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Normalized difference vegetation 
index as the dominant predicting 
factor of groundwater recharge 
in phreatic aquifers: case studies 
across Iran
Esmaeel Parizi1, Seiyed Mossa Hosseini1*, Behzad Ataie‑Ashtiani2,3 & Craig T. Simmons3

The estimation of long-term groundwater recharge rate ( GWr ) is a pre-requisite for efficient 
management of groundwater resources, especially for arid and semi-arid regions. Precise estimation 
of GWr is probably the most difficult factor of all measurements in the evaluation of GW resources, 
particularly in semi-arid regions in which the recharge rate is typically small and/or regions with scarce 
hydrogeological data. The main objective of this study is to find and assess the predicting factors of 
GWr at an aquifer scale. For this purpose, 325 Iran’s phreatic aquifers (61% of Iran’s aquifers) were 
selected based on the data availability and the effect of eight predicting factors were assessed on GWr 
estimation. The predicting factors considered include Normalized Difference Vegetation Index (NDVI), 
mean annual temperature ( T  ), the ratio of precipitation to potential evapotranspiration ( P/ET

P
 ), 

drainage density ( Dd ), mean annual specific discharge ( Qs ), Mean Slope ( S ), Soil Moisture ( SM
90

 ), and 
population density ( Pop

d
 ). The local and global Moran’s I index, geographically weighted regression 

(GWR), and two-step cluster analysis served to support the spatial analysis of the results. The eight 
predicting factors considered are positively correlated to GWr and the NDVI has the greatest influence 
followed by the P/ETP and SM

90
 . In the regression model, NDVI solely explained 71% of the variation 

in GWr , while other drivers have only a minor modification (3.6%). The results of this study provide 
new insight into the complex interrelationship between GWr and vegetation density indicated by 
the NDVI. The findings of this study can help in better estimation of GWr especially for the phreatic 
aquifers that the hydrogeological ground-data requisite for establishing models are scarce.

Groundwater (GW) is a ubiquitous source of freshwater, which supports human health, socio-economic devel-
opment and functioning of ecosystems in all climatic regions in developed and developing countries1, 2. About 
67% of the global groundwater consumption (~ 650 km3/year) is extracted in the countries that are characterized 
by climatic aridity, such as India (30%), USA (17%), Pakistan (10%), China (8.5%), Iran (8.5%), Mexico (4%), 
and Saudi Arabia (3%)3. Motivated by the accessibility of pumping technology, continuing increase in water 
demands, and along with a decrease in precipitation and surface flows overreliance on GW systems especially 
in arid and semi-arid regions has led to a groundwater depletion problem4, 5. At the same time, aquifer storage 
replenishment through natural or managed recharge made occurs at a slower rate than its exploitation in such 
regions6. The imbalance between groundwater recharge ( GWr ) and the combination of natural rates of discharge 
and anthropogenic GW withdrawal have resulted in the GW continuous diminish in many arid environments7 
and thus, non-sustainable yield8, 9.

In many countries of the Middle East, groundwater resources have insignificant natural recharge, and moni-
toring the GWr rates at which they are utilized under anthropogenic activities is important for sustainable plan-
ning purposes10. In Iran, the unsustainable rates of groundwater abstraction reaching this country to a point 
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where socio-economic development, political stability, ecosystem integrity, the health and the welfare of natural 
systems, and human communities are seriously threatened11.

Challenges to sustainable yield and efficient management of GW resources are directly linked to the accurate 
estimation of aquifer system fluxes, especially recharge rate as the key inflow component12. Ongoing land-use 
and land-cover changes from anthropogenic and natural forces could have significant consequences for volume, 
distribution, and pattern of GW replenishment through natural GW recharge13. The estimation of long-term 
GWr rate is a pre-requisite for efficient GW resource management and is difficult to estimate reliably using the 
traditional methods particularly in semiarid regions which the recharge rate is typically small14. Variations and 
the diffuse nature of GWr may also enhance the difficulties of its estimation15.

However, the groundwater discharge components (ET, spring-flow, base-flow and pumping) are much more 
reliably than groundwater recharge to quantify16 but, In some countries like Iran, the role of groundwater recharge 
in water balance equation is more highlighted than GW discharge since the GW withdrawal through pumping 
wells, springs, and contribution to surface-flow are monitored partially for a few percent of discharge points 
(usually less than 10%)17. The magnitude of GWr at a particular location is influenced by five main factors18–21: 
climate (e.g. precipitation, temperature, potential evapotranspiration), soils (e.g. texture, saturated hydraulic 
conductivity, moisture capacity), hydrology (e.g. streamflow, water table depth), geomorphology (e.g. surface 
slope, drainage density), land use, land cover (e.g. vegetation density and type). Estimating GWr is probably 
the most difficult factors and the least understood hydrological component in the evaluation of groundwater 
resources and it is also associated with large uncertainties18, 22. Kim and Jackson21 and Bekele et al.14 reviewed 
GWr estimation methods for phreatic aquifers including groundwater residence time, soil water balance method, 
soil water flux, inverse modeling, water table fluctuation, groundwater balance, and isotope and tracer profile. 
No single reliable and comprehensive estimation technique can yet be identified to estimate the aquifer replen-
ishment from the spectrum of those developed23. Owing to uncertainties involved in each approach arise from 
available data, local geographic and topographic conditions, spatial and temporal scale required, Scanlon et al.24 
suggested using multiple techniques to increase the reliability of the results.

The mathematical models, which rely on a soil–water balance method, may also be used for computing GWr 
when other components of the water balance are well-known22, 25. For this purpose, various climate and basin 
data (land cover, soils groups, geologic data, and topography) is required. This variety of the input data and 
concomitant various spatial and temporal ranges for both the determination and representativeness of GWr , 
complicates the interpretation of the outputs in terms of dominating factors26. Much of the earlier research 
work on the groundwater potential recharge zones and have studied the impact of physical factors as controls 
of recharge (e.g.27, 28), but the effect of vegetation on recharge is less well understood and rarely incorporated21. 
However, evidence for detection of subsurface water reservoir location using a certain vegetation type is reported. 
In the mid-nineteenth century, Darcy29 relates how Father Paramelle—a naturalist who published "The Art of 
Discovering Springs" in the same year of Darcy’s law—infers the probable presence of subsurface water and 
even the approximate depth of the water below the ground surface from the nature and strength of the plants30. 
Karaji31 in his millennium-old hydrogeology textbook "The Extraction of Hidden Waters" examined how plants 
indicate the presence of groundwater by studying their roots. One of the indicators pointed out by Karaji31 is 
lush land and the frequency of vegetation and trees, what known as groundwater-dependent ecosystems today32.

