributor accounting for around 68% of this decrease 
was the mass distribution of insecticide-treated bed 
nets (ITNs) [3] that both provide a physical barrier that 
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reduces the opportunity for a mosquito to bite a human 
and an insecticide that kills mosquitoes that attempt to 
feed on a protected human during their blood-feeding 
cycle. In contrast to other interventions (of artemisinin-
based combination therapy and indoor-residual spray 
that account for 22% and 10% of the decrease, respec-
tively) [3], ITNs have been successful because they are 
cheap [4] and can be mass-distributed freely (or at very 
low cost) to the poorest communities that tend to be the 
worst affected by malaria [2]. Between 2016 and 2018, 
over 578 million ITNs were delivered across the world, 
including to protect at least 40% of the population in 
the 10 countries in Africa with the highest prevalence of 
malaria. In total, since the renewed focus on the eradica-
tion of malaria from 2004, over 2 billion ITNs have been 
delivered worldwide [5].

There has been growing concern that the increasing 
levels of resistance may threaten the efficacy of ITNs 
(and, indeed, other vector control methods of malaria 
intervention) [6–8]. Until recently, the World Health 
Organization (WHO) only recommended a single mode 
of action for use on ITNs—pyrethroids, in part because 
pyrethroids themselves are inexpensive and so contrib-
ute to the low cost manufacture of ITNs [9]. Although 
the clinical incidence of malaria continues to decline 
year-on-year, the rate of decline is slowing [2] and it is 
predicted that if pyrethroid-resistance becomes wide-
spread then the trend may reverse, as the cases of malaria 
averted by ITNs could decrease by more than 40% [10, 
11]. This is already beginning to happen in some locali-
ties, as the annual decline in the clinical incidence of 
malaria in the 10 countries in Africa with the high-
est prevalence of malaria has reversed to an increase in 
both 2017 and 2018 [2]. At present, the consensus from 
numerous studies is that pyrethroid-ITNs remain a more 
effective vector control method than untreated bed nets 
regardless of resistance because vector mortality tends to 
be higher even in pyrethroid-resistant strains of mosqui-
toes [12, 13]. However, results are variable across studies, 
which may reflect geographical variation in the resist-
ance mechanism affording different levels of resistance. 
Indeed, across Africa, whilst there has been a dramatic 
rise in the prevalence of resistance over the last two dec-
ades, there is also substantial heterogeneity in the genet-
ics of resistance that differs by region [12–14]. If malaria 
interventions continue unchanged and the most effective 
forms of resistance continue to spread throughout Africa, 
there is a realistic threat that mosquito control will fail 
and, in the return of prevalence of malaria pre-2000, 
clinical incidence and mortality due to malaria would 
more than double [6, 15]. Therefore, resistance is a press-
ing threat to the steps already made toward the eradica-
tion of malaria and there is a need for action to be taken 

now to prevent reversal—let alone any further progress 
towards eradication.

To-date, the public health approach to combat malaria 
has been reactive, using the available tools to decrease 
malaria incidence under a very limited budget that con-
strains the cost of conceivable interventions [16]. In 
general, little consideration has been given to resistance 
management [17]. For example, DDT was used until 
resistance rendered it ineffective and other insecticides 
that have subsequently been deployed have had their 
usage dictated by the balance of short-term economics 
and efficacy [6]. However, the threat of insecticide resist-
ance has been proactively responded to before the fail-
ure of mosquito control by the Bill and Melinda Gates 
Foundation in their support of the Innovative Vector 
Control Consortium (IVCC) with the aim of developing 
new insecticides for mosquito control in collaboration 
with industrial partners to eradicate malaria by 2040. 
The initial research and development work focused on 
long-lasting indoor-residual sprays [18]; the first prod-
uct that was launched into the market in 2013 was Actel-
lic® 300CS, which was developed in collaboration with 
Syngenta using the repurposed organophosphate piri-
miphos-methyl. The product received full WHO recom-
mendation [19], which was the normative requirement 
at the time for governments and aid agencies to purchase 
the product for vector control. A few years later in 2017, 
the first new long-lasting ITN (Interceptor® G2), which 
was developed in collaboration with BASF, was launched, 
combining the existing pyrethroid alpha-cypermethrin 
and a new pyrazole chlorfenapyr. Whilst three more 
indoor-residual sprays have been launched in collabo-
ration between the IVCC and Sumitomo and Bayer in 
recent years, the only other new long-lasting ITN (Royal 
Guard®) was developed by Disease Control Technolo-
gies without assistance from the IVCC and launched in 
2019, combining the existing pyrethroid permethrin with 
the repurposed juvenile hormone analogue pyriproxyfen 
(that is unusual in primarily affecting mosquito fecundity 
rather than mortality). These two new long-lasting ITNs 
have been included on the prequalified list, which is the 
current normative requirement for governments and 
aid agencies to purchase them [20, 21]. Additionally, the 
IVCC reports that four new chemistries are in the final 
stages of pre-development with industrial partners [18] 
including a novel strobilurin-like insecticide for use on 
ITNs that is being developed in collaboration with Syn-
genta—that is referred to here as Syngenta Compound 1 
(SC1) [22, 23]. Both Interceptor® G2 and Royal Guard® 
pair existing and repurposed chemistries, but there is 
the potential to use combinations of new insecticides 
like SC1 within a single ITN or across multiple ITNs in 
a deployment area. With a diversity of new chemistries 
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being developed in relative synchrony, there is the rare 
opportunity for foresight in integrating resistance man-
agement into the design and/or deployment of ITNs to 
delay the evolution of resistance to the new insecticides 
and ensure high levels of mosquito control for a suffi-
ciently long time to provide the greatest chance of eradi-
cating malaria.

Here, building on a parameter framework [17] that has 
been extensively analysed [24, 25], conceptual resistance-
management strategies using multiple insecticides of 
rotations, mixtures and mosaics are compared to lower 
and upper benchmarks to assess what strategy (if any) 
should be taken to delay the evolution of resistance to 
the new insecticides. The model setup and analysis dif-
fer from Levick et  al. [17] in identified ways, including: 
(i) the explicit assessment of complementary measures of 
strategy success such as population control, (ii) the com-
parison of a broader range of resistance-management 
strategies and (iii) the examination of a different range 
of scenarios that include new parameters. Massive sim-
ulations with variable parameters are used to manage 
uncertainties and provide an expectation of why differ-
ent resistance-management strategies are favoured. As 
SC1 is the only new insecticide where relevant proper-
ties are known to the authors, special attention is given 
to what strategy should be taken with SC1, which is likely 
to differ from other new insecticides in having a target-
site that is encoded in the mitochondrial genome, as 
an inhibitor of the cytochrome-bc1 complex like azox-
ystrobin [26]; this affords it special evolutionary proper-
ties that are explicitly treated the simulations and analysis 
here. Results from the simulations are visualized using 
conditional inference trees to partition the probabilities 
of strategy success to describe how a given strategy’s suc-
cess depends on the parameter space. Further, by exami-
nation of parts of the parameter space, the potential for 
different strategies to be best in combination with dif-
ferent partner insecticides (existing pyrethroids vs other 
new chemistries, based on insecticide effectiveness) and 
geographic locations (variable zoophily based on female 
exposure) is considered. In discussion, the practicalities 
of delivering the recommended strategy are considered 
to make an initial resistance-management recommenda-
tion for SC1 and the other new insecticides.

Methods
A primary problem for the modelling of resistance evo-
lution is the need to reduce a complex reality into a 
manageable number of parameters, which also neces-
sarily creates a secondary problem in the capacity to 
obtain data to estimate those parameters. These prob-
lems are particularly acute when attempting to predict 

the evolution of resistance to new (i.e. untested) insecti-
cides in mosquitoes. This study follows the precedent of 
an existing mathematical model that has been explored 
using simulations of parameter combinations [17], which 
has provided the parameter framework for other stud-
ies as well [24, 25]. The model is ‘deterministic’ in that it 
only describes the evolutionary pressure from selection, 
which is suitable for making comparisons about the rela-
tive time to resistance under alternative resistance-man-
agement strategies because those strategies are primarily 
focused on delaying the evolution of resistance by reduc-
ing the strength of selection for resistance. The model 
supposes that there are two insecticides which each 
have a corresponding resistance locus with a rare resist-
ance allele. Previous analysis has focused on compar-
ing resistance management via mixtures and sequences, 
where mixtures involve the use of two insecticides until 
they both fail and sequences involve using one insecticide 
until it fails before switching to the other until that one 
fails too. These previous results show that mixtures tend 
be favoured when the exposure is low and the effective-
ness of insecticides is high. Here, the aim is to compare 
resistance-management strategies for SC1 and other new 
insecticides for mosquito control, which brings with it 
additional challenges that require modifications to the 
methods in Levick et al. [17], that are described in Addi-
tional file  1. The key modifications include: exploring 
resistance alleles with different combinations of modes 
of inheritance (i.e. nuclear and mitochondrial), expand-
ing the range of parameters under consideration whilst 
also significantly increasing the number of simulations 
run, incorporating a model of population size to more 
directly address population control, and modifying how 
strategies are compared to make an arguably fairer com-
parison (especially with the additional strategies that are 
considered).

