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ABSTRACT Patterns of linkage disequilibrium, homoplasy, and incompatibility are difficult to interpret because they depend on several
factors, including the recombination process and the population structure. Here we introduce a novel model-based framework to infer
recombination properties from such summary statistics in bacterial genomes. The underlying model is sequentially Markovian so that
data can be simulated very efficiently, and we use approximate Bayesian computation techniques to infer parameters. As this does not
require us to calculate the likelihood function, the model can be easily extended to investigate less probed aspects of recombination. In
particular, we extend our model to account for the bias in the recombination process whereby closely related bacteria recombine more
often with one another. We show that this model provides a good fit to a data set of Bacillus cereus genomes and estimate several
recombination properties, including the rate of bias in recombination. All the methods described in this article are implemented in
a software package that is freely available for download at http://code.google.com/p/clonalorigin/.

BACTERIA are organisms that reproduce clonally, but they
occasionally exchange fragments of DNAwith one another.

This process can lead to two outcomes, nonhomologous and
homologous recombination (Vos 2009). Nonhomologous re-
combination occurs when a novel segment of DNA from the
donor cell is inserted into the genome of the recipient cell.
On the other hand, homologous recombination happens
when the DNA from the donor cell replaces its homologous
counterpart in the genome of the recipient cell. In this study
we are concerned only with the “core” genome of regions
present in all sampled genomes (Medini et al. 2008), and
therefore only homologous recombination is relevant. Foreign
DNA can be taken up by the recipient cell through one of
three mechanisms: conjugation (transfer of DNA from one cell
to another when they are in physical contact), transduction
(bacteriophage-mediated DNA transfer), or transformation
(uptake of DNA from the environment by the recipient cell)
(Thomas and Nielsen 2005). In homologous recombination,

the recipient cell then replaces the homologous section of its
DNA with the foreign DNA segment.

A first concept that has helped researchers to appreciate
the role of recombination in bacteria is linkage disequilibrium
(LD) or the nonrandom association of alleles at different loci
(Maynard Smith et al. 1993). LD between a pair of sites is
expected to decrease as more and more recombination events
affect exclusively one or the other site, so that LD is a function
of the distance between pairs of sites. In bacteria on average
LD decreases down to a plateau level when pairs of sites are
considered that are farther and farther away from each other
on the genome, and this is often represented graphically (e.g.,
Namouchi et al. 2012; Takuno et al. 2012). Another impor-
tant concept is homoplasy, which is said to occur when given
a known tree, a site could not have arisen without either
recombination or repeat mutation (Maynard Smith and
Smith 1998; Maynard Smith 1999). The probability of a site
being homoplasic increases with the number of recombina-
tion events affecting the site. For this reason, homoplasy is
commonly used as an indicator of the prevalence of recom-
bination (e.g., Nübel et al. 2008; Harris et al. 2010). A related
notion is incompatibility between pairs of sites [also known as
the four-gamete test (G4)], which occurs when two sites can-
not be explained by a shared phylogenetic tree without either
recombination or repeat mutation (Hudson and Kaplan 1985;
Maynard Smith 1999). Incompatibility between pairs of sites
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is often used to identify recombination events (e.g., Takuno
et al. 2012; Yahara et al. 2012).

Recombination plays a key role in shaping the patterns of
all these summary statistics, but they are also crucially af-
fected by other factors, which makes them difficult to
interpret. This includes the population structure underlying
the relationships between the individuals under study
(McVean et al. 2002; Wakeley and Lessard 2003), and this
effect is likely to be especially important in bacteria because
of their clonal mode of reproduction. Another factor likely to be
important in bacterial population genetics is biased recombina-
tion, which we define in contrast to free recombination where
all individuals in the population are equally likely to recombine.
There are many factors contributing to recombination being
biased rather than free. Laboratory experiments have shown
that the recombination process is homology dependent so that
it tends to happen more often between individuals that are less
diverged (Roberts and Cohan 1993; Zawadzki et al. 1995;
Majewski et al. 2000; Majewski 2001). Furthermore, the geo-
graphical and ecological structures observed in many bacterial
populations imply a greater opportunity of recombination for
pairs of cells that are closely related (Feil and Spratt 2001;
Majewski 2001; Cohan 2002; Didelot and Maiden 2010).
Purifying selection may also effectively prevent recombination
between distantly related bacteria. All these effects would
clearly be hard to disentangle, and here we group them all
under the single concept of biased recombination. The
strength of this bias is an important factor to take into account
to understand recombination in bacteria. In particular, this
determines how often recombination happens within the di-
versity of the population under study rather than from other
sources. Such recombination events from external sources
would strongly affect LD, but have little or no effect on ho-
moplasy and G4 since they introduce what is in effect new
polymorphism from the viewpoint of the studied population.