Vegetation can intercept the rainfall by leaves and branches, and thus, affects the evapotranspiration, and 
enhance the recharge time into the soil due to the increasing surface storage component19. Long-term vari-
ations of vegetation indices, such as the normalized difference vegetation index (NDVI), are widely used to 
characterize the growth cycle of crops (e.g.33). NDVI is an index to calculate greenness of vegetation34 and is the 
suitable indicator for determining the long-term changes of vegetation in one zone35. This indicator is based on 
the reflectance of differential which trees, shrubs and plants exhibit for various parts of the radiation spectrum 
of solar and is calculated by the difference between the near-infrared and visible (red) bands36, 37. NDVI values 
range between − 1.0 and + 1.0, The lowest NDVI value represents non-vegetative cover, while the highest value 
indicates healthy vegetation38.

To the best of our knowledge, only a few studies could be found that investigate the interrelationship of vegeta-
tion properties and GWr . Kim and Jackson21 analyzed more than 600 estimates of GWr , globally and reported 
that water input (precipitation + irrigation) has the strongest relationship with the GWr , followed by vegetation 
type. Singhal and Goyal39 obtained a strong polynomial trend of second-order between pre-monsoon NDVI 
values and GWr (with a correlation coefficient of 0.858). In their study, increase in value of NDVI from 0.13 to 
about 0.18, the estimated value of GWr increases. This is expected as at this level of vegetation; water is retained 
at the surface due to increase in vegetation density and thus has a greater chance of infiltrating into the ground 
and thus, limits the overland flow rate. However, when the value of NDVI is greater than 0.18, the groundwa-
ter recharge starts decreasing with increasing in NDVI value. This would be due to the reason that vegetation 
density has now increased to such a level that the interception and absorption of rainwater outweigh the factors 
responsible for further increase in recharge.

In Parmelia aquifer, a deep phreatic aquifer in Western Australia, groundwater levels have risen between up to 
55 cm/year over the last three decades due to the replacement of deep-rooted native vegetation with pasture and 
annual crops14. Applying a grid-based water balance model, the spatial GWr variation in Ergene river catchment, 
Turkey is controlled in order of significance by vegetation land-use, soil group types, and climate23. The relation-
ships have also been found for NDVI and changes in groundwater levels40 and groundwater flow discharge41.

The challenges to assess the relationship between vegetation properties (e.g. density and type) and GWr that 
may be due to the cost and time associated with the collection and preparation of ground- or remotely sensed 
data42. During last decade, emerging Google Earth Engine (GEE), a cloud-based geospatial processing platform 
which enables users to discover, analyze and visualize climate-weather and geophysical big datasets in powerful 
ways has enabled progress to be made43. This free-to-use platform along with the progress in remote sensing and 
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GIS technology can provide a very effective means to map crops, due to their fast response, periodic observa-
tions, and low cost44.

In this study, we aimed to clarify and emphasize the explanatory power of long-term NDVI as a proxy or 
characterization of vegetation density for estimating GWr in phreatic aquifers. To reveal the importance of NDVI 
in estimation of GWr , a range of factors including climatic (precipitation, potential evapotranspiration, and tem-
perature), hydrological (specific discharge), geomorphological (slope and drainage density), human (population 
density) and soil properties (soil moisture) are considered and their relations with GWr are analysed. A quantita-
tive understanding of the extent of changes of surface vegetation and associated impacts on GWr is crucial. We 
use stepwise and geographically weighted regression (GWR) models along with the two-step cluster analysis to 
identify the main predicting factors of GWr in 325 Iran’s phreatic aquifers. This synthesis is, to our knowledge, 
the first attempt globally to quantify the relative importance of predicting factors (especially vegetation) on GWr.

Materials and methods
Techniques used in this study for spatial analysis of the relationship between GWr and predicting factors con-
sidered for 325 Iran’s phreatic aquifers are shown schematically in Fig. 1. They include developing stepwise 
regression, GWR model and cluster analysis to classify hydrologically distinct regions on the degree of impact of 
each driver on GWr estimation. Predicting factors for GWr considered in this study include: long-term (30-year 
during 1989–2019) NDVI as an explanatory proxy or measure of land cover factor; long-term (30-year) mean 
annual temperature ( T ) and the ratio of precipitation to potential evapotranspiration ( P/ETP ) as climatic factors; 
long-term (30-year) mean annual specific discharge ( Qs ) as a hydrologic factor; mean slope ( S ) and drainage 
density ( Dd ) as geomorphological factors, soil moisture ( SM90 ) as soil factor and population density ( Popd ) as 
a proxy of urbanization effect.

Study areas and datasets.  Iran’s WRM Co17 explored 535 unconsolidated aquifers across the country 
(494 phreatic aquifers and 41 phreatic-confined aquifers) based on geology and geophysics studies, exploration 
wells logs, type of sediments, and depth of bedrock investigations. The consolidated aquifers (e.g. karstic aqui-
fers) generally located in the mountainous areas specially Zagros Mountain in west and southwest part of Iran 

Figure 1.   Flowchart of methodology adopted in this study for spatial analysis and estimation of natural 
groundwater recharge using the considered explanatory factors for 325 Iran’s phreatic aquifers.
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and not considered in this study. Based on the hydrogeological data availability, 325 Iran’s unconfined aquifers 
(61% of unconsolidated aquifers) were selected and consisted of our research areas as shown in Fig. 2. Moreover, 
the selected aquifers mostly (89.5%) located in an arid and semi-arid climate, and less in humid (5.3%) and 
Mediterranean (5.2%) as shown in Fig. 2.