Mathematical description of selection in the model
This section provides a technical description of the fit-
ness model consistent with the parameter framework in 
[17], but with some modifications (see Additional file 1). 
The notation for this section is summarized in Table  1. 
At the start of a simulation of a parameter combination, 
alleles are assumed to be in linkage equilibrium. The fit-
ness of an individual with particular alleles and sex can 
be described as a function of model parameters (Tables 2, 
3). For a given generation, the fitness model depends 
upon how many insecticides are in use and at what rate, 
which depends upon the strategy—although this really 
reflects a concept of mosquito interaction with an ITN 
more so than a practical description of ITN design or 
deployment:
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Sequences are the simplest ‘strategy’, where one insec-
ticide is 100% in-use at any one point in time and this 
strategy switches to the second insecticide once the 
resistance allele to the first in-use insecticide exceeds 
50% frequency (i.e. switching from insecticide niche: 
A, -to- ,B). This corresponds to the default scenario (or 
‘non-strategy’) as a ‘benchmark’ for interpreting a delay 
in resistance from other strategies because an insecticide 
is used solo on an ITN until its efficacy starts to fail and 
then a new insecticide is used solo instead. The order in 
that insecticides are used is determined such that the 
first-to-break goes first.

Rotations are similar, except that the in-use insecticide 
switches every 36 generations, which corresponds to the 
recommended three-year replacement or retreatment 
schedule of ITNs [27]. The first- and second-to-break 
measures could be crossed multiple times with fluctu-
ating allele frequencies, whereupon the first crossing of 
the threshold is always recorded. For the most part, the 
exact length of the replacement or retreatment schedule 
is essentially arbitrary insofar as switch-period is much 
smaller than the time to the threshold of resistance (i.e. 
50% resistance allele frequency), and this is even more 
true with the ‘soft’ analysis of the threshold data (see next 
section). Like sequences, the order of insecticides is with 
the first-to-break going first.

Mosaics involve both insecticides being 50% in-use at 
the same time (i.e. corresponding to insecticide niches: 
½ A,- and ½ -,B), assuming that a mosquito would 
only encounter one insecticide within a generation. 

Accordingly, a mosquito has a 50% chance of encoun-
tering one or other insecticide within a generation. This 
is an idealization, but makes for a useful comparison 
because a micro-mosaic that occurs at such a fine-scale 
that a mosquito is likely to encounter both insecticides 
before it reproduces acts like a mixture, or a macro-
mosaic that occurs at such a coarse-scale that a mosquito 
lineage is unlikely to encounter more than one insecticide 
between generations (because of population structure) 
acts like solo-use (i.e. sequences).

Mixtures involve an exposed mosquito encounter-
ing both insecticides at a reduced rate k (i.e. insecticide 
niche: k A,B), as if both insecticides were on the same 
ITN. k is a constant for a particular parameter combina-
tion that ensures that mixtures have the same average 
initial control as rotations and mosaics for their like-for-
like comparison, which is assumed to reflect the balance 
of formulating each insecticide for use as a mixture with 
any corresponding modifications of insecticide dose. This 
constant is calculated as a function of the effectiveness of 
the two insecticides ( m1 , m2 ; see Table 1):

‘Maximum’ describes an upper benchmark (like 
sequences provide a lower benchmark) for the compari-
son of strategies that are the same as mixtures but assume 
that k = 1 , which could be plausible were a mosquito to 
acquire the same dosage of the two insecticides from one 

(1)

k =
m1 +m2 −

√

(m1 +m2)
2
− 2m1m2(m1 +m2)

2m1m2

Table 1  Parameter framework and model notation

Parameter Definition Notation

Population size Starting population size (and carrying capacity in logistic model) N

Intrinsic birth rate % population growth rate (in logistic model) b

Intrinsic death rate % breeding mosquitoes that die into next generation d

Exposure Female % female mosquitoes that receive a dose x♀
Male % male mosquitoes that receive a dose x♂

Insecticide effectiveness Insecticide 1 % dosed mosquitoes that die from insecticide 1 m1

Insecticide 2 % dosed mosquitoes that die from insecticide 2 m2

Initial frequency Allele A Starting frequency of allele A f0,A

Allele B Starting frequency of allele B f0,B

Resistance restoration Allele A % return to baseline fitness with resistance allele A rA

Allele B % return to baseline fitness with resistance allele B rB

Dominance of resistance restoration Allele A % resistance restoration in heterozygote with allele A h
r
A

Allele B % resistance restoration in heterozygote with allele B h
r
B

Resistance cost Allele A % non-dosed mosquitoes that die from carrying allele A cA

Allele B % non-dosed mosquitoes that die from carrying allele B cB

Dominance of resistance cost Allele A % resistance cost in heterozygote with allele A h
c
A

Allele B % resistance cost in heterozygote with allele B h
c
B
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Table 2  Female fitness separated across insecticide niches, where ‘−‘ represents no insecticide, ‘1’ represents insecticide 1 and ‘2’ 
represents insecticide 2

Notation  -,- 1,- -,2 1,2 

= 1

= 1 − ℎ 1 1 − ℎ

1 − ℎ 1 − ℎ

1 − ℎ

1 − ℎ

= 1 − ℎ

1 − ℎ

= 1

− ℎ 1 − ℎ

1 − ℎ

1 − ℎ 1 − ℎ

1 − ℎ

= 1 − ℎ 1

− ℎ

1 − ℎ

1 − ℎ 1 − ℎ

1 − ℎ

1 − ℎ 1 − ℎ

1 − ℎ

1 − ℎ

1 − ℎ 1 − ℎ

= 1 − ℎ 1 − ℎ 1 − ℎ

1 − ℎ 1 − ℎ

1 − ℎ

= 1

= 1 − ℎ 1 − ℎ

1 − ℎ

1 − ℎ 1 − ℎ

1 − ℎ

=

Labelling is consistent with Levick et al. [17], except that low concentration insecticide niches are ignored here. If the resistance locus has mitochondrial inheritance, 
then the homozygotes represent the haploid states

or more ITNs within a generation as the mosquito would 
acquire when each insecticide has solo deployment. This 
is how mixtures are attributed in Levick et al. [17]. How-
ever, here, this is taken to provide an upper benchmark 
for strategy comparison as an ideal, just like sequences 
provide a lower benchmark of a non-strategy.

After selection from the exposure to the insecticide 
niche, breeding takes place using the fitness of individu-
als with particular alleles (or genotypes) and their sex to 
generate the frequency of each genotype that offspring 
will have through random mating. Offspring are assumed 
to be produced under equal sex ratio. Breeding is carried 
out by taking the fitness vector of female individuals:

And the fitness vector of male individuals:

And taking their cross-product, which produces a matrix 
that describes the different frequencies of matings between 
females and males with different genotypes. Each entry of 
this matrix describes a distribution of offspring genotypes, 
and so the frequencies of matings are then decomposed, 

(2)

(3)
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collecting offspring frequency by both genotype and sex. 
Modelling breeding in this way permits selection to build 
linkage disequilibrium with respect to the resistance alleles at 
the two loci and also with respect to their sex.

In the simplest model, offspring frequency by geno-
type and sex represents the distribution of individuals 
in the next generation, but this model also considers 
population size, overlapping generations and density-
dependence. Population size and its change is mod-
elled using a simple logistic model using an intrinsic 
birth rate parameter ( b ). Overlapping generations are 
included using an intrinsic death rate parameter ( d ) 
that describes the percentage of breeding adults that 
survive into the next generation. In mosquitoes, den-
sity-dependence is primarily a property of breeding 
sites rather than feeding sites [28], with competition 
taking place among larvae that are in the next genera-
tion. Consequently, density-dependence is attributed 
to offspring only, which is attributed such that in the 
absence of the insecticide(s) the population of females 
and males (N♀, N♂) remains constant at its initial pop-
ulation size ( N/2 for each sex) as the carrying capacity. 
Accordingly, with respect to the vector of genotype fre-
quencies for each sex and for adults after selection (f♀,a, 
f♂,a) and offspring (f♀,o, f♂,o), the vector of the number 
of females and males with genotypes in the next gen-
eration (   ,  ) is given as:

(4a)

(4b)

The total number of females in the next generation is 
simply the sum of the vector of the number of females 
with genotypes in the next generation (   ) and 
the same for the total number of males (   ), as 
the genotype frequency vector necessarily sums to 1. 
The vector of genotype frequency by sex can then be 
decomposed into the total allele frequencies in the pop-
ulation to calculate the measures of strategy success (as 
appropriate).

