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The optic disc is a key anatomical structure in retinal images. The ability to detect optic discs in retinal images plays an important
role in automated screening systems. Inspired by the fact that humans can find optic discs in retinal images by observing some local
features, we propose a local feature spectrum analysis (LFSA) that eliminates the influence caused by the variable spatial positions
of local features. In LFSA, a dictionary of local features is used to reconstruct new optic disc candidate images, and the utilization
frequencies of every atom in the dictionary are considered as a type of “spectrum” that can be used for classification.We also employ
the sparse dictionary selection approach to construct a compact and representative dictionary. Unlike previous approaches, LFSA
does not require the segmentation of vessels, and its method of considering the varying information in the retinal images is both
simple and robust, making it well-suited for automated screening systems. Experimental results on the largest publicly available
dataset indicate the effectiveness of our proposed approach.

1. Introduction

Computer based retinal image analysis was first implemented
in 1974 [1] and it is now becoming a mainstream technique
for quick and accurate detection of retinal diseases such
as diabetic retinopathy (DR) and glaucoma [2]. Several
important anatomical features appear in the fundus images,
such as the retinal blood vessels, the optic disc, and the fovea,
as shown in Figure 1. Among these anatomical features, the
optic disc appears as a bright, circular-shaped anatomical
structure onwhich the retinal blood vessel network converges
(see Figure 1).The position and radius of the optic disc can be
used as the references for approximating fovea detection. In
addition, the size and shape of the optic disc outer boundaries
are useful for diagnosing glaucoma [3]. Therefore, the optic
disc is an important anatomical feature in the retinal images,
and its detection is a prerequisite for developing automatic
screening systems.

Recently, many optic disc detection studies have been
presented. Some of them are reviewed below.

The existing works mainly use features such as intensity,
appearance, and shape to locate the position of the optic disc.
Sinthanayothin et al. [4, 5] proposed optic disc detection
methods based on the highest variability in the intensity of
adjacent pixels. However, these algorithms do not work well
when large areas of bright lesions exist that are similar to
the optic disc. Shape is also a useful feature for describing
optic discs. Park et al. [6] employed both the round-shape
and brightness to detect the optic disc in retinal images.
This approach first selects several rounded areas with high
intensity variations. Then, the Hough transform is used to
estimate the optic disc contour. Finally, the optic disc location
is determined by the circle with the highest intensity. How-
ever, diseased areas and noisy spots within the retinal images
may also present as bright circular lesions that appear similar
to the optic disc, which weakens the detection performance.
Moreover, optic discs have large variances (e.g., in shape,
color, and size), especially in the presence of retinopathies.
Hence, localizing the optic disc using only these proper-
ties is insufficient [7]. To improve the optic disc detection
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Figure 1: Some anatomical features in retinal fundus images.

accuracy, some template matching-based approaches have
been proposed to approximately locate the optic disc [8–
10]. However, the range of color and contrast variations
and the possible presence of pathologies that present as
bright spots make it difficult to find a suitable template
for matching optic discs. In addition, most of the recently
proposed techniques attempt to use information provided
by the retinal vasculature to identify the optic disc. In [11],
optic disc localization was based on the major blood vessels
and their intersection. Hoover et al. [12] identified optic discs
using geometrical relationships between the optic disc and
blood vessels. Youssif et al. [13] used the vessels’ directional
matched filter (VDMF) and the outgoing vessels to locate the
center of the optic disc. Zhang et al. [14] proposed an optic
disc center detection method that used multiscale Gaussian
filtering and a VDMF. The optic disc center is determined
by the pixel with the smallest difference from its surrounding
pixels.Theuse of a vascular tree can improve the performance
of optic disc detection, especially when the optic disc is not
clearly visible due to poor contrast or retinal pathologies
within the images. However, the accurate segmentation of
the vascular tree is a complex and time-consuming task.
Apart from the above-mentioned approaches, some machine
learning techniques have been incorporated into optic disc
localization. Perez et al. [15] utilized a cascade classifier
to detect the optic disc. In [15], the cascade classifiers are
trained using Haar features extracted from the segmented
optic disc and nonoptic disc images. The main drawback of
this approach is its computational complexity. Li et al. [16]
combined Principle Component Analysis (PCA) with active
shape techniques to determine the center of the optic disc
by the minimum distance between the original retinal image
and its projection onto “disk space”. However, it is difficult
to choose a suitable shape model to detect the various disc
shapes resulting from many pathological changes.

Although the above-mentioned works have achieved
good performances, each method has its own limitations.
In summary, the complex vessel structures and its occlusion
position variations on the optic disc are twomain challenging
issues. In other words, we need to detect the optic disc from
a complex scene.