Natural groundwater recharge estimation.  Long-term (30-year) average values of natural recharge 
for 325 phreatic aquifers across Iran calculated have previously been calculated using a water balance equation 
by Iran’s Water Resources Management Company17. This is considered as a response variable. For this purpose, 
a lumped water balance model was adopted by Iran’s WRM Company to determine the long-term GWr for each 
aquifer. The total natural groundwater recharge to a phreatic aquifer using the general groundwater balance 
equation can be defined as45

where GWr is total natural groundwater recharge from rainfall, river seepage, return flows from water used 
for irrigation, domestic, and commercial sectors, and groundwater inflow from other basins; Dg is draft from 
groundwater by pumping wells, springs, and qanats;Sr is Groundwater drainage into surface water (e.g. lake and 
streamflow); Og is groundwater outflow to other basins; and �V  is the change in groundwater storage.

All components of the water balance equation are computed by Iran’s WRM Co17 using independent meth-
ods; involve errors due to uncertainties in method’s data required and shortcomings of the techniques used. In 
many cases, the water balance equation does not balance. The discrepancy of the water balance equation arises 
from the errors in the calculation of the components and/or components which are not considered is known as 
residuals term. In Iran, the component of GWr is calculated as the unbalanced term (i.e. residual term) of Eq. 1. 
To reduce the error, long-term averages values of components are considered which generally have smaller errors 
of estimation than short term averages. According to previous studies (e.g.46, 47) the accuracy of water budgets 
decreases as shorter time frames are considered.

Calculating NDVI.  We used remote sensing data acquired by the Landsat 5 TM and Landsat 7 ETM + satel-
lites as its 30-m resolution can target a fine spatial configuration. This avoids the inclusion of potentially irrigated 

(1)GWr = Dg + Sr + Og +�V

Figure 2.   Location of 325 Iran’s phreatic aquifers considered in this study to assess the relationships of 
explanatory factors and groundwater recharge. The map was generated using ArcGIS Desktop 10.7.1, https​://
deskt​op.arcgi​s.com/en.

https://desktop.arcgis.com/en
https://desktop.arcgis.com/en
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crops which would have been almost impossible with commonly used larger resolution imagery such as MODIS 
or AVHRR (with resolutions of 250 m or greater). For calculating the NDVI time-series, 660 Landsat images 
with 16-day interval and 30-m resolution during 1989–2019 for each aquifer (totally, 214,500 images for 325 
aquifers) were processed in Google Earth Engine platform.

Following atmospheric correction, NDVI was calculated using Eq. (2) for all images using bands 3 and 4 in 
Landsat which have been calibrated to sense radiation in the visible ( Red ) and near-infrared ( NIR ) regions of 
the spectrum respectively48:

We used mean, 10th and 90th percentiles of NDVI values for our analysis to assess the effect of low, aver-
age and high levels of vegetation coverage of aquifer surface, respectively, on GWr estimations. The low, and 
high vegetation coverage conditions denote vegetation during non-growing and growing season of crops, 
respectively22, 49, 50.

Calculating other predicting factors of GW recharge.  Potential evapotranspiration ( ETP ) over study 
aquifers were computed in monthly scale by Hargreaves–Samani Equation51. Hargreaves equation is one of the 
most precise and simplest empirical equations which is used to estimate ETP and relies on monthly minimum, 
maximum, and average temperature and extraterrestrial radiation ( Ra)51–54. This method is more accurate for 
arid and semi-arid regions and gives reliable results55–57.

The ratio of long-term annual average values of precipitation ( P ) over the aquifer area to the ETP gives the 
predicting factor of P/ETP . long-term mean annual specific discharge ( Qs ) was calculated using dividing long-
term mean annual streamflow ( Q ) by the area of the aquifer ( A ). The Drainage Density ( Dd ) over each study 
aquifer is obtained by dividing the total length of all the streams over the aquifer area by the area of the aquifer 
( A ). The mean slope ( S ) was calculated using DEM and Slope tools in ArcGIS software58. Population density 
( Popd ) is calculated by dividing the total number of peoples living over the aquifer area by the aquifer area ( A ). 
The long-term soil moisture content in the upper layer (depth of 0–273 mm) of the vadose zone is obtained by 
SMAP satellite images with 3-day interval and 27-km resolution during 2015–2019, totally 186,875 images over 
the 325 study aquifer process in Google Earth Engine platform.

By adopting the above factors, we aimed to emphasize the role of surface-motivated predicting factors of 
GWr , especially NDVI. Considering other parameters (e.g. hydrogeological properties of aquifer) that may also 
be correlated to GWr are not the primary aim of this study. We believe that relating the GWr to the factors which 
may obtained by the remote sensing techniques (e.g. GEE platform) could be used as a preliminary tool for esti-
mation of GWr magnitude, especially in the regions with scares ground-data pre-requisite for model establishing.

Spatial autocorrelation analysis of GW
r
.  To investigate the spatial characteristics of GWr , we used the 

global and local Moran’s I59. The global Moran’s I ( IG ) assesses global spatial autocorrelation analysis in the range 
of [− 1, 1] based on the following formula60:

where n is the total number of aquifers, xi and xj are the values of attribute feature of x at location i and j , wij is 
the element of the space weight matrix, W in row i th and column jth, used to express the neighboring relation-
ship of spatial regions at n location, and −x is the average of all observations for the attribute feature of x in n 
study areas. This index reflects only the differences in the spatial average. While local Moran’s I ( IL ) examines 
the distribution pattern of individual attribute values distributed in a heterogeneous space and can measure the 
degree of local spatial correlation between each area and its surrounding areas61, 62:

where zi and zj are the values normalized to regions i and j , and wij is an element of the space weight matrix of W.

Stepwise regression model.  The stepwise regression model (SRM) is a linear regression that filters inde-
pendent variables (i.e. predicting factors) that have the most significant influence on the dependent variable 
( GWr ) in a step by step way. When the given explanatory variables are no longer significant, the regression is 
culled. This process is repeated until all independent variables in the regression are significant63.