Simulation inputs, scenarios and outputs
The full range of each of the 17 parameters of the genetic 
model of resistance evolution is explored in a param-
eter space using the same random sample of 1,000,000 
parameter combinations. Several preliminary simulations 
were run to check that this parameter space and sam-
ple size affords a suitable dataset for subsequent analy-
sis. Most parameters are suited to a range between zero 
and one (Table 4). Some parameters are better suited to 
a log-scale (population size, initial frequency and resist-
ance cost) to ensure the random sampling of values that 
would be considered both qualitatively large and small 
without being implausible. Lastly, one parameter has no 
meaningful upper limit (intrinsic birth rate) so a standard 
log-normal distribution is used, which ensures that the 
majority of randomly sampled values maintain a stable 
population size (at the carrying capacity) in the absence 
of insecticides.

For each randomly sampled set of the 1,000,000 param-
eter combinations as the input, the fitness model is run 
for 15 scenarios from all combinations of the five strat-
egies identified above and three combinations of modes 
of inheritance for the two resistance loci. With spe-
cial consideration of SC1, there is a need to incorpo-
rate an insecticide where target-site resistance evolves 
at a mitochondrial locus, which differs from a nuclear 
locus through maternal inheritance and (effective) hap-
loidy. Although SC1 is known to have a target-site that 
has mitochondrial inheritance, this does not mean that 
resistance will only ever evolve at the mitochondrial locus 
as resistance could evolve through mutations that affect 
regulatory factors or metabolic pathways that would 
most likely have nuclear inheritance. Further, other new 
insecticides may not also have a mitochondrially-inher-
ited target-site. As a result, simulations to assess the 
evolution of resistance to new insecticides are run for 
combinations of resistance alleles with different modes 
of inheritance: nuclear inheritance only (nuclear and 
nuclear; often abbreviated to NN to describe each locus), 
mixed inheritance (or mitochondrial and nuclear; MN) 
and mitochondrial inheritance only (or mitochondrial 
and mitochondrial, MM).

Table 3  Male fitness as a function of female fitness

If the resistance locus has mitochondrial inheritance, then the homozygotes 
represent the haploid states

Notation Expression

ωAA,BB,♂ =
ωAa,BB,♂ =
ωaa,BB,♂ =

ωAA,Bb,♂ =
ωAa,Bb,♂ =
ωaa,Bb,♂ =
ωAA,bb,♂ =

ωAa,bb,♂ =
ωaa,bb,♂ =
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The main output of the simulations are two measures of 
resistance evolution: the time for the first resistance allele 
to reach 50% frequency (first-to-break) and the time 
for the second resistance allele to reach 50% frequency 
(second-to-break). This approach is consistent with the 
majority of genetic models in the literature [29], but is 
only indirectly related to the goals of resistance manage-
ment in mosquito control and malaria eradication. The 
logistic model is used to give an equivalent threshold 
metric for mosquito control, equivalent to how the time 
it takes for a resistance allele to reach 50% frequency is 
a metric for the spread of resistance. Across the scenar-
ios considered, it is important that the chosen thresh-
old is low enough that the female mosquito populations 
start below it in the first generation that the insecticide 
is applied, high enough to provide a large quantitative 
separation between strategies and not-too-high that most 
female mosquito populations do not reach the thresh-
old within the timeframe that the model is examined 
across (500 generations). In-keeping with previous work 
[30], the threshold of the time that it takes for the female 
population to recover is taken to be 80% of its size prior 
to application of insecticides to balance these considera-
tions. For the resistance and control metrics, the simula-
tion output will record a value or it will not; when it does 
not, an additional step of data extraction is undertaken 
to provide information on why a value is not recorded. 
Based on the change in allele frequency or population 

size between the start and end of the simulation, the sim-
ulated runs can be categorized into:

Successful measurement within 500 generations, as 50% 
resistance allele frequency or 80% of initial population 
size are reached.

Toward the threshold where there is an increase in 
allele frequency, implying that successful measurement 
would occur in > 500 generations.

Away from the threshold where there is a decrease 
in allele frequency, implying that allele-frequency 
change has followed the opposite direction of resistance 
evolution.

Population extinction, as the female population size 
drops below one individual leading to extinction of that 
simulation’s population.

For the purpose of analysis, these simulation-outcome 
types, or simply “data types”, are given nominal values 
that ensure their ranked interpretation (from shortest to 
longest): where ‘Toward Threshold’ is set to 1000, ‘Away 
from Threshold’ is set to 1500 and ‘Extinction’ is set to 
2000.

Analysis of simulation outputs
Following Levick et al. [17], the primary method of analy-
sis of simulation data uses conditional inference trees. 
With the comparison of multiple strategies for a given 
measure (e.g. first-to-break), conditional inference trees 
provide a robust analysis for the categorical classification 

Table 4  The parameters and their ranges for the deterministic simulations

Where possible, parameters are randomly sampled across their full range, but some parameters are better suited to a log-scale (population size, initial frequency and 
resistance cost) and one parameter has no meaningful upper limit (intrinsic birth rate) so a standard log-normal distribution is used (with mean = 0 and sd = 1). Initial 
frequency is limited to be within the range 1/N to N/100 where N is population size

Parameter Definition Range

Population size starting population size and carrying capacity 102–109

Intrinsic birth rate % population growth rate (in logistic model) 0–NA

Adult death rate % breeding mosquitoes that die into next generation 0–1

Exposure Female % female mosquitoes that receive a dose 0–1

Male % male mosquitoes that receive a dose 0–1

Insecticide effectiveness Insecticide 1 % dosed mosquitoes that die from insecticide 1 0–1

Insecticide 2 % dosed mosquitoes that die from insecticide 2 0–1

Initial frequency Allele A starting frequency of allele A 10–9–10–2

Allele B starting frequency of allele B 10–9–10–2

Resistance restoration Allele A % return to baseline fitness with resistance allele A 0–1

Allele B % return to baseline fitness with resistance allele B 0–1

Dominance of resistance restoration Allele A % resistance restoration in heterozygote with allele A 0–1

Allele B % resistance restoration in heterozygote with allele B 0–1

Resistance cost Allele A % non-dosed mosquitoes that die from carrying allele A 10–3–10−½

Allele B % non-dosed mosquitoes that die from carrying allele B 10–3–10−½

Dominance of resistance cost Allele A % resistance cost in heterozygote with allele A 0–1

Allele B % resistance cost in heterozygote with allele B 0–1
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of when a particular strategy tends to be favoured in dif-
ferent regions of the parameter space. Trees are built and 
drawn using R:ctree (in the ‘partykit’ package) [31], which 
uses iterative permutation tests in an algorithm to make a 
binary split in the variable with the strongest differentia-
tion of output distributions. The iterations that form the 
tree have a controlled stop when the algorithm can no 
longer make a split into terminal nodes with > 5% of the 
data, which is a control applied for the visualization of the 
tree to ensure a manageable number of terminal nodes. 
Necessarily, there is an element of bias introduced by the 
choice of any parameter space, but the use of conditional 
inference trees mitigates against wholescale bias because 
the meaningful outputs do not rely upon the frequency of 
a category across the chosen parameter space but rather 
within statistically different parameter subspaces that are 
identified algorithmically. Therefore, whilst the frequency 
of categories must be interpreted with caution (as they 
depend on the chosen parameter space), there is only 
the potential for bias to enter into the output in deter-
mining the precise boundaries between parameter sub-
spaces where different strategies are more successful. In 
this way, the use of conditional inference trees is aligned 
with the aim of understanding how some strategies are 
favoured over others for a particular measure, which can 
then provide the basis for insight into why some strate-
gies are favoured over others in different contexts.