In pattern recognition and computer vision, the idea
of global frequency with local spatial constraints is widely
employed to the complex scene classification [17]. Inspired
by it, Li et al. used intermediate representations before
classifying scenes [18]. In their approach, they model an
image as a collection of local patches. Each patch is obtained
from a large vocabulary of codewords.Their goal is to learn a
model that best represents the distribution of the codewords
of a particular image. Furthermore, it is easier to understand
a complex scene by going through a generative model.

Optic disc always varies in terms of appearance, size, and
location in different retinal images. Humans can recognize
images containing optic discs effortlessly by observing parts
of the local features of a retinal image, but machines seem
to have a hard time doing the same task. Inspired by
this, we propose a novel feature extraction method named
local feature spectrum analysis (LFSA), which eliminates
the influence caused by the variance in the spatial positions
of local features. The local feature spectrum is stable for
most optic discs. Consequently, we need only a few training
samples to achieve a satisfactory detection performance. A
flow chart of our approach is depicted in Figure 2.

The remainder of this paper is organized as follows:
Section 2 describes the process of candidate extraction. Sec-
tion 3 presents the proposed optic disc detection approach.
Experimental results are depicted in Section 4 and Section 5
concludes the paper.

2. Candidate Extraction

By utilizing some basic image processing techniques, we can
acquire a series of candidates and some of them contain the
optic disc. And then, the optic disc will be finally identified
using the proposed LFSA approach. In this section, the
candidate extraction is given briefly.

There are many approaches that have been proposed for
candidate extraction such as intensity-based thresholding
[4, 5] and template matching [6, 8–10]. Here, we employ
our previous study [19] to extract the optic disc candidates
which uses a two-step reconstruction based saliency detec-
tion approach. It is particularly suitable for those retinal
fundus images with uneven illumination and poor contrast.
Meanwhile, the optic disc often appears as the area with
the highest contrast compared to the background in the
red channel [20, 21]. Therefore, the red channel image is
employed in this paper.

Some of the optic disc and nonoptic disc candidate
example images are shown in Figure 3, in which the first row
of images is the extracted optic disc images and the second
row of images is the nonoptic disc images.

3. The Proposed Method

The proposed optic disc detection approach consists of the
following four steps. First, local features are extracted from
the retinal fundus images. Second, with the use of the
extracted local features, an optimal dictionary is generated.
Third, the frequencies of every atom in the dictionary used
for new image reconstruction are considered as a kind of
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Figure 2: The flow chart of our work.

“spectrum”. Finally, we use the generated “spectrum” feature
for optic disc classification. Each step of the proposedmethod
will be described in detail as follows.

3.1. Local Feature Extraction. After completing candidate
extraction, we obtain a series of subimages (candidates)
whose size is 300 × 300 pixels. Then, we define small image
patch sizes of𝑀×𝑀 pixels as the local features. Each retinal
image is partitioned into n nonoverlapping patches where
𝑛 = (300/𝑀)2. Each patch is ordered lexicographically and
denoted as 𝑟𝑖 ∈ R𝑑×1(𝑖 = 1, 2, ..., 𝑛) where 𝑑 = 𝑀 × 𝑀.
Subsequently, the full set of the local features of a retinal
image can be denoted as 𝑅 = [𝑟1, 𝑟2, ..., 𝑟𝑛] ∈ R𝑑×𝑛. Here,
the parameter M ranges among the values in the set

{5, 10, 30, 50, 100}. The corresponding segmentation results
are depicted in Figure 4.

3.2. Dictionary Selection. A dictionary used to reconstruct a
whole image can be acquired by using local features. Since the
dictionary can directly determine the reconstruction error
and the final classification performance, how to select an
optimal dictionary is a key issue.

Traditional intermediate representation based models
[17, 18] obtain a dictionary of local features by clustering
local image descriptors extracted from images. However,
clustering methods have several limitations. For example,
the number of clusters k needs to be specified in advance,
which is considered to be one of the greatest drawbacks
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Figure 3: Examples of extracted optic disc regions (the first row) and nonoptic disc regions (the second row).

of these algorithms. Furthermore, the algorithms prefer
clusters of approximately similar size, because they always
assign an object to the nearest centroid. This often leads to
incorrectly defined borders between clusters. Additionally,
the clustering process does not consider representational
ability; consequently, some clusters will be imported that are
useless for image reconstruction tasks. All these limitations
affect the classification performance.