Geographically weighted regression (GWR) model.  To test the spatial non-stationarity between 
the most influential explanatory variables (predicting factors) on GWr identified by SRM, the GWR model 
is adopted64. The model outputs coefficients of correlation for all aquifers, which are then mapped and tested 
spatially against raw values to understand what is predicting the most sensitive local relationships65. This car-
tographic approach illustrates the spatial distribution of the sign, magnitude, and significance of the influence 
of each predicting factor on the dependent variable ( GWr ). The GWR model reflects the non-stationarity of 
parameters in different spaces and allows the relationships between variables to change with the spatial position, 

(2)NDVI =
NIR − Red
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which provides more realistic results62. The formula used by the GWR adopted in this study is the logarithmic 
transformation of a nonlinear regression as follows66:

where ĜWr is the estimated value of GW recharge as a dependent variable for i th aquifer; (ui, vi) are the geo-
graphic coordinates for i th aquifer; a0 (ui, vi), and ak (ui, vi) are the intercept and local coefficients for i th aqui-
fer, respectively; np is the number of predicting factors included in regression (i.e. five variable); xik is the k th 
explanatory variable for i th aquifer, and εi is the random error term for i th aquifer. According to the Eq. 5, the 
logarithm of GWr values for 325 aquifers and corresponding five predicting factors considered as GWR inputs. 
Following the typical estimation method67, the regression coefficients for i th aquifer are estimated as follows:

where αi is the k × 1 vector of regression coefficients for aquifer i with coordinate (ui, vi); wi is a diagonal matrix 
m×m of spatial weights obtained by the weighting functions quantifying the proximities of aquifer i to its m 
neighborhoods; X is the variable matrix m× k ; and ĜWr is the vector of estimated value of GW recharge value 
k × 1 . GWR typically employs a kernel weighting function68, to allow data points located nearer to the location 
of interest to have more influence in the regression calculations. For GWR calculations in this study, we used 
the Gaussian distance-decay based weighting function as follows69:

where wTkj is the weight of the observation at site k on the observation at site j for GWr when the independent 
variable is c ; dkj is the distance between site k and site j , bTc is the kernel bandwidth for GWr when the independ-
ent variable is c , and exp is the exponential function. When the distance is greater than the kernel bandwidth 
( d > b ), the weight rapidly approaches zero ( w → 0 ). In this study, the optimal bandwidth was determined by 
minimizing the corrected Akaike’s Information Criterion (AIC) value70, 71. All GWR modeling was done using 
the GWR4 software package version 4.09, which is freely available online72. GWR can be used to calculate a 
set of local regression results including a localparameter estimate, a local R2 value, and a local residual for each 
sampling site73.

Cluster analysis.  The GWR model generated a large number of results which provides a challenge for 
interpretation74. Therefore, based on GWR results, a clustering analysis usually served to further scrutinize the 
results. Two-step cluster method used in this study is a clustering method that determines the optimal number 
of clusters75. through two steps: first, all records are investigated by distance to construct the classification feature 
tree, while records in the same tree node have high similarity. In the second step, the nodes are classified using 
the cohesion method and each clustering result is evaluated using an appropriate criterion (i.e. Bayesian infor-
mation criterion) which yields the final clustering result62.

Results
Spatial distribution of dependent/independent variables.  Groundwater recharge rate, GWr.  The 
spatial distribution of long-term (~ 30-year) GWr values for 325 study phreatic aquifers calculated by Iran’s 
WRM Company by the year of 2014. The GWr is calculated as the sum of recharge from the rainfall, river seep-
age, return flows from water used for irrigation, domestic, and commercial sectors, and groundwater inflow 
from other basins as given in the Table S1 in the Supplementary Data. The GWr values (as the dependent vari-
able) are in the range of 8.92–1346.8 mm/year (with an average of 257.5 mm/year) as summarized in Table 1. 
The aquifers with greater GWr values are located in southwest, west and northwest of Iran and are associated 
with the semi-arid, humid and Mediterranean regions (Fig. 2). While 53% of study aquifers receive a recharge 
rate less than 200 mm/year (Fig. 3b), only 2% of aquifers recharged annually at rates greater than 1000 mm/year 
mainly located in the southwest region of Iran (due to high precipitation). Noteworthy, Tehran aquifer (located 
in northern Iran) has received a recharge rate more than 800 mm/year mainly due to leakage from water supply 
network and sewage network in Tehran city76. The histogram of the GWr values (Fig. 3b) indicates a positive 
skewness (1.86) which reveals the higher frequency of the aquifers with a recharge rate less than the mean value.

NDVI as explanation of surface vegetation.  As one of predicting factors of GW recharge over phreatic aquifers, 
the long-term time-series of NDVI values (during 1989–2019 through the processing of Landsat images, totally 
214,500) over 325 study aquifers are calculated by GEE cloud platform. A summary statistic of the obtained 
NDVI values over 325 aquifers are given in Table 1. The NDVI for the study aquifers are in the range of − 0.26 to 
0.19 (with an average of − 0.08). Spatial distribution and corresponding histogram of the long-term mean NDVI 
values are shown in Fig. 3c,d. The time-series of NDVI values for all aquifers are stable over the 30-year period 

(5)
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examined. To analyse the effect of low, average, and high levels of vegetation coverage of aquifer surface on the 
estimation of GWr , the percentiles of 10th, Mean and 90th of NDVI for the study aquifers were computed and 
utilized. The percentile of 10th, Mean, and 90th percentiles of NDVI can explain the low, average, and high levels 
of vegetation coverage of the aquifer surface, respectively77.

Mean annual temperature, T.  Long-term mean annual temperatures over study aquifers were also computed 
by the inverse distance weighted (IDW) method in ARC GIS58 based on analysis of monthly data of 3128 synop-
tic and climatological stations during 1989–2019. The spatial distribution of T values is shown in Fig. 3e. The T 
values over study aquifers ranged between 6.95 and 28.2 °C, with an average of 17.6 °C (Table 1). The histogram 
of the T values (Fig. 3f) indicates a weak skewness (0.27).