Here we introduce a new statistical framework for in-
ferring the recombination parameters, including the rate of
bias in recombination, from a sample of bacterial genomes.
Our starting point is an evolutionary model of free recombi-
nation that describes the ancestral recombination process
given the clonal relationships in the sample. We show how this
can easily be extended to allow recombination to be biased.
We describe how data can be efficiently simulated under the
model, which is crucial to allow the use of approximate
Bayesian computation (ABC) techniques (Pritchard et al.
1999; Beaumont et al. 2002) to estimate parameters. We use
informative summary statistics about the recombination pro-
cess such as LD, homoplasy, and G4 to infer parameters.
Applications are presented on simulated data sets as well as
on a real data set of Bacillus cereus genomes.

Model and Methods

Free recombination model

The process of homologous recombination in bacteria is
asymmetric in terms of the genetic contributions made by

donor and recipient cells, since typically a small segment of
DNA from the donor in the order of a few hundreds or
thousands of nucleotides in length is incorporated into the
genome of the recipient that is much longer (Didelot and
Maiden 2010). This asymmetry contrasts with the well-studied
mechanism of crossing over in eukaryotic sexual reproduction
where the two parents contribute equally. Consequently, it is
possible to consider the (potentially empty) set of genomic sites
that have not been affected by recombination since a sample of
isolates evolved from a common ancestor, and the ancestral
relationships between the isolates at these sites is called the
clonal genealogy (Guttman 1997). Alternatively, the clonal ge-
nealogy of a set of isolates can be defined as the ancestral tree
obtained by tracing the ancestry of the isolates back in time and
following the ancestral line of the recipient cell (rather than the
donor cell) whenever a recombination event occurred.

The coalescent model with gene conversion describes the
ancestry of a bacterial sample subject to homologous re-
combination (Wiuf 2000; Wiuf and Hein 2000; McVean et al.
2002; Didelot et al. 2009b). A useful approximation of this
process is the ClonalOrigin model (Didelot et al. 2010), where
given the clonal genealogy the recombinant lines of ancestry
are assumed to be independent of each other. This means that
given the clonal genealogy the recombinant lines of ancestry
are not allowed to recombine and are allowed to coalesce
only with the clonal genealogy. Consequently, the clonal and
recombination processes can be separated. Here, however,
we exploit another property of this model, namely the fact
that it has a simple Markovian structure along the genome,
similar to that of the sequentially Markov coalescent in ap-
proximating the crossing-over ancestral recombination graph
(McVean and Cardin 2005; Marjoram and Wall 2006). Given
the clonal genealogy this allows for the simulation of pairs of
sites at a given physical distance from each other on the
genome. As both LD and G4 are defined for pairs of sites,
we use this Markovian property of the model to simulate
these summary statistics in a computationally efficient man-
ner. A formal description of this model follows, and the math-
ematical symbols used are summarized in Table 1.

In the ClonalOrigin model (Didelot et al. 2010), recombi-
nation events are independent of one another given the clonal
genealogy and the total number of recombination events R
given the total branch length of the clonal genealogy T and
the population recombination rate r is Poisson distributed:

PðR ¼ rjr;TÞ ¼ ðrT=  2Þre2ðrT=2Þ

r!
: (1)

Each recombination event i has four properties: the depar-
ture point on the clonal genealogy ai where the ancestry of
the donor cell meets the clonal genealogy, the arrival point
on the clonal genealogy bi where the recombination occurs,
the site on the chromosome where recombination starts xi,
and the site on the chromosome where recombination ends
yi. Figure 1 shows three recombinations with their arrival
and departure points on the clonal genealogy. The three
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events have the same arrival points, but different departure
points on the clonal genealogy.

The arrival points bi are uniformly distributed on the
clonal genealogy as recombination happens at a constant
rate on the branches of the clonal genealogy. A recombinant
edge reconnects with the clonal genealogy at a rate equal to
the number of ancestors in the clonal genealogy as in the
standard coalescent model (Kingman 1982). Thus ai condi-
tional on bi is distributed as

Pðai  jbi; T Þ ¼ e2Lðai;biÞ; (2)

where T is the clonal genealogy and L(ai, bi) is the sum of
branch lengths on the clonal genealogy between the time of
ai and bi. In addition we assume that the recombination
events are uniformly distributed along the observed sequences
and that their length is geometrically distributed with mean d.