In this subsection, with the aim of representing all
candidates fully, we employ the sparse dictionary selection
approach proposed byCong et al. [22] to construct an optimal
dictionary. Each sample is given a weight that reflects its
representational ability. The most representative samples are
selected as dictionary atoms [23–28].

After image partitioning, we obtain many equal-sized
patches fromall the training images. Let𝑋 = [𝑥1, 𝑥2, ..., 𝑥𝑁] ∈
R𝑑×𝑁 denote the data matrix that includes all patches. Here,
𝑥𝑗 ∈ R𝑑×1 denotes the j-th sample and 𝑁 is the number
of samples. Our goal is to select an optimal subset to form
a dictionary 𝑋 = [𝑥1, 𝑥2, ..., 𝑥𝑀] ∈ R𝑑×𝐷𝑠𝑖𝑧𝑒 such that the
set 𝑋 is well represented by the 𝑋 with the smallest 𝐷𝑠𝑖𝑧𝑒.
This dictionary selection task can be achieved by solving the
following optimization problem:

min
𝐵

1
2 ‖𝑋 − 𝑋𝐵‖2𝐹 + 𝜆 ‖𝐵‖2,1 , (1)

where 𝐵 ∈ R𝑁×𝑁. Here, ‖𝐵‖𝐹 fl ∑𝑖,𝑗 𝐵2𝑖𝑗 is defined as the
Frobenius norm of 𝐵 and ‖𝐵‖2,1 fl ∑𝑁𝑖=1 ‖𝐵𝑖.‖2 is defined as
the l2,1-norm of 𝐵, where 𝐵𝑖. denotes the i-th row of 𝐵.

The objective function in (1) consists of two terms, the
first term is the representation error, and the second term is
the regularization term. The l2,1-norm is a general version of
the l1-normwhen𝐵 is a vector, i.e., ‖𝐵‖2,1 = ‖𝐵‖1. In addition,

by constructing a new vector 𝑏 ∈ R𝑁with 𝑏𝑖 = ‖𝐵𝑖.‖2, ‖𝐵‖2,1 is
equivalent to ‖𝑏‖1. From this point, it is easy to conclude that
minimizing (1) will lead to row sparsity in the representative
matrix 𝐵; i.e., 𝐵 usually contains some zero rows because the
corresponding samples in X were not selected as dictionary
atoms [22]. Here, 𝜆 is a parameter used to balance the first
term and the second term. A larger 𝜆 leads to more zero rows
in 𝐵.

As shown in (1), the objective function involves the l2,1-
norm, which is nonsmooth and cannot be solved by a closed
form [22]. Therefore, in this paper, we adopt the Nesterov
[29] algorithm to solve the optimization problem. After
obtaining the optimal 𝐵, we compute each sample’s weight
using ‖𝐵𝑖.‖2 (𝑖 = 1, 2, ..., 𝑁) and sort all the weight values
in descending order. Finally, we select the top Dsize ranked
dictionary atoms to construct the optimal dictionary V.

Here, using the patch size parameter M=10 and the
number of dictionary atoms Dsize=100 as an example, the
optimal dictionary 𝑉 ∈ R𝐷𝑠𝑖𝑧𝑒×𝑁 can be obtained by the
above-mentioned dictionary selection approach. Figures 5(a)
and 5(b) depict the segmented image patches and the selected
optimal dictionary, respectively.

3.3. Local Feature Spectrum. Based on the obtained dictio-
nary V, we can represent an image as a “bag” of “dictionary
atoms”, disregarding the atoms’ order. For example, for each
atom 𝑤 in V, the local feature spectrum analysis model
estimates the frequencies of atoms in an image as follows:

𝐿𝐹𝑆𝐴 (𝑤) =
𝑛

∑
𝑖=1

{
{
{

1 𝑖𝑓 𝑤 = argmin (𝐷 (V, 𝑟𝑖))
V∈𝑉

;
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(2)

where n is the number of local features in an image, 𝑟𝑖 is
the i-th local feature, and 𝐷(V, 𝑟𝑖) is the distance between a
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(a) (b) (c)

(d) (e) (f)

Figure 4: Image partition results using different patch sizes. (a) Original image; (b-e) different patch sizes (from left to right: 5 × 5, 10 × 10,
30 × 30, 50 × 50, and 100 × 100 pixels).

(a) (b)

Figure 5: (a) A portion of the example patches used to construct the dictionary; (b) the selected dictionary.

dictionary atom v and a local feature 𝑟𝑖. The atom with the
smallest distance calculated by 𝐷(V, 𝑟𝑖) is used to represent
the current patch.