For building conditional inference trees, the classifica-
tion can include ‘sequences’ as a lower benchmark, but 
must exclude the ‘maximum’ upper benchmark because 
this would mask meaningful comparisons, so compari-
sons are made between sequences, rotations, mosaics and 
mixtures. Recognizing that the development of mixtures 
of new insecticides has significant challenges (e.g. physio-
chemical compatibility), the classification of which strat-
egy is favoured is also rerun excluding mixtures (i.e. for 
sequences, rotations and mosaics) to consider how this 
alters the results. Taking one measure at a time (first-to-
break, second-to-break or control-failure), the output 
variable is assembled by classifying which one or combi-
nation of strategies have > 10% difference (in either direc-
tion) for that measure. A combination of strategies is 
categorized when strategies have < 10% difference with 
each other and all have > 10% difference with all other 
strategies. This ‘soft’ cut-off can help avoid misinterpret-
ing the quantitative variation in the measure where strate-
gies have near-equal results. However, this does generate 
a problem of intransitivity (e.g. where A is near-equal B, B 
is near-equal C and A is not near-equal C), which is best 
avoided by making fewer comparisons. Consequently, 
although results can be summarized in a tree that com-
pares all strategies and their combinations at once (as is 
done in the main-text), these results are compared to a 

different set of trees where each strategy is examined in 
isolation and classified as the most successful (> 10% dif-
ference than all others), the equally-most successful with 
one or more other strategy (> 10% difference than the 
worst), the equally-most successful alongside all other 
strategies (all < 10% difference) or not among the most 
successful (other(s) have > 10% difference; Additional file 2 
and Additional file 3: Figures S1–12).

Whilst conditional inference trees describe how dif-
ferent strategies are favoured in particular parameter 
spaces, here there is a special focus in the resistance-
management strategy for SC1 and other new insecticides. 
As such, the secondary method of analysis concerns the 
results when a new insecticide is used alongside a part-
ner insecticide and in different geographic settings. Due 
to the uncertainty around the genetic mechanism of 
resistance for SC1 or any other new insecticide, the only 
parameter that SC1 or another new insecticide constrains 
is effectiveness because of the design constraint from 
WHO criteria, requiring that a new insecticide has > 0.8 
effectiveness to obtain prequalification listing [21, 27]. A 
new partner insecticide would be similarly constrained, 
but the WHO also recommends the use of pyrethroids 
despite widespread resistance [9] that tend to have < 0.8 
effectiveness [12, 13]. Yet, regardless of the insecticide, 
the genetics of new forms of resistance is uncertain. Fur-
ther, in different geographic settings, there are many 
complex and interacting factors that contribute toward 
uncertainty in exposure, including zoophily [32] and cov-
erage [2]. In response to these uncertainties when seek-
ing to assess the scope for resistance management with at 
least one new insecticide, the impact of effectiveness can 
be assessed by exploring the trend in time to resistance 
across effectiveness to capture variation in insecticide 
choice and exposure to capture variation in geographic 
setting.

Results
A parameter space of 17 input parameters was assem-
bled by randomly sampling the parameters for each of 
the 1 million simulated runs of the model for specific 
combinations of resistance allele modes of inheritance 
(N = nuclear and M = mitochondrial, giving NN, MN and 
MM combinations) and strategies (the lower benchmark 
sequences, the upper benchmark maximum and the 
three main strategies: rotations, mosaics and mixtures) 
to record data on the time for the first and second resist-
ance allele to reach > 50% frequency (first-to-break and 
second-to-break), the time for the population to recover 
to > 80% of its size prior to the application of insecticides 
(control-failure) and the data types (especially the occur-
rence of extinction). To avoid any ambiguity, the same 
random sample of parameters was used for each of the 15 
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simulations of combinations of inheritance and strategy 
to make results comparable by inheritance and strategy. 
The total number of simulations run here is therefore 15 
million.

Distributions of the data types
The results show substantial variability in the simula-
tion-outcome data types across different inheritances, 
strategies and measures (Fig.  1). For all measures (i.e. 
‘first-to-break’, ‘second-to-break’ and ‘control failure’), 
there is an almost linear trend in data types across inher-
itances, with nuclear-only inheritance (NN) showing 
fewer successful measurements and more changes in 
allele frequency toward the 50% threshold for measure-
ment, mitochondrial-only inheritance (MM) showing a 
shift toward the opposite pattern and mixed inheritances 
(MN) showing an intermediate pattern. With mixed 
modes of inheritance (MN), the insecticide with the 
resistance allele with mitochondrial inheritance is dispro-
portionately more likely to be the first-to-break (with a 
mean across strategies of 61.5%). Across modes of inher-
itance, the first-to-break measure shows more successful 
measurements and changes in allele frequency toward 
the threshold for measurement than the second-to-break 
measure that shows many more changes in allele fre-
quency away from the threshold for measurement, which 
reflects the inherent order in the results of these meas-
ures (i.e. naturally the second-to-break would take longer 
than the first-to-break event).

Across comparisons, strategies group together with 
similar distributions of data types. The two strategies with 
a temporal dimension as insecticide use switches through 
time (sequences benchmark and rotations) tend to group 
together, although sequences show an elevated frequency 
of successful measurements for the first-to-break meas-
ure due to applying the strongest selection pressure of 
any strategy (from one insecticide in constant use) and a 
highly elevated frequency of changes in allele frequency 
toward (at the expense of away from) the threshold for 
measurement for the second-to-break measure because 
the resistance allele starts from its initial frequency at the 
point that its insecticide first comes into use (which is a 
constraint of the use of this benchmark). The other three 
strategies without the temporal dimension (mosaics, 
mixtures, maximum) also tend to be grouped together, 
but the maximum strategy shows an elevated frequency 
of population extinctions due to applying the strongest 
initial control of any strategy (from two insecticides at 
full combined effectiveness).

Both the second-to-break and control-failure measures 
show a large fraction of simulated runs with changes in 
allele frequency away from the threshold for measure-
ment; this has consequences for strategy comparison, 
implying that strategies have a more uniform impact 
on these measures than first-to-break. This is especially 
problematic for the control-failure measure, which 
has a large fraction of simulated runs with changes in 
allele frequency away from the threshold for measure-
ment because the population size never drops below the 
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Successful Measurement
Toward Threshold
Away from Threshold
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NB: Second−to−Break
NN/Seq/Away = 83
MN/Seq/Away = 49
MM/Seq/Away = 25

Fig. 1  Bar chart of the output of the simulation of 1 million randomly sampled parameter combinations by data type. Simulations are divided 
between threshold measures (A–C), mode of inheritance (N = nuclear and M = mitochondrial, giving NN, MN and MM combinations) and strategy 
(Seq = sequences, lower benchmark; Rot = rotations; Mos = mosaics, Mix = mixtures; Max = maximum, upper benchmark). Simulation runs are 
classified as ‘Successful Measurement’ meaning that the threshold statistic was exceeded to give a time to the threshold measurement, ‘Toward 
Threshold’ meaning that the resistance allele or population size was approaching the threshold but too slowly to give a measurement, ‘Away from 
Threshold’ meaning that resistance allele or population size was decreasing over time (or, for population size, never decreases below 80% to be 
able to give a measurement) and ‘Extinction’ meaning that the female population size drops below 1 (and the simulation terminates). For B and the 
second-to-break measure, the bar chart appears to show no ‘Away from Threshold’ data types for the sequences strategy, but this is due to a low 
number of simulated runs (with raw numbers given in the NB box), which reflects that the insecticide that is first-to-break has a resistance allele that 
is placed first in the sequence order
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threshold of 80% of initial population size for the record-
ing of a measure of returning to 80% of population size. 
Altering the 80% threshold does not lead to the genera-
tion of more data where strategies can be differentiated 
because such data would simply reveal more space where 
strategies have a more uniform impact of this measure. 
The main driver of this result is that the simulation across 
parameter ranges covers a large fraction of parameter 
combinations where the initial control that decreases 
population size is minimal relative to the intrinsic birth 
rate that increases population size. This is a consequence 
of the unbiased approach to sampling the parameter 
space. Furthermore, simply decreasing the average intrin-
sic birth rate does not provide a solution because this 
causes a reversion to another problematic outcome in 
decreasing the frequency of successful measurement of 
the first- and second-to-break measures through increas-
ing the frequency of extinctions. But, moreover, making a 
change would imply that the frequency of this data type 
result is simply an artefact of the model setup, whereas it 
is an informative result in suggesting that strategies have 
a more uniform impact on control, which is unsurpris-
ing given that all the strategies have similar initial con-
trol (and, to make strategy comparison fairer, mixtures 
are even ensured to have the exact same average initial 
control as rotations and mosaics). Therefore, whilst this 
data type means that the control-failure measure is not 
informative for analysis going forward (although the 
results of the analysis of this measure are presented in 
Additional file 3), the focus of analysis can now shift to 
where strategies produce a different result, which is in 
their first-to-break, second-to-break and probability-of-
extinction measures (derived from data types that reflect 
population control).