Extending the model to include biased recombination

We extend the ClonalOrigin model to incorporate the bias in
recombination and modify Equation 2 such that a recombi-
nant edge coalesces with the clonal genealogy at a rate that
depends on both the number of ancestors in the clonal
genealogy and the amount of evolutionary distance between
donor and recipient cells. Therefore we propose the follow-
ing distribution for ai,

Pðai  jbi; T Þ} e2Lðai;biÞ 3 e2lDðai;biÞ; (3)

where D(ai, bi) is the evolutionary distance in coalescent
unit of time between the donor and recipient cells for

recombination i and l is the strength of the recombination
bias. Free recombination is nested in this model, as setting
l = 0 results in Equation 2. For values of l greater than
zero, we have that the probability of recombination
decreases with the evolutionary distance between donor
and recipient. Figure 1 shows the relationship between
D(ai, bi) and L(ai, bi) for three recombination events with
the same arrival points, but three different departure
points on the clonal genealogy. Under a free recombina-
tion model, the three recombination events would have
the same probability because the sums of branch lengths
of clonal genealogy between the arrival and departure
points on the clonal genealogy are the same. However,
the amount of evolutionary distance between the donor
and recipient cells increases from recombination events
1 to 2 to 3. Thus in the model of biased recombination
described by Equation 3 with l . 0, the probability of
event 1 is more than that of event 2, which is more than
that of event 3.

Simulating pairs of sites

The sequentially Markovian property of our model allows
us to simulate pairs of sites at a given physical distance from
each other given the clonal genealogy. The simulation is done
in three steps. First, we simulate recombination events
affecting the first site and their properties. In the second step,
we simulate recombination events affecting the second site.
This includes some of the recombination events from the first
site that are long enough to affect the second site and some
new recombinations initiated between the two sites. In the

Table 1 List of symbols

Symbol Description

Symbols used for the data
A Aligned sequence data
L Total length of the alignment
B No. blocks in the alignment
Wi ith summary statistic of data

Symbols used for the clonal genealogy
T Clonal genealogy
T Sum of branch lengths of the clonal genealogy

Symbols used for the recombination events
R1 No. recombination events affecting the first site
R⋆2 No. recombination events affecting the first site that survive to the second site
R92 No. recombination events that start between the two sites and affect the second site
ai Where the ancestry of the donor meets the clonal genealogy for event i (departure point)
bi Where the transfer of the DNA fragment from donor to recipient occurs for event i (arrival point)
L(ai, bi) Sum of branch lengths on the clonal genealogy between the departure and the arrival of event i
D(ai, bi) Distance in coalescent unit of time between donor and recipient cells of event i

Symbols used for the global parameters
u/2 Rate of mutation on the branches of the clonal genealogy and the recombinant edges
us/2 Per-site rate of mutation
r/2 Rate of recombination on the branches of the clonal genealogy
rs/2 Per-site rate of recombination
l Rate of bias in the recombination process
d Mean of the geometric distribution modeling the length of recombinant segments
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third step the local trees for the two sites are computed and
mutations are added.

The sequence data are made of B independent blocks
with total length L and subject to mutation and recombi-
nation at population rates u and r, respectively. A recom-
bination event may start before a block and be long
enough to affect the beginning of a block, so that the
probability of observing the recombination start at the be-
ginning of a block is d times greater than within a block
(Didelot and Falush 2007). There are B sites at the begin-
ning of blocks and L 2 B sites within blocks; thus the re-
combination rate per site is defined as rs = r/(dB + L 2
B), and since mutation affects any site with equal proba-
bility, the mutation rate per site is us = u/L (Didelot et al.
2010).

Given the clonal genealogy T , recombination rate per site
rs, mean length of recombination tract d, the rate of bias in
recombination l, the physical distance between the two sites
on the chromosome k, and the mutation rate per site us,
a pair of sites is simulated as follows:

Step 1: Simulate recombination events for the first site.
a. We assume that recombinations start between nucleo-
tides and that they are at least 1 nucleotide long. As the
lengths of recombination events are geometrically distrib-
uted with mean d, the rate at which a site i nucleotides
before the first site initiates a recombination that survives
to the first site is

rs
2
3
�
12d21�i:

Summing over all sites before the first site, we get the
expected rate of recombination affecting the first site:

XN
i¼0

rs
2

�
12d21�i ¼ rs

2

XN
i¼0

�
12d21�i ¼ rs

2
d:

Therefore the number R1 of recombination events affecting
the first site is Poisson distributed:

R1  jT; rs; d � Poisson
�
rsdT
2

�
: (4)

b. For each recombination event i, the arrival point on the
clonal genealogy bi is uniformly distributed and the de-
parture point ai is drawn from Equation 3. To simulate
from Equation 3, we use rejection sampling where the
proposal distribution is Equation 2 and the simulated ai
is accepted with probability e2lDðai;biÞ:

Step 2: Simulate recombination events for the second site. Two
types of recombination events can affect the second site.
Some events affecting the first site may have survived to
the second site and new recombinations could have started
between the two sites and have survived to the second site.
a. As the length of recombination events is geometrically
distributed, the probability of a recombination that is af-
fecting the first site to have survived to the second site is