Figure 6 gives the details of local feature spectrum extrac-
tion. First, given several candidate region images obtained
by our previous approach (see Figures 6(a1)–6(a4)), we
partition them into a series of patches, regarded as local
features (see Figures 6(b1)–6(b4)). Second, for each patch,
the atom with the smallest distance to the current patch is
selected to reconstruct it.This process is repeated until all the
patches have been reconstructed.Then, we can obtain the full

reconstructed images (see Figures 6(c1)–6(c4)) and the cor-
responding error images, which are calculated by subtracting
the original image (see Figures 6(a1)–6(a4)) from the recon-
structed image (see Figures 6(c1)–6(c4)) as shown in Figures
6(d1)–6(d4). Finally, we describe an image by the frequency
over dictionary atoms as shown in Figures 6(e1)–6(e4).

3.4. Classification. In this subsection, we employ the gen-
erated local feature spectra (see Figures 6(e1)–6(e4)) as
the features for optic disc classification. Two widely used
classifiers including k-Nearest Neighbor (kNN) [30] and
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(a1) (b1) (c1) (d1) (e1)

(a2) (b2) (c2) (d2) (e2)

(a3) (b3) (c3) (d3) (e3)

(a4) (b4) (c4) (d4) (e4)

Figure 6: Local feature spectrum analysis. (a1–a4) Original optic disc and nonoptic disc images; (b1–b4) patch segmentation with 10 × 10
pixels; (c1–c4) reconstruction results of original images; (d1–d4) the error images between the original images (a1–a4) and the reconstructed
images (c1–c4); (e1–e4) local feature spectrum analysis results for (a1–a4), respectively.

the support vector machine (SVM) [31] are utilized in this
paper.

First, the obtained local feature spectra of all the candi-
dates can be expressed as a set of Dsize dimensional features:

𝐹 = {𝑓1, 𝑓2, . . . , 𝑓𝑖, . . . , 𝑓𝑆} , (3)

where 𝑓𝑖 ∈ R𝐷𝑠𝑖𝑧𝑒×1 denotes the i-th candidate and S is the
number of candidates.

Then, each of these features is normalized to a vector with
zero mean and unit variance by applying

𝑓 = 𝑓 − 𝜇
𝜎 , (4)

where 𝜇 and 𝜎 are the mean and standard deviation vector of
the feature, respectively.

Finally, with the use of these normalized spectrum fea-
tures, we can train the classifier for distinguishing the optic
disc candidates from the nonoptic disc candidates, achieving
classification.

However, one main problem occurs when performing
binary classification for computer-aided diagnosis of medical
images. That is, the object candidate (positive samples) fea-
tures we are trying to identify are similar, whereas the features
of nonobject candidates (negative samples) vary widely. For
example, in our study, the local feature spectra of optic disc
candidates are stable and similar, whereas the local feature
spectra of nonoptic disc candidates are varied, as shown in
Figure 6. When training a binary classifier, it is desirable that
the negative samples should appear in sufficient quantity and
species.Therefore, the training set should contain most types
of nonobject candidates. Otherwise, the trained model will
not achieve a good classification performance. Meanwhile,
the number of positive samples should approximately equal
the number of negative samples to avoid the class imbalance
problem, which also substantially reduces classification accu-
racy [32]. However, collecting all types of nonobject candi-
dates is difficult. Therefore, we employ a one-class classifier
to identify objects of a specific class among all the objects by
learning from a training set containing only one-class object.
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Table 1: Descriptive statistics of the Messidor database.

Resolution Coverage of
the retina

Number of
images

Type 1440 × 960 45∘ 151
Type 2240 × 1488 45∘ 881
Type 2304 × 1536 45∘ 168

As an unsupervised machine learning algorithm, one-
class SVM (also called support vector data description or
support vector domain description (SVDD)) was proposed
by Schölkopf et al. [33] to estimate high-dimensional distri-
butions. SVDD first maps the data from the original space
to the feature space using a nonlinear transformation and
then finds the hypersphere with the minimum volume in the
feature space. Parameters such as the kernel parameter and
slack factor in SVM and SVDD or the value of k in kNN are
determined using cross validation [34].

4. Experimental Results and Analysis

4.1. Database. In this section, we employ the publicly avail-
able Messidor database to evaluate the proposed approach
[35]. The Messidor database contains 1,200 color fundus
images with three different resolutions: 1,440 × 960, 2,240 ×
1,488, and 2,304 × 1536 pixels. Each image has a reference
standard marking every optic disc and agreed upon by the
consensus of 4 experts. All the images in Messidor were
acquired by three ophthalmologic departments using a color
video 3CCD camera on a Topcon TRC NW6 non-mydriatic
retinograph with a 45-degree field of view. Table 1 lists the
detailed information of this database. In our experiment,
all the retinal images are resized to 1,440 ×960 pixels using
bilinear interpolation.