Within the data type of ‘successful measurement’ within 
500 generations for the first- and second-to-break meas-
ures (Fig.  2), there is a consistent distribution of meas-
ured values across inheritance and strategy. Whilst it is 
rare for a measure to be recorded in a very small num-
ber of generations, which reflects the time it takes for a 
resistance allele to spread from its initial frequency (that 
can be as high as 1%) to > 50% frequency, it is also rare for 
a measure to take a large number of generations (nearer 
500), which reflects that the distribution is conditional 
upon successful measurement within 500 generations. 
The result is a skewed-normal-like distribution, which is 

more skewed toward zero for the first-to-break measure 
than the second-to-break measure because of the inher-
ent order in the results of these measures. Following the 
same pattern that is observed in the distribution of data 
types, inheritance produces an almost linear trend across 
inheritance in both measures, with mitochondrial-only 
inheritance (MM) tending to show a faster time to resist-
ance for both measures, nuclear-only inheritance (NN) 
tending to show a slower time to resistance and mixed 
inheritances (MN) showing an intermediate pattern 
between the two extremes. Across strategies, sequences 
appear to provide a suitable lower benchmark in having a 
distribution that is obviously lower for both measures in 
being more skewed toward zero, but the maximum strat-
egy does not appear to obviously set an upper bench-
mark. This can be explained with reference to data types 
(Fig. 1), where maximum shows an elevated frequency of 
extinctions, which are excluded from the distribution of 
the data type for successful measurement (Fig.  2). This 
implies that the distribution of successful measurements 
shows an underrepresentation of longer times to resist-
ance for the maximum because of extinction. This find-
ing demonstrates that the analysis going forward needs 
to incorporate multiple data types to accurately describe 
the results. Across the main strategies, the degree of skew 
in the distribution toward zero of the first-to-break meas-
ure follows the order (more-to-less) of rotations, mosaics 
and then mixtures, but the distributions are more similar 
(and variable across inheritance) for the second-to-break 
measure.

Conditional inference trees
Conditional inference trees provide a robust analysis 
for describing how the quantitative value of a particu-
lar parameter influences whether or not a particular 
strategy tends to be favoured over others. For a given 
measure, a strategy is favoured when it has > 10% differ-
ence (in either direction) for that measure, which also 
applies to a combination of strategies when a subset of 
strategies has < 10% difference with each other and all 
have > 10% difference than all other strategies. All data 
types are included in the analysis using nominal values. 
For the conditional inference tree comparing the four 
strategies (sequences, rotations, mosaics and mixtures; 
excluding maximum as this would mask the other strat-
egies) and their combinations as presented here in the 

(See figure on next page.)
Fig. 2  Violin plot of the time to resistance allele exceeding 50% frequency. The distribution is plotted for the ‘Successful Measurement’ data type 
(see Fig. 1) with results divided between panels (A–C) by the mode of inheritance (N = nuclear and M = mitochondrial, giving NN, MN and MM 
combinations). Strategies are plotted purple-to-yellow (R:viridis) by colour with the benchmarks (Sequences and Maximum) given a faded colour. 
Violins are drawn using R:vioplot with separate lefts for the first-to-break measure (1st) and rights for the second-to-break measure (2nd). Each 
half-violin has the kernel-density distribution around a box plot, where the vertical bar is drawn between the upper (75th percentile) and lower 
(25th percentile) quartiles and the horizontal bar is at the median
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main text, there is potentially a problem of intransitive 
comparisons. This can be avoided by making a more 
explicit comparison of when a particular strategy is 
favoured outright, in combination with some strate-
gies against others, equally with all other strategies or 
is not favoured. This approach requires generating one 
conditional inference tree per inheritance and strategy 
as is presented in Additional file 3: Figures S1–12. Yet, 
the categorization process reveals that only five classi-
fications are needed to describe the data: ‘ = ’ where all 
strategies have < 10% difference, ‘CX’ where mosaics (C) 
and mixtures (X) have < 10% difference but > 10% dif-
ference than rotations (R) or sequences, ‘CXR’ where 
mosaics (C), mixtures (X) and rotations (R) have < 10% 
difference but > 10% difference than sequences, ‘R’ 
where rotations have > 10% difference than all other 
strategies and ‘X’ where mixtures have > 10% differ-
ence than all other strategies. Consequently, with just 
five comparisons, the results for the summary tree of all 
comparisons presented here are a good approximation 
of the cumulative results of the trees-by-strategy for a 
given inheritance (Fig.  3). Additionally, the summary 
of results presented here is only for the first-to-break 
measure, but the second-to-break and control-failure 
measures are detailed in summary and full figures in 
Additional file 3: Figures S13–42.

Across the conditional inference trees for the different 
modes of inheritance, the results are remarkably con-
sistent for the first-to-break measure. All strategies tend 
to be near-equally favoured ( =) when female exposure 
is < 0.3, which is logical because this would most likely 
represent a scenario where the balance of the condi-
tional advantage to a female from resistance restoration 
under exposure to an insecticide is offset by the uncon-
ditional disadvantage of the resistance cost. Indeed, 
this explanation can be confirmed as a large percentage 
of simulated runs (means: NN = 70.8%, MN = 61.2%, 
MM = 53.4%) show that the change in allele frequency 
is either toward or away from the threshold when female 
exposure is < 0.3. Additionally, all strategies tend to be 
near-equally favoured (=) when female exposure is > 0.3 
and the intrinsic birth rate is > 3, which corresponds to 
an extremely high birth rate with unstable population 
dynamics such that a large percentage of simulated runs 
end in extinction (means: NN = 70.5%, MN = 71.2%, 
MM = 73.9%). Mixtures (X) tend to be favoured out-
right when female exposure is > 0.3, the intrinsic birth 
rate is < 3 and the effectiveness of both insecticides 
is > 0.35. When one or other insecticide has effective-
ness > 0.35, then mixtures tend to be favoured alongside 
mosaics (CX) or mosaics and rotations (CXR, which is 
all the strategies apart from the sequences benchmark). 
In this parameter space, mixtures and mosaics tend to be 

favoured (CX) when the insecticide with higher effective-
ness (> 0.35) also has higher resistance restoration (> 0.4). 
The second-to-break measure also shows a related pat-
tern across inheritances, all strategies tend to be near-
equally favoured (=) when the intrinsic birth rate is > 3, 
where the extremely high birth rate leads to unstable 
population dynamics that often end in extinction (means: 
NN = 78.2%, MN = 79.2%, MM = 80.0%). Alternatively, 
when the intrinsic birth rate is < 3, mosaics, mixtures and 
rotations (CXR) are favoured over sequences. In contrast 
to both the time to resistance measures, the control-
failure measure shows no detectable pattern across the 
parameter space, which is simply because all strategies 
are near-equally favoured (=).

In case mixtures are not practically possible, the clas-
sification can be rerun excluding mixtures (i.e. for 
sequences, rotations and mosaics) to consider how this 
alters the conditional inference tree results (see Addi-
tional file  3: Figures  S43–78). In short, where mixtures 
would have been favoured outright (X), instead mosaics 
tend to be favoured outright (C). For the first-to-break 
measure, all strategies tend to be near-equally favoured 
(=) when the female exposure < 0.3 or female exposure 
is > 0.3 and the intrinsic birth rate is > 3.5. When female 
exposure is < 0.3 and the intrinsic birth rate is < 3.5, mosa-
ics tend to be favoured outright (C) when the effective-
ness of at least one insecticide is > 0.45, else mosaics and 
rotations are jointly favoured (CR).

Scenarios of new insecticides
To provide a quantitative estimation of the difference 
between strategies across the relevant parameter space 
for the possibilities for the deployment of new insecti-
cides, the broad trends in the parameter space for all of 
the different strategies including both benchmarks can 
be examined across key parameters. The choice of a 
new insecticide and its partner restricts the parameter 
space along the axes of the effectiveness of both insecti-
cides, where a new insecticide (including SC1) has high 
effectiveness > 0.8 from WHO guidelines [27] whereas 
pyrethroids can have variable effectiveness within and 
between localities [12–14]. Different geographic regions 
may have different genetic mechanisms of resistance, but 
this is unpredictable and so geographic variation is only 
interpreted as restricting the parameter space along the 
axes of female exposure that is primarily understood as 
reflecting mosquito zoophily and/or ITN coverage. Con-
sistent with conditional inference trees, there is little dis-
tinction between strategies for the second-to-break and 
control-failure measures (Additional file 3: Figures S13–
42), and so results presented here in the main-text focus 
on the probability of resistance and time to the first-to-
break. The probability of resistance describes the fraction 
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of results of the data types for the first-to-break meas-
ure that are either ‘Successful Measurement’ or ‘Toward 
Threshold’ where allele frequencies are changing in the 
direction of resistance.