PðSurvivalÞ ¼
�
12d21�k:

Thus the number of recombination events R⋆2 from the first
site that survive to the second site is binomially distributed:

R⋆2 � Binomial
�
R1;
�
12d21�k�: (5)

b. The number of recombination events R92 that start be-
tween the two sites and that affect the second site is
distributed as

Figure 1 Illustration of the recombination model.
Consider three recombination events arriving at points
b1 = b2 = b3 and departing from points a1, a2, and a3
on the clonal genealogy. In the ClonalOrigin model
(free recombination, Equation 2) these three departure
points are equally likely because the sums of branch
lengths between the times of each bi and ai are equal:
L(a1, b1) = L(a2, b2) = L(a3, b3). The amount of evolu-
tionary distance between the donor and recipient cells
for the three recombination events is given by D(a1, b1) =
2d1, D(a2, b2) = 2d2, and D(a3, b3) = 2d3. In the biased
recombination model (Equation 3), the probability of
departing from a1 is higher than that from a2, which is
higher than that from a3, because the amount of evolu-
tionary distance between the donor and the recipient cells
is increasing: D(a1, b1) , D(a2, b2) , D(a3, b3).
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R92
��T; rs; d9 � Poisson

 
rsd9T
2

!
;

where d9 ¼
Xk21

i¼0

�
12d21�i:

(6)

This is because there are only k positions between the two
sites where recombination could have started.

c. For each of the R92 recombination events affecting the
second but not the first site, the departure and arrival
points on the clonal genealogy are simulated as detailed
in step 1.

Step 3: For both sites, extract the local trees backward in
time (from tips to root), given the clonal genealogy and
the recombination events. Mutations are then simulated
on these local trees as follows.
a. The number Mj of mutations affecting the local tree at
site j is distributed as

Mj  jTj; us � Poisson
�
usTj
2

�
; (7)

where Tj is the total branch length of the local tree at site j.

b. We are interested in simulating polymorphic sites and
Equation 7 only for plausible values of us and Tj leads to
many nonpolymorphic sites. To remedy this problem, we
use an importance sampling strategy (Fearnhead 2007).
A local tree is in the target distribution if Equation 7 leads
to at least one mutation on that local tree. The proposal
distribution is made of all local trees simulated by steps 1
and 2. Therefore the importance sampling weight is

wj ¼ PðLocal  tree  j  is  in  the  target  distributionÞ
PðLocal  tree  j  is  in  the  proposal  distributionÞ

¼ PðMj .0Þ
1 ¼ 12P

�
Mj ¼ 0

�
¼ 12 e2ðusTj=2Þ:

(8)

The simulated local trees are importance sampled using the
weights from Equation 8, and the number of mutations on
the local tree is simulated from the truncated Poisson with
one or more mutations.

c. Mutations are uniformly distributed on the local trees.
For simplicity we use the Jukes–Cantor model where all
mutations are equally likely, but any mutation model
could be used (Whelan et al. 2001).

Inference using whole genomes

Whole genomes can be compared using Mauve that detects
and aligns the conserved genomic regions in the presence of
rearrangements (Darling et al. 2004, 2010). Given a core
alignment A of whole bacterial genomes and the clonal ge-
nealogy T [estimated, for example, using ClonalFrame

(Didelot and Falush 2007)], we want to infer the posterior
density of the model parameters P(rs, d, l, us|A, T ). How-
ever, due to the complexity of the model, the likelihood
function is intractable and therefore we cannot use standard
approaches such as a Markov chain Monte Carlo (MCMC).
One solution would be to use data augmentation techni-
ques as in Didelot et al. (2010). Instead here we use ABC
(Pritchard et al. 1999; Beaumont et al. 2002), where the
likelihood does not have to be computed, but simulation
from the model has to be efficient. In effect, the likelihood
is approximated through a distance metric on a set of in-
formative summary statistics between the simulated and ob-
served data. There are several implementations of the ABC
algorithm (reviewed in Beaumont 2010; Csilléry et al. 2010)
and we have implemented and tested both ABC-MCMC
(Marjoram et al. 2003) and ABC-SMC (Sequential Monte
Carlo; Beaumont et al. 2009) approaches. The results pre-
sented used a parallel ABC-MCMC implementation where
given the current chain state uj, n states u91; . . . ; u9n are pro-
posed independently and for each one data x91; . . . ; x9n are
simulated in parallel (where n is the number of cores avail-
able). The proposed states and their simulated data are ex-
amined sequentially in the ABC-MCMC algorithm. For each
rejected proposed state, the MCMC stays at uj. If a proposed
state u9i is accepted, then the remaining proposed states
u9iþ1; . . . ; u9n are discarded. If all proposed states are rejected,
then the MCMC has stayed at uj for n states and the process
is repeated with a proposal of n new states. This paralleliza-
tion scheme is similar to that of prefetching, which was de-
veloped for MCMC with known likelihood (Brockwell 2006).