From the Messidor database, after performing candidate
extraction, we obtained 1,200 optic disc candidates and 10,985
nonoptic disc candidates. In our experiments, we selected
all the optic disc samples and the same number of nonoptic
disc samples for training and testing. Classification accuracy
is used as the evaluation criterion in Sections 4.2, 4.3, and
4.4. However, we adopt detection accuracy as the evaluation
criterion in the last experiment in Section 4.5. From all the
selected samples, we randomly selected 70% for training and
used the remaining samples for testing. This random sample
selection was repeated 10 times, and we report the average
classification accuracy as the final result.

4.2. Parameter Selection. The proposed method has two
parameters: patch size (M) and the number of dictionary
atoms (𝐷𝑠𝑖𝑧𝑒), and determining their values appropriately is
important in the proposed approach. Here, the patch sizes are
set to 5×5, 10×10, 30×30, 50×50, and 100×100.Thenumber of
dictionary atoms varies with different patch sizes. For exam-
ple, we tuned the value of the 𝐷𝑠𝑖𝑧𝑒 parameter by searching
the grids {5, 10, 15, 20, 25} and {10, 30, 50, 70, 90, 100} for
patches with 5 × 5 and 10 × 10 pixels, respectively. We tuned
𝐷𝑠𝑖𝑧𝑒 on the grid {50, 150, 300, 500, 700, 1000} by searching
for patches with 30 × 30, 50 × 50, and 100 × 100 pixels.

Table 2: The average classification accuracy rates (%), standard
deviations, (%) and reconstruction errors (R error) of the proposed
approach withM=5.

Dsize 5 10 15 20 25
SVM +
random

92.01
±2.15

94.23
±2.47

95.57
±2.28

95.04
±2.63

94.80
±2.89

SVM +
K-means

93.67
±2.44

94.88
±3.01

96.23
±2.50

97.67
±2.37

96.35
±2.89

SVM +
ours

96.25
±2.42

98.00
±1.96

98.50
±1.82

99.00
±2.29

98.80
±2.33

kNN +
random

91.36
±2.17

92.75
±2.46

94.37
±2.86

94.50
±2.05

94.21
±2.49

kNN +
K-means

92.69
±3.26

93.97
±2.87

95.61
±2.54

95.11
±2.63

94.93
±2.37

kNN +
ours

94.50
±2.79

97.25
±2.33

98.00
±2.13

98.50
±2.35

98.31
±2.64

R error
(random) 0.427 0.410 0.407 0.398 0.378

R error
(K-means) 0.329 0.318 0.312 0.301 0.296

R error
(ours) 0.118 0.116 0.108 0.105 0.094

We compared three dictionary selectionmethods, includ-
ing K-means clustering, sparse dictionary selection, and ran-
dom selection, under different patch sizes and atomnumbers.
The kNN and SVM algorithms are employed for classifica-
tion, and classification accuracy is adopted as the evaluation
criterion. We also report the average reconstruction error,
which is defined as the mean value of the mean square error
between the original images and the reconstructed images.
The reconstruction error can be calculated as follows:

𝑅 𝑒𝑟𝑟𝑜𝑟 = 1
𝑇
𝑇

∑
𝑡=1

𝐼𝑡 − 𝐼𝑅𝑡
2 (5)

where 𝐼𝑡 is the t-th original image, 𝐼𝑅𝑡 is the t-th reconstructed
image, and T is the total number of reconstructed images.
A smaller error represents a better reconstruction, but the
experimental results show that the minimum error does not
equate the highest classification accuracy. Therefore, the best
number of dictionary atoms will be found via experiment.

Tables 2–6 show the average classification accuracies
obtained by two different classifiers (SVM and kNN) with
three different dictionary selection methods (random selec-
tion, K-means clustering, and our sparse dictionary selec-
tion) and the corresponding reconstruction errors. For exam-
ple, we denote “SVM + random” as the combination of
the SVM classifier with random sample selection dictionary
construction for classification, and R error (random) denotes
the reconstruction error using a dictionary constructed by
random sample selection.

In each table, we fixed the value of M. In Table 2, for
example, the classification performance obtained by the pro-
posed approach is not good when Dsize is small. However, as
Dsize increases, the classification accuracy improves.The best
performance was achieved with Dsize=20 using SVM and
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Table 3: The average classification accuracy rates (%), standard
deviations (%), and reconstruction errors (R error) of the proposed
approach withM=10.