Across modes of inheritance, nuclear-only (NN) and 
mitochondrial-only (MM) inheritances show a similar 

variability in the probability of resistance and time to 
first-to-break across the parameters of effectiveness and 
female exposure, but with mitochondrial-only inherit-
ance (MM) showing a greater probability of resistance 
and shorter time to first-to-break. Like for the conditional 
inference trees, mixed inheritance (MN) shows an inter-
mediate pattern across effectiveness parameters, which is 

C

A

B

Fig. 3  Conditional inference trees for the first-to-break measure by each combinatorial mode of inheritance (N = nuclear and M = mitochondrial, 
giving combinations for A as NN, B as MN and C as MM). The simulation data on the first-to-break for each strategy is classified into a categorical 
variable to describe whether one or multiple strategies have > 10% difference (in either direction) in their first-to-break measure, including the 
‘sequences’ lower benchmark but excluding the ‘maximum’ upper benchmark (because this would mask meaningful comparisons). Non-measured 
data types (see Fig. 1) are given nominal values that ensure their hierarchical interpretation: where ‘Toward Threshold’ is set to 1000, ‘Away 
from Threshold’ is set to 1500 and ‘Extinction’ is set to 2000. Data classifications are given for all strategies and their combinations, but only five 
classifications are needed to describe the data: ‘ = ’ where all strategies have < 10% difference, ‘CX’ where mosaics (C) and mixtures (X) have < 10% 
difference but > 10% difference than rotations (R) or sequences, ‘CXR’ where mosaics (C), mixtures (X) and rotations (R) have < 10% difference 
but > 10% difference than sequences, ‘R’ where rotations have > 10% difference than all other strategies and ‘X’ where mixtures have > 10% difference 
than all other strategies. The conditional inference tree is used to partition the data classification output based on the parameter space inputs based 
on the 1 million randomly sampled parameter combinations for the 17 parameters (see Table 4). Trees are built and drawn using R:ctree, which uses 
permutation tests to iterate an algorithm that tests the independence between the inputs and output variables and makes a binary split in the 
variable with the strongest differentiation of output distributions. The parameter of each split is given in the nodes within the tree, which reports 
the parameter (as per Table 4) and the p-value of the independence test; the quantitative place of the split in the parameter itself is recorded in the 
line between nodes. The iterations that form the tree stop when algorithm can no longer make a split into terminal nodes with > 5% of the data, 
which is a control applied for the visualization of the tree to ensure a manageable number of terminal nodes. The distributions of data classification 
are given in the terminal nodes as a bar chart, where the y-axis describes the proportion of data points
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closer to nuclear-only inheritance (NN) with lower values 
of effectiveness and closer to mitochondrial-only inherit-
ance (MM) with higher values of effectiveness. This is a 
consequence of the insecticide with the resistance allele 
with mitochondrial inheritance being more likely to be 
the first-to-break when the corresponding resistance 
allele has higher effectiveness. In contrast, mixed inherit-
ance (MN) has a pattern across female exposure that is 
much closer to mitochondrial-only inheritance (MM), 
which reflects the high probability (with a mean across 
strategies of 69.0%) that the insecticide with the mito-
chondrial resistance allele is also the first-to-break.

Across strategies, the same patterns that were 
observed in the conditional inference trees can be given 
a rough quantitative estimation (Figs.  4, 5, 6). Again, 
there is a division in the shape of results among strat-
egies based on the temporal dimension of insecticide 
switching through time, with sequences and rotations 
showing a similar variability in the probability of resist-
ance and time to first-to-break across the parameters of 
effectiveness and female exposure, and mosaics, mix-
tures and maximum showing a similar variability (albeit 
that mosaics show the opposite trend across partner 
insecticide effectiveness for the time to first-to-break). 
Across all strategies and the probability of resistance 
and time to first-to-break (panels A, D), there is a 
similar pattern of results across focal insecticide effec-
tiveness with a higher probability of resistance at inter-
mediate effectiveness, which reflects the balance of data 
types (Fig.  1) at the extremes of ‘Away from Thresh-
old’ with lower effectiveness < 0.3 and ‘Extinction’ with 
higher effectiveness > 0.5. In comparison between strat-
egies, mosaics and mixtures tend to perform similarly 
with lower effectiveness < 0.3, but with mosaics having 
a higher probability of resistance and shorter time to 
first-to-break with higher focal insecticide effective-
ness. Rotations have a lower probability of resistance 
and a shorter time to first-to-break than mosaics and 
mixtures. The quantitative differences between strate-
gies do not matter for directly addressing the question 
using a strategy to delay the evolution of resistance 
because WHO guidelines [27] require that an insecti-
cide has > 0.8 effectiveness, but this does indicate what 
this guideline entails.

There is less variability across the trend line of partner 
insecticide effectiveness and more variability in estimat-
ing the trend line (panels B, E), which is partly because 
the parameter space is restricted to assume a new focal 
insecticide with effectiveness > 0.8. Sequences and rota-
tions are especially uniform across partner insecticide 
effectiveness, with rotations increasing the time to first-
to-break compared to the sequences benchmark (that is 
like a non-strategy negative control) by ~ 25%, which is 

roughly equivalent to an additional two years of insecti-
cide susceptibility from a baseline of eight years. Again, 
mosaics and mixtures tend to perform similarly with low 
effectiveness < 0.3, which increases the time to first-to-
break compared to the sequences benchmark by ~ 50% or 
an additional four years of insecticide susceptibility. With 
higher partner insecticide effectiveness, mosaics show a 
decrease in the time to first-to-break to become very sim-
ilar to rotations, whereas mixtures show an increase in 
the time to first-to-break of up to ~ 100% or an additional 
eight years of insecticide susceptibility. Interestingly, the 
maximum benchmark, which is how mixtures are attrib-
uted in [17], performs similarly to sequences with low 
partner effectiveness < 0.3, which is because the time to 
first-to-break solely reflects the focal insecticide effective-
ness; but increases with partner insecticide effectiveness 
to delay resistance by up to 150% or an additional twelve 
years on the sequences benchmark.

Whilst there is more variability across female exposure 
(panels C, F), strategies are more uniform. Sequences 
both show a higher probability of resistance and lower 
time to first-to-break than other strategies with lower 
female exposures, but all other strategies are similar. 
At higher female exposures, the main strategies have 
quantitatively different probabilities of resistance that 
follow a predictable order with mosaics having the high-
est probability of resistance, mixtures next highest and 
then rotations; but the difference between strategies 
narrows with more resistance alleles with mitochon-
drial inheritance. At higher female exposures for time to 
first-to-break, rotations increasingly perform similarly 
to sequences whilst mixtures increasingly perform simi-
larly to mosaics (at a longer time to first-to-break). It is 
difficult to determine the quantitative consequences of 
higher female exposure because of competing effects on 
the probability of resistance and time to first-to-break. 
At practically plausible levels of female exposure (< 0.8), 
the probabilities of resistance between strategies are not 
so dissimilar (e.g. at female exposure of ~ 0.4), where 
mixtures show an increase (on sequences) in the time to 
first-to-break of ~ 100%, mosaics up to ~ 75% and rota-
tions of ~ 25%, which is equivalent to seven, five and one 
additional years of insecticide susceptibility respectively. 
With higher female exposure at ~ 0.6, rotations are very 
similar to sequences, but mixtures and mosaics are more 
dissimilar with a ~ 150% and ~ 100% increase in the time 
to first-to-break that only amounts to an additional five 
and three years of insecticide susceptibility respectively. 
Higher female exposure is expected in settings with 
highly anthropophilic mosquito species and contexts 
such as sub-Saharan Africa [33] and/or high ITN cover-
age such as in more affluent African nations [2]. With 
lower female exposure at ~ 0.1, the main strategies are 
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hard to distinguish but all show a < 10% increase in the 
time to first-to-break on sequences that represents up 
to an additional three years of insecticide susceptibility. 
Lower female exposure is expected in settings with highly 
zoophilic mosquito species and contexts such as India 
[33] and/or low ITN coverage such as in regions with 
more isolated rural communities [34].