Precipitation to potential evapotranspiration, P/ETP.  As another predicting factor of GWr , the ratio of the 
long-term mean annual precipitation to potential evapotranspiration (calculated by Hargreaves–Samani equa-
tion) was considered. For this purpose, the monthly temperature data of 3128 synoptic and climatological sta-
tions from 1989 to 2019 and the extraterrestrial radiation ( Ra ) for each aquifer were utilized. The spatial distribu-
tion of P/ETP over the study aquifers is shown in Fig. 3g with relies on the range of 0.03–0.78. The data of P/ETP 
indicates a positive skewness (0.99) as can be observed in the corresponding histogram in Fig. 3h.

Mean annual specific discharge, Qs.  River base flow is taken as equivalent to the total groundwater recharge 
of a basin and the system is assumed steady state such that groundwater discharge is assumed to equal to the 
recharge78. In the study areas, due to lack of continuous streamflow data, the annual averaged river-flow ( Q ) 
divided by the area of the aquifer ( A ) is considered as another predicting factor of GWr . The spatial distribution 
and histogram of Qs values are shown in Fig. 3i,j. A strong positive skewness is observed for this set of data (9.55).
The Qs values are in the range of 0.0 (no surface flow) to 59.2 MCM/km2 for the aquifers located in southwest 
Iran (with an average value of 2 MCM/km2) according to Table 1.

Mean surface slope, S.  Another factor that may have a strong influence on GWr for the phreatic aquifers is 
topography. For this purpose, the average surface slope of study aquifers ( S ) is calculated by using ALOS DEM 
12.5 m and Slope tools in ArcGIS software58. The obtained values of S are in the range of 1.8–23.0% (with an 
average value of 5.2%) as shown in Table 1 and also Fig. 3k,l.

Drainage density, Dd.  Drainage density of the basin over the aquifer’s boundaries ( Dd ) is also computed and 
considered as another predicting factor of GWr . The calculated values of Dd are in the range of 19.8–207.3 m/
km2 (with an average of 96.7 m/km2) as shown in Fig. 3m,n and also Table 1.

Soil moisture content, SM90.  The long-term value of soil moisture content ( SM ) in the upper layer of soil (in 
the depth of 0–273 mm) for the study aquifers are considered as another predicting factor of GWr . Because GWr 
occurs when the infiltrated water exceeds the maximum soil moisture capacity ( SMmax ), the 90th percentile of 
daily data of soil moisture content ( SM90 ) could be a good approximation for this threshold value79. In deep 
phreatic aquifers, which is true for the most of Iran’s aquifers (mean depth to water table 34 m), the presence of 
thick unsaturated zone buffers the water table response to rainfall.

Table 1.   Summary of the dependent and predicting variables statistics for 325 Iran’s phreatic aquifers. MCM 
million cubic meter.

Type of Variable Category Variable Description (unit) Min Max Mean Median Std. Dev

Dependent – GWr
Natural groundwater 
recharge rate (mm/year) 8.9 1346.8 257.4 182.3 233.8

Predicting (explanatory) 
variables

Vegetation NDVI
Mean NDVI over aquifers 
during 1989–2019 (-) − 0.26 0.19 − 0.08 − 0.09 0.09

Climate

T
Mean annual temperature 
(°C) 6.9 28.2 17.6 16.8 4.9

P
Mean annual precipitation 
(mm/year) 45.7 992.5 263.5 232.0 149.2

ETP

Mean annual potential 
evapotranspiration (mm/
year)

871.1 2464.5 1637.6 1630.3 288.4

Hydrology Qs
mean annual specific 
discharge (MCM/km2) 0.0 59.2 2.0 0.08 7.2

Geomorphology
S Mean slope (%) 1.8 22.9 5.2 4.7 2.2

Dd Drainage density (m/km2) 19.8 207.3 96.7 101.4 28.9

Soil SM90

90th percentile of soil 
moisture content (mm) 7.2 130.4 43.9 38.1 27.9

Human Popd
Population density (peo-
ple/km2) 0.0 5136.9 223.4 57.5 549.9
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Figure 3.   Spatial distribution of long-term mean values of natural groundwater recharge ( GWr ) (a), 
normalized difference vegetation index (NDVI) (c), long-term mean annual temperature ( T ) (e), long-term 
mean annual precipitation to potential evapotranspiration ( P/ETP ) (g), long-term mean annual specific 
discharge ( Qs ) (i), mean surface slope ( S ) (k), drainage density ( Dd ) (m), 90th percentile of soil moisture content 
( SM90 ) (o), population density ( Popd ) (q) over 325 Iran’s phreatic aquifers. The corresponding histograms 
of these layers are also shown (b, d, f, h, j, l, n, p, r). The maps and histograms were generated using ArcGIS 
Desktop 10.7.1 (https​://deskt​op.arcgi​s.com/en) and Minitab 16.1 Software (https​://www.minit​ab.com/en-us/
produ​cts/minit​ab/), respectively.

https://desktop.arcgis.com/en
https://www.minitab.com/en-us/products/minitab/
https://www.minitab.com/en-us/products/minitab/
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Figure 3.   (continued)
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Figure 3.   (continued)
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Due to lack of ground-data for SM , such data is derived through remote sensing from SMAP satellite. In total, 
186,875 images (27-km resolution and 3-day intervals) were analyzed in GEE platform for 325 study aquifers 
(575 images for each aquifer) during 2015–2019. Using the time-series data of SM over the aquifer area, the 90th 
percentile of SM data ( SM90 ) for each aquifer were calculated, daily and considered as one of predicting factor 
of GWr . The spatial distribution of long-term SM90 data for the study aquifers are shown in Fig. 3o,p. According 
to Table 1, the values of SM90 for the study aquifers are in the range of 7.2–130.5 mm (44.0 mm on average).

Population density, Popd.  In the urban areas, GWr results from rainfall infiltration (across the pervious areas), 
and leakage from water supply and sewerage networks and thus, varies widely with population density and 
development level80. In this study, the population density ( Popd ) over the aquifer areas was considered as an 
available explanatory variable of urbanization and the human effect on GWr . The Popd values have a broad 
range of 0.0 (without habitant) to 5137 people/km2 (averagely 224 people/km2) as shown in Fig. 3q and Table 1. 
The data of Popd indicates strong positive skewness (5.45) as can be seen from their corresponding histogram 
(Fig. 3r).