Dsize 10 30 50 70 90 100
SVM +
random

94.07
±2.96

94.79
±2.78

95.14
±2.70

96.88
±2.87

96.62
±2.34

96.51
±3.06

SVM +
K-means

95.63
±2.45

95.77
±2.62

96.21
±2.33

97.96
±2.91

98.71
±1.99

97.60
±2.98

SVM +
ours

98.50
±2.10

98.75
±1.32

99.20
±1.93

99.50
±2.06

99.75
±1.79

99.65
±1.96

kNN +
random

93.89
±3.12

94.20
±2.09

95.53
±2.96

96.34
±1.98

96.55
±2.37

96.43
±2.55

kNN +
K-means

94.22
±2.93

95.23
±2.68

96.60
±2.45

97.59
±2.85

98.21
±2.14

97.83
±2.22

kNN +
ours

97.25
±2.13

97.25
±2.27

98.50
±2.35

98.64
±2.13

98.80
±2.25

98.58
±2.38

R error
(random) 0.449 0.437 0.423 0.415 0.408 0.396

R error
(K-means) 0.334 0.326 0.320 0.316 0.306 0.297

R error
(ours) 0.181 0.176 0.162 0.153 0.140 0.138

Table 4: The average classification accuracy rates (%), standard
deviations (%), and reconstruction errors (R error) of the proposed
approach withM=30.

Dsize 50 150 300 500 700 1000
SVM +
random

92.95
±3.64

95.79
±3.86

95.09
±2.14

94.36
±2.75

94.17
±2.49

94.02
±2.16

SVM +
K-means

93.83
±3.33

97.02
±3.64

97.36
±2.88

96.24
±2.69

96.03
±2.72

95.83
±2.99

SVM +
ours

97.75
±3.10

98.72
±3.29

97.75
±2.67

97.00
±2.71

96.50
±2.84

96.50
±2.76

kNN +
random

92.14
±3.69

96.86
±3.91

93.04
±2.80

92.96
±3.87

92.36
±3.60

90.05
±3.49

kNN +
K-means

92.96
±3.59

97.50
±3.55

93.76
±2.73

93.45
±3.93

92.61
±3.47

91.34
±3.91

kNN +
ours

96.50
±3.17

98.00
±3.06

94.00
±2.89

93.75
±3.04

92.75
±3.21

91.75
±3.09

R error
(random) 0.463 0.448 0.440 0.436 0.429 0.418

R error
(K-means) 0.356 0.349 0.336 0.328 0.319 0.311

R error
(ours) 0.183 0.178 0.174 0.169 0.168 0.162

sparse dictionary selection. Subsequently, the classification
accuracy begins to drop, whereas the reconstruction error
continues to drop as Dsize increases. This result occurs
because as the number of dictionary atoms selected for
reconstruction becomes larger, the dictionary atoms aremore
sufficient, leading to a smaller reconstruction error. However,
too many atoms introduce noise and cause instability in the
local feature spectrum.Thus, although R error always falls as
Dsize increases, the classification accuracy peaks at a certain
Dsize.

Table 5: The average classification accuracy rates (%), standard
deviations (%), and reconstruction errors (R error) of the proposed
approach withM=50.

Dsize 50 150 300 500 700 1000
SVM +
random

91.56
±2.98

94.76
±3.77

93.49
±3.16

94.27
±2.75

93.17
±3.73

93.01
±2.39

SVM +
K-means

92.98
±2.75

95.32
±3.39

94.76
±3.64

95.19
±2.63

94.24
±3.85

93.94
±2.73

SVM +
ours

94.75
±2.53

95.48
±3.46

96.50
±3.10

95.45
±2.12

94.42
±3.44

94.40
±2.53

kNN +
random

90.13
±3.17

91.83
±3.94

94.15
±3.19

91.37
±2.34

91.01
±3.73

90.07
±2.39

kNN +
K-means

90.87
±3.61

92.09
±3.46

95.09
±3.90

91.88
±2.65

90.35
±3.94

90.78
±2.31

kNN +
ours

91.95
±3.11

92.25
±3.77

96.25
±3.56

92.00
±2.89

91.75
±3.13

91.25
±2.71

R error
(random) 0.472 0.465 0.459 0.447 0.436 0.429

R error
(K-means) 0.375 0.367 0.358 0.344 0.329 0.320

R error
(ours) 0.194 0.187 0.184 0.179 0.177 0.174

Table 6: The average classification accuracy rates (%), standard
deviations (%), and reconstruction errors (R error) of the proposed
approach withM=100.