Discussion
Against the backdrop of widespread resistance to exist-
ing technologies, the program to eradicate malaria is at 
a critical juncture as new insecticides enter their final 
stages of development for use via the main tool in the 
fight against malaria in insecticide-treated bed nets 
(ITNs). The near-synchronous development of these 
new insecticides offers the current opportunity to build 
resistance management into mosquito control methods 
and maximize the chance of eradicating malaria. Here, 

building directly on existing modelling [17, 24, 25], 
resistance-management strategies using multiple insec-
ticides are compared to suggest how to deploy combi-
nations of available and new insecticides on bed nets 
for maximum impact. Although the strategy compari-
son considers what to do with any new insecticide, spe-
cial attention to SC1, which is the only new insecticide 
that is known to the authors in having a strobilurin-like 
chemistry that is unusual for having a target-site that is 
encoded in the mitochondrial genome. Massive simula-
tions across randomly sampled sets of parameters are 
run to compare basic strategy concepts for two insec-
ticides (of rotations, mosaics and mixtures under the 
assumption of equal initial control) against benchmarks 
(a ‘non-strategy’ minimum of a sequence of one insec-
ticide at a time and a ‘best-case’ maximum where an 
exposed mosquito gets the full impact of both insecti-
cides simultaneously). Given that strategies are setup 
for control equivalence to make the comparison ‘fairer’, 
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Fig. 4  Relationship between insecticide choice and geographic location on probability of resistance and time to first-to-break with nuclear-only 
inheritance (NN). Insecticides differ by their effectiveness and geographies differ by their female exposure. The probability of resistance describes 
the fraction of all simulated runs where the data type is ‘Successful Measurement’ or ‘Toward Threshold’ (see Fig. 1). The time to first-to-break 
is calculated from the ‘Successful Measurement’ data type only. In each panel, the bold-colour lines (per strategy purple-to-yellow; R:viridis) 
come from partitioning the y-axis parameter from the simulations by the x-axis parameter into 101 rounded bins and calculating the mean of 
the y-axis measure per bin; a k = 5 backward-tail moving average is used to smooth the mean-line. Around each bold-colour line, there is a 
transparent-shading of the same colour that describes the 95% confidence intervals for the mean ( ±1.96 ∗ SE ), which is also smoothed with a 
k = 5 backward-tail moving average. In panels A and D, the x-axis is arbitrarily designated for a focal insecticide as effectiveness 1, as if it were a new 
insecticide. In panels B and E, effectiveness 1 is assumed to be > 0.8 (in accordance with WHO guidelines for new ITNs), and the x-axis is then for a 
partner insecticide. In panels C and F, effectiveness 1 is also assumed to be > 0.8, and the x-axis is then for fem ale exposure
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(unsurprisingly) the results are only appreciably differ-
ent for the measures of the time until the first and sec-
ond resistance allele reach > 50% frequency (or break).

For the time until the second-to-break, each strategy 
nearly always has > 10% difference than a non-strategy 
(i.e. sequences) but < 10% difference amongst each other, 
which favours the use of any strategy. Yet, strategies 
tend to lead to much more variability in the time until 
the first-to-break. The non-strategy of using insecticides 
in sequence has < 10% difference to any strategy (rota-
tions, mosaics or mixtures) for the time to the first-to-
break when the exposure of female mosquitoes to ITNs 
is low (< 30%) across combinations of resistance allele 
inheritance (Fig.  3). Low female exposure would arise 
in contexts with more zoophilic mosquitoes, such as in 
rural India [33], and/or lower ITN coverage, such as in 
inaccessible regions of sub-Saharan Africa [2]. However, 
malaria eradication programs should aim for universal 
coverage to provide community-wide protection from 
vector control [9, 34], so most deployment scenarios can 

assume higher female exposure (> 30%). In this context, 
a strategy (rotations, mosaics or mixtures) leads to at 
least > 10% difference in the time until the first-to-break. 
Mixtures tend to have > 10% difference than the other 
strategies when the effectiveness of both insecticides is 
higher (> 35%; Fig.  3). As a new insecticide is required 
by WHO guidelines to have an effectiveness that is > 80% 
in a standard cone assay [27], using SC1 or another new 
insecticide alongside a partner in a mixture increases the 
time to first-to-break by between 50 and 100% (or + 4 
and + 8  years from the estimated and relative baseline 
of non-strategy taking 8  years) depending on whether 
the partner insecticide has lower or higher effectiveness 
(Figs.  4, 5, 6 panel E). When one or other insecticide 
has higher effectiveness (> 35%), then mixtures tend to 
have < 10% difference than mosaics but > 10% difference 
than rotations or a non-strategy (Fig.  3). Consequently, 
using SC1 or another new insecticide alongside a part-
ner in a mosaic increases the time to first-to-break by 
between 50 and 25% (or + 4 and + 2  years) depending 
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Fig. 5  Relationship between insecticide choice and geographic location on probability of resistance and time to first-to-break with mixed 
inheritance (MN). Insecticides differ by their effectiveness and geographies differ by their female exposure. The probability of resistance describes 
the fraction of all simulated runs where the data type is ‘Successful Measurement’ or ‘Toward Threshold’ (see Fig. 1). The time to first-to-break 
is calculated from the ‘Successful Measurement’ data type only. In each panel, the bold-colour lines (per strategy purple-to-yellow; R:viridis) 
come from partitioning the y-axis parameter from the simulations by the x-axis parameter into 101 rounded bins and calculating the mean of 
the y-axis measure per bin; a k = 5 backward-tail moving average is used to smooth the mean-line. Around each bold-colour line, there is a 
transparent-shading of the same colour that describes the 95% confidence intervals for the mean ( ±1.96 ∗ SE ), which is also smoothed with a k = 5 
backward-tail moving average. In A, D, the x-axis is designated for the insecticide that corresponds to the mitochondrial inheritance of resistance as 
effectiveness 1, as if it were a new insecticide. In B, E, effectiveness 1 is assumed to be > 0.8 (in accordance with WHO guidelines for new ITNs), and 
the x-axis is then for a partner insecticide. In C, F, effectiveness 1 is also assumed to be > 0.8, and the x-axis is then for female exposure
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on whether the partner insecticide has lower or higher 
effectiveness (Figs.  4, 5, 6 panel E). By contrast, a rota-
tion uniformly increases the time to first-to-break by 
25% (or + 2 years) irrespective of the effectiveness of the 
partner insecticide. Given that one insecticide has high 
effectiveness (> 80%), there is some variability in the 
quantitative difference between strategies across female 
exposure (Figs.  4, 5, 6 panel F), which could imply that 
different strategies might be suitable in geographic con-
texts where different levels of ITN coverage are obtain-
able. However, differences between strategies still supply 
a strong signal with high focal insecticide effectiveness 
(> 80%) to afford the same pattern of results across 
partner insecticide effectiveness, which become more 
pronounced with higher female exposures. Therefore, 
although different strategies are favoured under different 
parameter combinations (Fig. 3), the minimal restriction 
of WHO criteria on insecticide effectiveness is enough to 
suggest that mixtures tend to produce the greatest delay 

in the evolution of resistance across relevant parameter 
combinations.