Summary statistics and distance metric

Since one of the parameters we need to infer is the mutation
rate us, we included in the summary statistics the proportion
of segregating sites S that is highly informative about this
parameter (Watterson 1975). To calculate S from the simu-
lated data, Equation 8 was used, which gives the probability
that a simulated site is polymorphic. The most widely used
summary statistics that are informative about the recombi-
nation process are LD, homoplasy, and incompatibility be-
tween pairs of sites (meaning for biallelic sites, all four
possible haplotypes are present, G4). To measure LD, r2

was used, which quantifies the amount of association be-
tween a pair of biallelic sites (Hill and Robertson 1968).
As r2 and G4 are distance dependent, for empirical data sets,
we plot the mean of r2 and G4 against distance between the
sites. Figure 2 shows an example for a sample of 13 B. cereus
whole genomes (Didelot et al. 2010). As summary statistics
we choose three points on the LD and G4 plots that capture
the decay and the constant part of the plots. These points
are shown with blue circles in Figure 2 and here correspond
to pairs of sites at distances of 50, 200, and 2000 nucleotides
from each other. These distances need to be chosen accord-
ing to the r2 and G4 plots of the given empirical data set.
Background LD can be affected by other factors than recom-
bination such as genetic drift (Falush et al. 2003), although
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these would not affect the variation in LD at different dis-
tances. To account for this, and since we are here interested
in recombination, we used the differences in LD as summary
statistics, i.e., LD100 2 LD2000 and LD100 2 LD200. We also
included as a summary statistic the proportion of homopla-
sic sites relative to the clonal genealogy and a new variable
that we called clade homoplasy, which is calculated as fol-
lows: Given a clonal genealogy, it is divided into its two
largest clades and for biallelic sites if both alleles are present
in both clades, we say that the site is clade homoplasic. We
introduce this new summary statistic as an indicator of the
amount of recombination between the clades, which will be
informative about the rate of bias in the recombination
process.

In total, we therefore use eight summary statistics: the
proportion of segregating sites, two distance-based differ-
ences in LD, three distance-based values of G4, one value for
homoplasy, and one value for clade homoplasy. These summary
statistics are compared between the observed and simulated
data sets, using a metric equal to the sum of the squared
normalized distances,

dist
�
x9; x

�
¼
X
i

 
Wi
�
x9
�
2WiðxÞ

WiðxÞ

!2

; (9)

where x9 is the simulated data, x is the observed data, and
Wi is the ith summary statistic of the data.

Monte Carlo estimation of r/m

An important quantity in bacterial population genetics is the
ratio r/m of rates at which nucleotides are substituted due to
recombination and mutation (Guttman and Dykhuizen
1994; Vos and Didelot 2009). In our model this is equal to

r
m ¼ ðRecombination  rate  per  siteÞ3Pðsubstitution jrecombinationÞ

ðMutation  rate  per  siteÞ

¼ rsd3Pðsubstitution jrecombinationÞ
us

:
(10)

Given a recombination on the clonal genealogy, the proba-
bility of a substitution being introduced due to the re-
combination event at the site is given by

Pðsubstitution jrecombinationÞ � us
2
EðDÞ; (11)

Where E(D) is the expected distance between the donor and
recipient cells in a coalescent unit of time given a recombi-
nation event. Therefore for a given set of parameters, the
probability of substitution given a recombination event is
estimated using Equation 11 by simulating many recombi-
nation events on the clonal genealogy and computing the
average distance between donors and recipients. Equation
10 is then used to estimate r/m. This Monte Carlo procedure
is applied for each value of the parameters in the posterior
sample to obtain a sample from the posterior distribution of
r/m.

Results

Relationship between parameters and
summary statistics

We used simulated data to investigate the relationship
between the model parameters and the summary statistics.
A clonal genealogy with 15 taxa was simulated under the
coalescent model (Supporting Information, Figure S1) and
the parameters rs = 0.02, d = 300, l = 1.2, and us = 0.05
were used, which represent reasonable values for a real bac-
terial population (Fraser et al. 2007; Didelot et al. 2010). We
then changed one parameter at a time in the intervals rs 2
[0, 0.4], d 2 [0, 4000], l 2 [0, 10], us 2 [0, 0.3] and
simulated the summary statistics to see how they varied
with the parameters. For each parameter value, we simu-
lated 2000 pairs of sites distant from each other by 50, 200,
and 2000 bp.