The correlation matrix of dependent and independent variables based on the initial data shown in Table 2 
gives more information about the relation between the GWr and the predicting factors. The GWr has the maxi-
mum correlation with NDVI (0.74), followed by the P/ETP (0.46) and SM90 (0.39). Dense surface vegetation 
(i.e. higher values of NDVI) may be associated with the potential zones for recharge to underlying layers. While 
previous studies reported that the groundwater level (GWL) has a strong linear relationship with NDVI, espe-
cially for shallow aquifers during dry years (e.g.40), a non-significant relationship is observed between NDVI and 
GWL. This may be due to the depth of GWL in Iran’s aquifers (mean 34 m) are much greater than interacts with 
surface vegetation. Of note is that the GWr has a positive correlation (direct relationship) with all considered 
predicting factors. The positive correlation of GWr and Popd in Table 2 (0.23) can be interpreted with increasing 
population the rate of return flows of domestic use to groundwater resources increases, especially for the urban 
areas that the source of domestic water supplies from outside of aquifer basin. Surprisingly, increasing the surface 
slope of the study aquifers ( S ) increased the GWr rate, due to the topography, geomorphological and climatic 
condition of Iran’s basins. Usually, in Iran, lower slope lands consist of with fine-grain sediments (e.g. clay and 
silt) which have a low rate of GWr.

While P/ETP and SM90 are the strong drivers of NDVI with direct relationship, the temperature has nega-
tively correlated with NDVI (Table 2). This is consistent with other studies which suggested temperature to be 
negatively correlated with NDVI during spring81 and summer82. This negative relationship can be due to lower 
soil moisture caused by higher temperature, especially in the regions with limited rainfall. The importance of 
evaporation and its negative impact on NDVI has been reported in other studies81.

Global and local Moran’s indicator.  The spatial characteristics of GWr in Iran’s phreatic aquifers is inves-
tigated by the global and local Moran’s I indicator. The global Moran’s I for GWr data is 0.373 ( p< 0.01), which 
indicates an important positive spatial correlation for this variable. To better understand the spatial characteris-
tics and distribution of GWr across the study aquifers, the local Moran’s I indicator was used. Figure 4 shows the 
results of Moran’s I indicator, locally. There are several aquifers of high-high cluster in southwest Iran (especially 
Fars Province) which indicates these aquifers have high value of GWr and neighboring to such aquifers. One of 
aquifer included in this cluster is Roudan in Hormozgan Province (southern Iran) with an annual recharge of 
826 mm/year. The high value of recharge rate associated with this aquifer leads to Hosseini et al.11 ranked it as the 
third Iran’s aquifers from viewpoint of sustainable management. The aquifers which classified as low-low clusters 

Figure 3.   (continued)
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(e.g. ones located in Yazd, Esfahan, Sistan and Baluchestan, Khorasan and Semnan Provinces) have low values of 
GWr and adjacent to such aquifers. Moreover, the aquifers of Neyriz, Tang-e Hana, Qaderabad, Farashband and 
Bandar Ganaveh in Fars and Bushehr Provinces are classified as high-low clusters. The last cluster indicates that 
these aquifers have a low value of GWr and adjacent to the aquifers with high values of GWr.

Stepwise regression (SR) model.  The SR model was used to select the most influenced predicting factors 
of GWr in the study aquifers. For this purpose, four criteria of the adjusted coefficient of determination ( R2 ), 
standard error of estimation ( SE ), Akaike’s information criterion ( AIC ), and variance inflation factor ( VIF ) were 
used and computed for all regressions. As discussed previously, before the variables enter the SR model, the 
data series of both dependent and independent variables were transformed using the logarithm function. This 
transformation was used to obtain a constant variance of the residuals about the regression line, and to linearize 
the relation between the variables to use linear least squares regression techniques. The equations and goodness-
of-fit criteria of five types of SR models (SR 1 to SR 5) that includes one (including NDVI with 10th percentile, 
90th percentile and mean) to five (NDVI, Popd , T , Qs and Dd ) independent variables are shown in Table 3. These 
regressions are statistically significant at α= 0.01 based on t-test values and F-test. Since all t-test and F-values of 
regressions given in Table 3 are much smaller than 0.01, therefore, the regression results for the selected param-
eters show the significance of these factors (with a confidence level of 0.99) in explaining the GWr . Results given 
in Table 3 indicate that the SR 5 model that includes five independent variables of NDVI (mean values), Popd , T , 
Qs and Dd indicates better performance in the estimation of GWr . The positive exponent of predicting factors in 
the regressions reveals the direct relationships of these variables on the magnitude of GWr.

It is worth noting that the adjusted R2 values (in Table 3) associated with the regression models varies between 
0.711 for SR1 (including only mean NDVI as an independent variable) to 0.747 for SR5 (including five independ-
ent variables). This reveals that the estimation of GWr values in the study aquifers using the mean NDVI can 
solely explain 71% of the GWr variations. Adding the four predicting factors of Popd , T , Qs and Dd will improve 
the regression efficiency as 3.6% in term of R2, and 4.5% in terms of SE and AIC criteria. The VIF values calcu-
lated for five SR models are less than 2, which indicates that there are not problems of serious multi-collinearity 
among the independent variables (the VIF value above 5 indicates high correlation that may be problematic).

The effect of 10th, 90th percentiles and mean of NDVI (i.e. explanation of low, high and average levels of veg-
etation coverage of aquifer surface) on GWr in estimations were also investigated in SR modeling. Results given in 
Table 3 indicate that the mean values of NDVI shows better correlation with GWr than 10th and 90th percentiles 
according to the goodness of fit criteria of R2, AIC , VIF , and SE . This reveals the pivotal role of average condition 
of surface vegetation coverage (i.e. mean values of NDVI) in estimation of GWr for phreatic aquifers rather than 
high-level (growing period of crops) and low-level (non-growing period of crops) of vegetation coverage. Thus, 
the mean values of NDVI better represents the inter-annual surface vegetation variability and its role of the GWr.