Using the same parameter framework, the model-
ling presented here supports a similar result as in Levick 
et al. [17], but with some important differences. First, the 
simulations that are run here are more massive (1 mil-
lion vs 10,000), which introduces less variability into the 
outputs. Second, the model is run in a way that explicitly 
categorizes data types, which extracts additional infor-
mation from a run where resistance does not arise within 
the 500 generations of the simulation. Third, more strate-
gies are compared with greater concern for making a ‘fair’ 
comparison, using the additional consideration of popu-
lation size to ensure that strategies have the same average 
initial control, which helps to more distinctly isolate the 
effects of differences between strategy concepts. Conse-
quently, when Levick et al. [17] report that mixtures tend 
to be favoured over sequences (with > 20% difference) in 
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Fig. 6  Relationship between insecticide choice and geographic location on probability of resistance and time to first-to-break with 
mitochondrial-only inheritance (MM). Insecticides differ by their effectiveness and geographies differ by their female exposure. The probability of 
resistance describes the fraction of all simulated runs where the data type is ‘Successful Measurement’ or ‘Toward Threshold’ (see Fig. 1). The time 
to first-to-break is calculated from the ‘Successful Measurement’ data type only. In each panel, the bold-colour lines (per strategy purple-to-yellow; 
R:viridis) come from partitioning the y-axis parameter from the simulations by the x-axis parameter into 101 rounded bins and calculating the mean 
of the y-axis measure per bin; a k = 5 backward-tail moving average is used to smooth the mean-line. Around each bold-colour line, there is a 
transparent-shading of the same colour that describes the 95% confidence intervals for the mean ( ±1.96 ∗ SE ), which is also smoothed with a k = 5 
backward-tail moving average. In A, D, the x-axis is arbitrarily designated for a focal insecticide as effectiveness 1, as if it were a new insecticide. In B 
and E, effectiveness 1 is assumed to be > 0.8 (in accordance with WHO guidelines for new ITNs), and the x-axis is then for a partner insecticide. In C 
and F, effectiveness 1 is also assumed to be > 0.8, and the x-axis is then for female exposure
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the time to first-to-break when female exposure is < 60% 
(and, by the range of parameter, > 10%) and effectiveness 
of both insecticides is > 70%, the simulations and their 
analysis here afford us confidence in clarifying this result. 
Mixtures are not implemented in the same way as in [17] 
in order to make all strategies that are compared here 
have equal initial control; although the pattern of results 
are similar, the quantitative differences between mixtures 
here and in Levick et al. [17], which is implemented in the 
maximum benchmark, are substantial (Fig. 4). The results 
presented here do not support the suggestion that mix-
tures tend to be favoured over sequences when female 
exposure is < 60%. As the analysis in Levick et  al. [17] 
excludes comparisons where resistance does not arise 
within 500 generations for either mixtures or sequences, 
this biases the results against mixtures for higher female 
exposures because a mixture is more likely to delay the 
time until resistance to be > 500 generations (compare 
sequences and maximum in Figs. 1, and 4 panel C). Con-
sequently, the restriction of mixtures being favoured to 
lower female exposure < 60% is likely to be an artefact of 
the strategy comparison in Levick et al. [17].

The results presented here do support the general find-
ing that higher insecticide effectiveness tends to favour 
mixtures over other strategies, but the threshold is lower 
at > 35% effectiveness. Moreover, mixtures and mosaics 
tend to be favoured over sequences when one or other 
insecticide has effectiveness > 35%, which is a marked 
relaxation of this limit. As such, when mixtures are 
excluded from strategy comparison (e.g. were they not 
to be possible for manufacturing reasons), mosaics tend 
to be favoured in their stead. Therefore, the results here 
support the general findings about high effectiveness in 
Levick et al. [17] that is focused on in subsequent analy-
sis [24, 25], especially in contrast to the forerunning ideas 
from interpretation of the findings in Curtis, the exten-
sions that are implemented within the same parameter 
framework for two insecticides enable us to clarify that 
temporally-invariable strategies (mixtures/mosaics) tend 
to be favoured over temporally-variable strategies (rota-
tions/sequences) in this model. In strategic terms, this 
suggests that the advantages of simultaneous selective 
pressures tend to outweigh the advantages of variable 
selective pressures.

What strategy does the modelling suggest should be 
adopted for SC1 and other new insecticides? When 
addressing this question, it is important to understand 
that this modelling exercise has excluded some factors 
from consideration (due to computational constraints), 
which could have an impact on the preference for a strat-
egy. For example, a mixture of insecticides would need 
to have compatible physio-chemical properties. Accept-
ing such limitations, the modelling and analysis here 

would support the use of a mixture for a variety of rea-
sons and, on the balance of resistance-management and 
other considerations for SC1, especially a mixture with 
a pyrethroid. Firstly, there is a significant advantage of 
using multiple insecticides in concert. This advantage 
primarily comes from delaying the evolution of resist-
ance to the first insecticide that breaks, where it can 
more than double the time that a population broadly 
remains susceptible to that insecticide. There is also an 
advantageous effect on the second-to-break in contrast 
to a non-strategy (sequences), but this effect is around a 
10% delay. Secondly, the advantage of using SC1 in par-
ticular alongside another insecticide is likely to be even 
more acute because of its unusual property of having a 
target-site that is encoded in the mitochondrial genome. 
Were resistance to evolve as a target-site mutation, there 
is a ~ 70% chance that the mitochondrial resistance allele 
would be the first-to-break, and so using multiple insec-
ticides in concert may be especially important for SC1. 
This cannot be used to suggest that having a mitochon-
drially-inherited target-site is undesirable for resistance 
management because the modelling here only examines 
the impact of selection in the rate of spread of a pre-
existing resistance allele, and excludes the time it may 
take for a resistance allele to arise in the first place, which 
is expected to be longer than with a nuclear resistance 
allele because of haploidy and maternal inheritance; the 
time to mutation is likely to be especially important for 
SC1 because a survey of fungicide use in Africa shows a 
very low historic application of strobilurin chemistries, 
suggesting that there is minimal to no prior or second-
ary selection for resistance to this chemistry from agri-
culture (unpublished data, Bristow and Firth). Thirdly, 
despite uncertainties, using SC1 or another insecticide as 
part of a mixture is likely to be more robust in delaying 
the evolution of resistance than other strategies. With a 
new insecticide having to have high effectiveness (> 80%) 
to meet WHO criteria [9, 27], a mixture tends to outper-
form other strategies across insecticide effectiveness and 
female exposure, which represent the key dimensions 
of partner choice and geographic variability (Figs.  4, 5, 
6). Fourthly, the time to resistance is delayed more by 
choosing a mixture strategy over other strategies than 
by choosing one insecticide partner over others. This 
has relevance to the choice of partner insecticide where 
there is pre-existing pyrethroid-resistance that reduces 
pyrethroid effectiveness: Although a mixture of two 
new insecticides is ideal from the focused-perspective of 
delaying the evolution of resistance, a mixture of a new 
insecticide with a pyrethroid (that tends to have lower 
effectiveness < 80%) is preferable to non-mixture strate-
gies with two new insecticides. Fifthly, for a mixture with 
SC1, a pyrethroid has a major advantage in reducing the 
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overall cost per ITN compared to a new insecticide. As 
a significant part of the cost of an ITN is the cost of the 
insecticide and pyrethroids are very cheap compared to 
new insecticides, the relative time of delayed resistance 
between partner insecticides with higher or lower effec-
tiveness is marginal compared to the cost difference. A 
cheaper ITN would presumably enable more ITNs to be 
procured in a given region. Sixthly, a mixture strategy 
in the form of a single ITN is practically robust through 
immunity to deployment error or noncompliance, which 
adds ignored complexity to the assessment of rotations 
and mosaics.

The strategies that are being discussed are idealized; 
deployment error and noncompliance could make real-
life rotations and mosaics more like other strategies in 
this model. For example, what has been described as a 
mosaic elsewhere occurs at such a fine-scale that it is 
like mixtures are here (e.g. Corbel et al. [35]), or occurs 
at such a coarse-scale that it is like sequences are here 
(e.g. Hemingway et  al. [36]). In contrast, if two insec-
ticides are put onto one net, this is robustly like the 
mixture strategy is here. Lastly, the criteria for WHO 
approval require ITNs to pass stringent safety and effi-
cacy tests, which for a mixture ITN would require both 
insecticides to pass safety and efficacy standards inde-
pendently and together. This adds additional economic 
cost and development time for mixture ITNs (which is 
problematic), albeit that these additional costs are less-
ened with the partner insecticide being a pyrethroid 
because it has already obtained WHO approval. There-
fore, conditional upon the feasibility of its manufacture, 
the use of SC1 (and other new insecticides) alongside 
a partner insecticide in a mixture could help to build 
resistance-management into the bed net design, but 
there are significant economic challenges to producing 
a mixture, such that a pyrethroid may be an attractive 
choice for its cost-effectiveness. Further work is needed 
to understand how to balance resistance-management 
benefits and economic costs to ensure high levels of 
mosquito control for a sufficiently long time to provide 
the greatest chance of eradicating malaria.

Conclusions
This study builds on the well-known modelling 
framework used in Levick et  al. [17] with significant 
improvements on parameter space explored, the strat-
egies considered, and also on computational resources 
employed. Here, mixtures tend to be a far superior con-
ceptual resistance-management strategy across most of 
the parameter space. And, when it comes to deploying 

new insecticides for use in ITNs (e.g. SC1), their dura-
bility and impact can be maximized if these are inte-
grated into a mixture product concept (even when the 
mixture partner is a pyrethroid). The theoretical results 
presented here can serve as a predictive guideline to 
bring these new insecticides to market in an evolution-
arily robust way—minimizing the effects of resistance—
and improving the chances of eradicating malaria in the 
coming decades.
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