Figure 3 shows how the summary statistics change with
the model parameters. rs, d, and l have a large influence on
r2, G4, and homoplasies and a relatively small effect on the
proportion of segregating sites S. On the other hand us has
little impact on r2, G4, and homoplasies, but it has a large
influence on S. In the absence of recombination (rs = 0) the
differences in mean r2 are zero, which indicates r2 is inde-
pendent of distance between pairs of sites. As rs increases,
the differences in mean r2 increase to a maximum, beyond
which, as rs increases, the differences in mean r2 decrease
and for very high values of rs, the differences approach zero,
which indicates r2 again becomes independent of distances
between pairs of sites. Increasing rs increases homoplasies
and G4 up to a maximum beyond which the mean G4 and
homoplasy slightly decrease. d has a similar but nonidentical

Figure 2 LD and G4 plots for 13 Bacillus cereus whole genomes, as
a function of the distance between pairs of sites. LD decreases and G4
increases until they both plateau at �1000 bp. The blue circles indicate
the three values of LD and G4 that were used as summary statistics in the
inference procedure.
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effect on r2, G4, and homoplasies. However, l has the op-
posite effect on r2, G4, and homoplasies. This is because as l
increases, the effect of the recombination decreases as the
donor cells tend to have a smaller evolutionary distance
relative to the recipient cells and therefore local trees be-
come more and more similar to the clonal genealogy. For
extremely high values of l this results in no differences in
mean r2, no homoplasies, and zero incompatible pairs of
sites (G4), which is similar to those observed in the absence
of recombination. us has the largest influence on the pro-
portion of segregating sites S, but rs, d, and l also slightly
affect it. This is because as the number of recombination
events increases, the probability that a recombination edge
reattaches itself higher up the clonal genealogy increases
and that would increase the total branch length of local
trees relative to the clonal genealogy.

It is important to note that the clonal genealogy has
a large impact on the observed patterns of LD and
homoplasy. To illustrate this, we performed the same sensi-
tivity analysis as above but using a different clonal genealogy
(Figure S2). The resulting relationships between model
parameters and summary statistics are shown in Figure S3.
These relations are quantitatively the same as described above
based on Figure 3, but the exact values differ significantly. It is
therefore essential to account for the clonal genealogy as we
do here to correctly interpret the values of the summary sta-
tistics. Having done this, there are strong relationships be-
tween model parameters and the summary statistics (Figure
3), which means that inference via ABC on the basis of these
statistics should provide good statistical power to infer param-
eter values.

Application to simulated data sets

We first applied our inference methodology to a data set
simulated under our model. Fifteen genomes of length
1,000,000 bp were simulated, based on the clonal genealogy
shown in Figure S4, and using the following parameters:
rs = 0.02, d = 300, l = 1.2, and us = 0.05. Figure S5 shows
the LD and G4 plots for this data set. The LD r2 for these
simulated data were (0.1970, 0.1605, 0.1339) for pairs of
sites distant by (50, 200, 2000) bp, respectively. The propor-
tions of G4 were (0.0242, 0.0613, 0.1002) for pairs of sites
distant by the same respective amounts. The proportions of
homoplasic and clade homoplasic sites were, respectively,
(0.3067, 0.0931). Finally, the proportion of segregating sites
was S = 0.1235.

We chose uniform priors for all model parameters in the
following ranges: rs 2 [0, 0.2], d 2 [0, 2000], l 2 [0, 10],
and us 2 [0, 0.2]. We ran a parallel ABC-MCMC chain of
300,000 iterations with the ABC threshold e = 0.015 and
the proposal density tuned so that the acceptance rate was
0.4%. The histograms in Figure 4 show the marginal distri-
bution of posterior samples for each of the four parameters.
The posterior distribution of the recombination rate per site
rs had a mean of 0.020 with a 95% credibility interval
(CI) = 0.012–0.028. The posterior of the mean recombination

tract length d had a mean of 309 with CI = 226–449. The
posterior of the rate of bias of recombination l had a mean
of 1.18 with CI = 0.81–1.47. The posterior of the mutation
rate us had a mean of 0.050 with CI = 0.046–0.054. For
each of the four parameters, the true value that was used
for simulation was well within the 95% credibility interval
and in each case close to the mean of the posterior distribu-
tion. Furthermore, Figure 4 shows that the posterior distri-
butions are much tighter than the prior distributions for
each of the four parameters. This means that the summary
statistics upon which inference is based carry significant in-
formation about the underlying values of the parameters, as
had previously been suggested by the correlations between
parameters and summary statistics in simulated data sets
(Figure 3).