Dsize 50 150 300 500 700 1000
SVM +
random

91.51
±3.76

93.16
±3.49

93.68
±3.49

94.03
±3.18

93.11
±3.71

91.85
±2.54

SVM +
K-means

92.56
±3.61

94.03
±3.55

94.36
±3.72

94.87
±3.54

93.96
±3.34

92.03
±2.72

SVM +
ours

94.15
±3.15

94.25
±3.19

94.75
±3.47

95.01
±3.06

94.00
±3.35

92.25
±2.94

kNN +
random

90.07
±3.89

90.83
±3.36

92.07
±3.82

91.36
±2.44

90.36
±3.79

89.06
±3.99

kNN +
K-means

91.11
±3.13

91.09
±3.21

92.31
±3.64

92.89
±2.30

90.87
±3.81

89.47
±3.74

kNN +
ours

92.50
±3.34

91.30
±3.51

92.50
±3.04

93.23
±2.98

91.00
±3.33

89.75
±3.36

R error
(random) 0.486 0.479 0.468 0.456 0.439 0.435

R error
(K-means) 0.384 0.380 0.371 0.362 0.358 0.349

R error
(ours) 0.225 0.217 0.213 0.209 0.207 0.205

The five tables correspond to five different values of M
in the set {5, 10, 30, 50, 100}. The best scores corresponding
to each M are 99% (Dsize=20), 99.75% (Dsize=90), 98.72%
(Dsize=150), 96.50% (Dsize=300), and 95.01% (Dsize=500)
using SVM and our dictionary selection approach. Our
method's best classification accuracy is 99.75% when
Dsize=10 and M=90. This result demonstrates that the local
feature spectrum with Dsize=10 and M=90 can best reveal
the class of an optic disc candidate. Humans tend to find the
optic disc by observing local image features with a certain
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size.When the feature size is too small, all types of images can
be represented by the same local features, making the spectra
for different classes of candidates inseparable. In contrast,
when the feature size is too large, each feature becomes quite
specific, which is also unsuitable for reconstructing and
recognizing candidate images.

In addition, compared to the dictionary constructed
by random selection and K-means clustering, the sparse
dictionary selection approach performs well for image recon-
struction and supports a better classification performance.
These results may occur for several reasons. First, building
a dictionary by selecting candidates randomly is a simple
idea; however, it carries a large risk of including noisy candi-
dates, which affects the reconstruction. Second, in K-means
clustering, the cluster number is preset and the method
does not consider the representative ability of each cluster.
Consequently, some useless clusters will be imported for
the image classification task. Unlike these two methods, the
sparse dictionary selection approach can select the optimal
dictionary to reconstruct the candidates. Then, we obtain
a dictionary with the minimal number of atoms and dis-
card redundant and noisy samples. Therefore, this approach
increases both the accuracy and the computational efficiency.

In all the experimental results, SVM performs better than
kNN. In particular, whenM=10 and Dsize=90, our approach
achieves its best classification performance of 99.75% using
“SVM+ours”. In the following experiments, we will regard
M=10 and Dsize=90 as the optimal parameters.

4.3. One-Class Classification. As mentioned in Section 3.4,
in practice, the number of nonobjective candidates may be
insufficient. Therefore, in this subsection, we compare the
performances of an unsupervised one-class SVDD classifier
and a supervised binary SVMclassifier.The patch size and the
number of dictionary atoms are fixed toM=10 andDsize=90,
respectively. The training samples are randomly selected
ten times in the training set, while the testing set remains
unchanged. The number of optic disc samples varies from 10
to 840 and the number of nonoptic disc samples is equal to
the number of optic disc samples tomaintain class balance. As
an unsupervised classifier, SVDD does not require nonoptic
disc samples. The average classification accuracy is shown in
Figure 7. Both the mean value and the standard variance are
provided to indicate the classification performances.

As shown in Figure 7, when there are fewer than 400
nonoptic disc samples, SVDD outperforms SVM. For SVDD,
the curve tends to become stable after the number of samples
exceeds 500, and it reaches its highest accuracy (96%) at 840
samples. For SVM, the curve tends to become stable after the
number of samples exceeds 800, and it reaches its highest
accuracy (99.75%) after the number of samples exceeds 800.
The standard variances of both methods decrease as the
number of training samples increase, which means that
models obtained using more samples also have more stable
prediction and detection performances.

Based on these observations, we can conclude that, on
one hand, when only a few positive samples (optic discs) are
available, SVDD performs better than SVM. On the other
hand, when sufficient negative samples (nonoptic discs) exist,

10 20 50 100 200 300 400 500 600 700 800 840
Training sample number(positive)

SVDD
SVM

60
65
70
75
80
85
90
95

100
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Figure 7: The classification accuracies of SVM and SVDD using
different numbers of training samples.