Results shown in Table 3 indicate that the regression cannot explain 29% (for SR1) to 25% (for SR5) of the 
variations in the GWr . This may be due to discounting other influential factors that are difficult to quantify (e.g. 
groundwater inflow/outflow from adjacent basins). Developing a single-variable regression model including 
NDVI to estimate GWr has great promise due to simplicity of the deriving vegetation related index from GEE 
platform especially for the aquifers with scarce ground data. The five drivers of GWr selected by the SR model 
(i.e. SR 5) are considered as GWR model inputs to obtain the locally-varying relationships between the variables 
(five predictors and GWr ). Since the SR model uses the multi-collinearity diagnostic test, thus, the variables of 
SM90 , P/ETP , and S are excluded from the regressions since they are maximum correlated to the NDVI in the 
study aquifers.

GWR model.  Spatial analysis of the relationship between GWr and five predicting factors (NDVI, Popd , T , 
Qs and Dd ) through GWR model were performed for the study aquifers. Table 4 shows the descriptive statistics 
of the coefficients. According to Table 4, NDVI and Temperature were the variables with the greatest and lowest 
spatial coefficients (mean 0.889 and 0.092, respectively) and they can predict GWr with a direct relationship.

In Fig. 5a–e, the coefficients of independent variables were divided into five classes based on the Natural 
Breaks method58. According to Fig. 5a–e, the coefficient of NDVI ranges from 0.67 to 1.02. Significant relation-
ships between NDVI and GWr occur in the southwest and south of Iran. The GWr for the aquifer located in 
southern part is highly affected by NDVI. The coefficient for the drainage density ( Dd ) ranges from 0.00 to 0.34 
and its coefficient gradually increases from the northwest to the southeast of Iran. The aquifers that are most 
affected by Dd are ones located in southeast part. The coefficient for the Popd ranges from 0.05 to 0.16 and the 
significant relationships are observed in the aquifers in southeast and east parts of Iran. According to spatial 
distribution of Popd coefficients, the aquifers located in eastern Iran are highly affected by it/them. The coefficient 
of Qs ranges from 0.0 (for west aquifers) to 0.361 (for east aquifers) and its coefficient gradually decrease from 
the east to the west of Iran. The coefficient of temperature ( T ) ranges from 0.01 to 0.12, and the highest values 
are observed for the northwest aquifers and the lowest for the southwest regions of Iran. The aquifer which is 
mostly affected by T is ones located in the northwest part.

The spatial distribution of R2 values of GWR model is shown in Fig. 5f. The local R2 value ranges from 0.67 
(for northwest aquifers) to 0.80 (for central aquifer). The study aquifers show diversity in degrees of fit (high 
variation of R2 ). Based on Fig. 5f, the local R2 value increases when moving towards central aquifers of Iran. In 
other words, The GWR model has the best fit in the central Iran. These results indicate that in the aquifers in 
the central parts of Iran, the relationship between predicting factors and GWr is better in the regression model.

Cluster analysis of Iran’s aquifers.  Understanding the effects of predicting factors on GWr estimation 
can be obtained by spatial analysis of the GWR’s coefficient through two-step cluster analysis. For this purpose, 
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the study aquifers were divided automatically into six categories based on the Bayesian Information Criterion 
(BIC) method. The statistical and mapping result of the five predicting factors in each cluster is given in Table 5 
and Fig. 6a,b. The coefficients with larger values have a greater impact on the prediction of GWr . The results 
shown in Fig. 6 provide valuable information about the recharge predicting factor(s) in each aquifer system.

Two-step clustering results reveal that the NDVI (as the most influential predictor of GWr ) has the highest 
effect on the estimation of GWr for all classes of aquifers (Table 5). Figure 6 reveals that the effect of NDVI for 

Table 2.   Cross-correlation matrix of dependent ( GWr ) and predicting factors (NDVI, T , P/ETP , Qs , S , Dd , 
SM90 , Popd ) considered in this study (original data without transformation were considered). GWr long-term 
mean annual groundwater recharge, NDVI long-term mean annual normalized difference vegetation index, 
T long-term mean annual temperature, P/ETP ratio of long-term mean annual precipitation to potential 
evapotranspiration, Qs mean annual specific discharge , S mean surface slope, Dd drainage density, SM90 90th 
percentile of soil moisture content, Popd : population density. *Significant at 90% confidence level. **Significant 
at 95% confidence level. ***Significant at 99% confidence level.

Variable GWr NDVI T P/ETP Qs S Dd SM90 Popd

GWr 1.00

NDVI 0.74*** 1.00

T 0.01 − 0.13* 1.00

P/ETP 0.46*** 0.64*** − 0.38*** 1.00

Qs 0.26** 0.25** 0.11* 0.379*** 1.00

S 0.18* 0.35*** − 0.32*** 0.48*** 0.14* 1.00

Dd 0.21** 0.33*** 0.23** 0.34*** 0.13* 0.22** 1.00

SM90 0.39*** 0.56*** − 0.43*** 0.75*** 0.34*** 0.40*** 0.14* 1.00

Popd 0.23** 0.20** − 0.18* 0.24** 0.09 0.15 0.04 0.26 1.00

Figure 4.   Local Moran’s I clusters of groundwater recharge for 325 Iran’s phreatic aquifers. The map was 
generated using ArcGIS Desktop 10.7.1, https​://deskt​op.arcgi​s.com/en.

https://desktop.arcgis.com/en
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the aquifers located in south and southwest Iran (aquifers categorized in class 4) is higher than other parts of 
Iran (the attribute value of NDVI for class 4 is 0.97). These aquifers are characterized by high NDVI and the 
significant GWr (mean 310 mm/year). The lowest effect of NDVI are for the aquifers located in northwest part 
(aquifers in class 1) which are characterized by NDVI value 0.75 (Table 5). Drainage density, Dd (as the second 
most influential predictor of GWr ) has the most effect on aquifers located in southeast of Iran (class 6) which 
characterized by drainage density > 90 m/km2. Population density, Popd (as the third most influential predictor of 
GWr ) has the highest effect in increasing of GWr for the aquifers located in southeast, east, northeast and north of 
Iran (aquifer of classes 6, 3 and 2). The presence of population on aquifer surface has the lowest effect on GWr for 
the aquifers located in south and southwest parts (class 4). Specific Discharge, Qs (as the fourth most influential 
predictor) has the highest effect on the aquifers located in southeast and northeast of Iran which characterized 
by mean annual specific discharge 18 MCM/km2 (aquifers of classes 6 and 2). Mean annual temperature, T (as 
the least influential predictor of GWr ) has the most effect on aquifers located in south, southwest and northwest 
of Iran (classes 4 and 1) which are characterized by mean annual temperature 7–28 °C.