Running this inference procedure on a cluster of 12 Intel
3.33-GHz cores took �70 hr. The computing time of the
inference procedure depends on the range of parameters
being inferred as higher values of rs and d lead to slower
simulations. As the inference procedure is time consuming,
testing our model on hundreds of simulated data sets is not
possible and we tested our algorithm on 11 additional sim-
ulated data sets with a range of parameters. We limited our
parameter ranges to biologically meaningful values. The pa-
rameter ranges used are rs = [0, 0.07], d = [0, 1000], l =
[0, 2], and us = [0.02, 0.08]. We used the clonal genealogy
of Figure S4 and used different parameter values to simulate
11 data sets, each made of 15 whole genomes of 1,000,000
bp. We then used our method to infer the parameter values
for each of the 11 data sets. Figure S6 and Figure S7 show
the marginal posterior density for each of the 11 data sets.
For values of rs or d equal to zero, there are no recombi-
nation events. In such cases either rs and d can be close to
zero while the other parameter and l can change freely. In
addition, extremely high values of l lead to patterns sim-
ilar to those of the scenario without recombination. Such
instances are easily recognized as LD and G4 plots are
straight lines and therefore could be excluded from further
analysis. For all other reasonable values of rs, d, l, and us,
the posterior ranges are much tighter than the prior ranges.
This shows that our inference method works as expected
and that inference is possible for a wide range of parameter
values.

To assess the effect of inferring the clonal genealogy
incorrectly, we performed two additional simulations. Given
the clonal genealogy of Figure S4, the distance matrix li,j
was computed between all pairs of leaves. A modified dis-
tance matrix was then computed by replacing each li,j with
a uniform draw from the interval [0.75li,j, 1.25li,j], and
a modified tree was computed using Unweighted Pair Group
Method with Arithmetic Mean (UPGMA) on the modified
distance matrix. The two resulting genealogies are shown
in Figure S8, and these differ from the true clonal genealogy
of Figure S4 in both tree topology and branch lengths. These
two incorrect genealogies were then used to infer the model
parameters. The posterior marginal densities are shown in
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Figure S9, indicating that that our model and inference pro-
cedure are robust to slight misspecification of the clonal
genealogy. In both cases the true parameters used for simu-
lation of data are well within the 95% credible interval of
the posterior densities.

Application to B. cereus

We applied our method to estimate recombination proper-
ties based on a core alignment of 13 whole genomes of B.
cereus, including the first genome from this species to be
fully sequenced (Ivanova et al. 2003). These are the same
data as previously analyzed by Didelot et al. (2010), thus
allowing comparisons between the two analyses to be
drawn. This previous analysis was performed using the
ClonalOrigin model, which does not account for the bias
in recombination. Nevertheless, the posterior distribution
of recombination events contained a clear excess of recom-
bination between close relatives (cf. Figure 5 of Didelot et al.
2010).

Figure S10 shows the clonal genealogy of the data that
was estimated by Didelot et al. (2010), using ClonalFrame
(Didelot and Falush 2007). A unique tree topology with
little uncertainty in the branch lengths was reconstructed.
Figure 2 shows the LD and G4 plots for this data set. Three
points on the plots were selected to be used as summary
statistics, with distance between the pairs of sites at 50,
200, and 2000 bp. The mean r2 and G4 for pairs of sites
at these distances were, respectively, (0.2738, 0.2493,
0.2270) and (0.0679, 0.0808, 0.0932); the proportion of
segregating sites in this data set was S = 0.174; and the
proportions of homoplasic and clade homoplasic sites were,
respectively, 0.29 and 0.15.

We chose uniform priors for all model parameters in the
ranges rs 2 [0, 0.2], d 2 [0, 2000], l 2 [0, 4], and us 2 [0,
0.2]. Several independent ABC-MCMC chains were run with
similar results. The histograms on Figure 5 show the mar-
ginal posterior densities for the estimated parameters. The
posterior mean for the recombination rate rs was 0.077 with

Figure 3 Relationship between model parameters and the summary statistics. For a given clonal genealogy (shown in Figure S1), the four model
parameters were changed one at a time and the summary statistics were simulated. When unchanged, the parameters were rs = 0.02, d = 300, l = 1.2,
and us = 0.05.
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CI = 0.036–0.127. The posterior mean of the recombination
tract length d was 152 bp with CI = 74–279. The posterior
mean of the rate of bias in recombination l was estimated to
be 1.32 with CI = 0.812–1.788. The posterior mean of the
mutation rate us was 0.0528 with CI = 0.0437–0.0640. The
estimates of us and d were in agreement with previous esti-
mates [median of us = 0.0438 and d = 236 (Didelot et al.
2010)]. However, this previous analysis estimated that re-
combination was significantly less frequent [rs = 0.017
(Didelot et al. 2010)]. In this previous study, the recombi-
nation rate was probably underestimated as a result of not
accounting for the bias in recombination. In a model with
biased recombination, a larger fraction of recombination
events are between close relatives and therefore have little
effect and would tend to go undetected by methods that do
not account for it. The relative impact of recombination to
mutation r/m (Guttman and Dykhuizen 1994; Vos and
Didelot 2009) was estimated using Equations 10 and 11.
r/m had a mean of 3.4 with CI = 1.6–6.7 (Figure S11). This
is slightly higher than the previous estimate from Clonal-
Frame [mean of r/m = 2.41 (Didelot et al. 2010)].