Table 7: The average classification accuracy rate (%) of the baseline
method and our approach using different classifiers.

Classifier Baseline Our approach
SVM 93.50 99.75
kNN 91.50 98.80

the SVM model is more accurate and stable. In practice,
when negative samples are hard to obtain, we should choose
the unsupervised one-class classifier SVDD. Alternatively,
if higher accuracy is required, we need to acquire enough
and sufficient training samples and the supervised binary
classifier SVM. For this paper, we can acquire sufficient
labeled samples. Therefore, we compare the detection results
using SVM with those of other state-of-the-art methods.

4.4. Comparison with the Baseline Approach. Here, we regard
the classification based on the original gray feature as the
baseline approach. That is, we directly utilize the candidates
obtained by Section 2 as the input samples for training and
testing.The corresponding classification results with different
classifiers are listed in Table 7. As Table 7 shows, our approach
achieves better performances than the baseline algorithm
using both classifiers, which indicates that the local feature
spectrum analysis process not only reduces the number of
input features but also improves classifier performance.

4.5. Comparison with State-of-the-Art Approaches. In the last
experiment, to compare the proposed approach with other
state-of-the-art approaches, we adopt the accuracy of optic
disc detection as the evaluation criterion [30–32]. When the
detected optic disc center is within the circumference of the
optic disc in the reference standard given in the database, then
the detection is considered to be successful. Table 8 shows the
comparison results on the Messidor dataset.

The comparative results listed in Table 8 show that
the proposed approach is more reliable than other tested
approaches in terms of detection accuracy, indicating the
effectiveness of the proposed approach. Specially, traditional
approaches [36, 37] including our approach outperform the
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(a) (b)

(c) (d)

Figure 8: Results of the proposed method. The green cross represents the detected optic disc center. (a) Uneven optic disc brightness with
blood vessels; (b) blurred optic disc appearance; (c) optic disc appearance with peripapillary atrophy; (d) myelinated nerve fibers connected
to optic disc margin.

Table 8: Successful detection rate (%) of different methods for optic
disc detection on the Messidor dataset.

Methods Successful detection rate (%)
Ahmed et al., [36] 97.80
Aquino et al., [37] 98.83
Al-Bander et al., [38] 97.00
Ours 99.83

deep neural network (DNNs) based approach [32]. The main
reason is that there is still an improvement room for the novel
techniques, especially for small datasets.

Figure 8 shows some examples where the proposed
approach successfully detected the optic disc center. The
center of the candidate subimage is considered as the center
of optic disc and marked with green cross. As shown by
Figure 8, the proposed approach is robust to the influence
caused by the variations in the optic disc's appearance, size,
or location (see Figures 8(a), 8(c), and 8(d)). And it is also
robust to uneven illumination, which results in the optic disc
appearing indistinct and blurred (see Figure 8(b)). Overall,
our approach uses only the local feature spectrum without
requiring any other information, such as blood vessels or
predesigned templates. Therefore, the proposed approach is
both simple and efficient for optic disc detection, especially
in abnormal retinal images.

TheMessidor database includes two images in which our
proposed approach failed to locate the optic disc, as shown in

Figure 9.The detected locations of the proposed approach are
marked by green crosses, while the ground truth locations are
marked by black crosses. In these cases, extra-large and bright
lesions overshadow the optic discs, making them invisible.
The disc areas are not included in the intensity image (see
Figures 9(a) and 9(b)) which should be considered in future
work.

5. Conclusions

Complex structures and their spatial variability reduce the
recognition rate of optic discs. Inspired by the fact that
humans can find optic discs in images by observing local
features, we propose using local feature spectrum analysis
to eliminate the influence caused by the variability of spatial
locations. In the proposed approach, each candidate is recon-
structed using a set of local features, and the frequencies of all
the local features are considered as a type of “spectrum” suit-
able for the recognition tasks. To find an optimal set of local
features, we employ the sparse dictionary selection approach,
which aims to find the most representative atoms. We also
discuss the common class imbalance problem in medical
dataset.When there are insufficient numbers of negative sam-
ples, a one-class classifier performs better, whereas when suf-
ficient samples are available, a binary classifier achieves more
precise classification performances. The proposed approach
is tested on a publicly availableMessidor database.The exper-
imental results indicate that the proposed approach yields a
better performance than other state-of-the-art approaches.
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(a) (b)

Figure 9: Optic disc detection failure examples. (a-b) Extra-large and bright lesions overshadow the optic disc, making it invisible.
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