Conclusion
In this study, the effects of different explanatory variables of climate ( T , P/ETP ), geomorphologic ( S and Dd ), 
hydrologic ( Qs ), soil ( SM90 ), human ( Popd ), and land cover (as NDVI) were analyzed for explaining groundwater 
recharge rate ( GWr ) for 325 of Iran’s phreatic aquifers. Of these variables, the stepwise regression consistently 
indicates the predominant effects of NDVI, Popd , T , Qs and Dd on GWr in the study aquifers. All these predictors 
are positively correlated with the GWr . To support the spatial analysis of the results, local and global Moran’s I 
index, GWR model, and two-step cluster analysis were employed. Results indicated that NDVI is consistently 
the dominant predictor of GWr , and followed by the P/ETP and SM90 . Thus, land cover is the dominant control 
on groundwater recharge in all studies areas of Iran.

A consistent and robust story has emerged in terms of the relationships between the predicting factors, espe-
cially NDVI, and GWr for the phreatic aquifers used as case studies here. Remotely sensed NDVI has allowed 
rapid collection of data not only across sizeable aquifers, but more importantly, across a time span of years.

In this way, the use of remote sensing along with the GEE cloud platform can be viewed as a strength to pro-
vide a large number of hydrological data points for the wide spatial and temporal scales. However, the lack of 
field studies to verify remotely-sensed observations (NDVI and SM ) with ground truthed data is a limitation of 
this study. The results indicate that combining a geographically weighted regression model with two-step cluster 
analysis can be a valuable tool for identifying the spatial heterogeneity of GWr predictors.

Table 3.   Results of stepwise regression (SR) analysis and evaluation criteria (all variables are significant at α
= 0.01) for estimation of groundwater recharge rate over the study aquifers. The equations given in table are 
back transformed logarithmically from linear regression. GWr natural groundwater recharge rate (mm/year), 
NDVI mean values of normalized difference vegetation index obtained by Landsat satellite images with interval 
16-day and resolution 30-m during 1989–2019, NDVI10 and NDVI90 are the 10th and 90th percentile of the 
NDVI, T : mean annual temperature (°C), Popd population density (people/km2), Qs mean annual specific 
discharge (MCM/km2 ), Dd drainage density (m/km2), R2 determination coefficient of regression, AIC Akaike 
information criteria, VIF variance inflation factor, SE standard error of estimations.

SR no. Equation

Model evaluation criteria

Adjusted R2 AIC VIF SE

SR 1

GWr = 0.002 × (NDVI10)2.05 0.340 684.61 1.00 0.352

GWr = 0.001 × (NDVI90)3.26 0.545 621.18 1.00 0.297

GWr = 0.007 × NDVI2.07 0.711 576.64 1.00 0.243

SR 2 GWr = 0.012 × NDVI1.94 × Popd0.05 0.727 570.04 1.36 0.221

SR 3 GWr = 0.004 × NDVI1.97 × Popd0.05 × T0.32 0.736 566.20 1.38 0.218

SR 4 GWr = 0.008 × NDVI1.87 × Popd0.06 × T0.26 × Qs
0.03 0.740 557.68 1.82 0.216

SR 5 GWr = 0.018 × NDVI1.94 × Popd0.06 × T0.31 × Qs
0.04 × Dd

0.27 0.747 551.07 1.95 0.214

Table 4.   The coefficients for the GWR model obtained with considering five explanatory variables (stepwise 
regression SR5 in Table 3) for estimation of groundwater recharge rate over the study aquifers.

Variable Maximum Minimum Mean St. Dev

NDVI 1.023 0.673 0.889 0.074

Drainage density ( Dd) 0.349 0.000 0.160 0.086

Population density ( Popd) 0.163 0.053 0.098 0.027

Specific discharge ( Qs) 0.361 0.000 0.097 0.102

Temperature ( T) 0.125 0.017 0.092 0.022
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In conclusion, relating the remotely sensed data (e.g. NDVI) with GWr in the phreatic aquifers will help land-
use decisions for sustainable groundwater management, especially where the field data for precise calculation of 
GWr through traditional models does not exist. Among the explanatory variables we investigated, population 
density ( Popd ) and surface vegetation (NDVI) are of manageable ones through human intervention on aquifer 
surface that are directly related to GWr magnitude and its spatial pattern.

Figure 5.   The spatial coefficient distribution for five predicting factors of groundwater recharge over 325 Iran’s 
phreatic aquifers including average long-term of NDVI, drainage density, population density, specific discharge 
and annual temperature based on the GWR model (a–e), and the local R2 values of the corresponding GWR 
model (f). The maps were generated using ArcGIS Desktop 10.7.1, https​://deskt​op.arcgi​s.com/en.

https://desktop.arcgis.com/en
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Table 5.   Clustering results for GWR model coefficients.

Class NDVI Drainage density ( Dd) Population density ( Popd) Specific discharge ( Qs)
Temperature
(T)

1 0.75 0.02 0.12 0.01 0.11

2 0.80 0.13 0.13 0.23 0.10

3 0.85 0.06 0.12 0.04 0.07

4 0.97 0.22 0.07 0.14 0.11

5 0.93 0.15 0.08 0.07 0.07

6 0.95 0.31 0.14 0.30 0.06

Figure 6.   Six types of phreatic aquifers obtained by clustering of the geographically weighted regression 
coefficients: the distribution of clustering results (a) and the clustering results for the GWR coefficients (b). The 
map was generated using ArcGIS Desktop 10.7.1, https​://deskt​op.arcgi​s.com/en.

https://desktop.arcgis.com/en
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