The posterior distributions of the four model parameters
were significantly correlated as shown by the scatter plots in
Figure 5. us had moderate levels of negative correlation with rs
(Pearson’s linear correlation coefficient, r = 20.26, P = 1.3 3

10216), d (r=20.12, P= 2.53 1024), and l (r=20.16, P=
3.5 3 1027). The strongest associations, however, were the
positive correlation of rs with l (r = 0.83, P = 2.0 3
102253) and d with l (r = 0.75, P = 1.3 3 102178). rs and
d were also slightly correlated (r = 0.34, P = 3.2 3 10229).
Since higher values of l translate into a higher bias in re-
combination (where recombination occurs between more
similar isolates) and therefore a smaller effect of recombi-
nation, it is logical that there is to some extent a trade-off
between smaller rs and l on one hand (meaning less re-
combination with more effect per recombination) and
higher rs and l on the other hand (meaning more recombi-
nation with less effect per recombination). Likewise, higher
values of d indicate larger recombination events and there-
fore a higher effect per event, which explains the trade-off
between l and d.

To test the fit of our model with biased recombination to
the observed data, we considered the posterior predictive
distribution of three additional summary statistics, i.e., their
distribution when parameters are drawn from the posterior
sample (Gelman et al. 1996). These summary statistics had
not been used in inference, but were similar in principle to
the clade homoplasy statistic previously defined. The B. cereus
clonal genealogy was divided into four distinct clades. One
of these clades had a single member, which was ignored. We

Figure 4 Estimated marginal posterior
densities of the parameters for the sim-
ulated data set. The values used in sim-
ulation are shown in green and are rs =
0.02, d = 300, l = 1.2, and us = 0.05.
The red lines show the uniform prior
densities used for the model parameters
and the blue histograms show the mar-
ginal posterior densities estimated using
ABC-MCMC.
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measured the amount of clade homoplasy between the other
three clades and used them as posterior predictive summary
statistics. This Bayesian model criticism approach has been
used in several previous ABC studies (Thornton and Andolfatto
2006; Morelli et al. 2010). We found that the observed values
of the three summary statistics were contained within the
boundaries of the posterior predictive distributions (Figure
S12). Our model with biased recombination is therefore able
to reproduce the observed summary statistics and represents
a good fit to the data.

Comparison with experimental studies

Several experimental studies have demonstrated a log-linear
relationship between sequence divergence and frequency of
recombination (Roberts and Cohan 1993; Zawadzki et al.
1995; Vulić et al. 1997; Majewski et al. 2000). These results

are summarized in Figure 1A of Fraser et al. (2007), which
shows that different bacterial species have a similar log-
linear relationship, with a coefficient of �20. To compare
our results on biased recombination to these previous exper-
imental studies, we need to compute the relative rate of
recombination between two isolates as a function of their
homology. Since this equates to considering recombination
between two cells living at the same time, the first part of
Equation 3 is equal to one and the probability of recombi-
nation is proportional to exp(2lD), where D is the distance
between the donor and the recipient cells in a coalescent
unit of time. The expected amount of sequence divergence
per site p between two genomes separated by a branch of
length D is p = usD/2, which implies that D = 2p/us, and
therefore we obtain that the rate of recombination between
two cells is proportional to exp(22lp/us). The frequency of

Figure 5 Posterior distributions of model parameters for the B. cereus data set. The histograms show the marginal posterior distributions of each
parameter whereas the scatter plots show their joint posterior distributions.
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recombination has therefore a log-linear relationship with
sequence divergence in our biased recombination model,
with a coefficient (measured on a log of base 10 as in pre-
vious studies) of 2l/(usln(10)). In the case of the B. cereus
application above, this coefficient had a mean of 22.1 with
CI = 12.5–32.0. Our estimate for the rate of bias in recom-
bination is therefore slightly higher than the rate of homology

dependency of recombination that was found in previous
experimental studies.

Discussion

Linkage disequilibrium, G4, and homoplasy are often
interpreted informally as evidence of recombination. We
have introduced a flexible statistical framework to interpret
the values of these statistics calculated from whole bacterial
genomes. Our underlying model is based on an approxima-
tion to the coalescent with gene conversion (Didelot et al.
2010), which has the advantage of being sequentially
Markovian along the genomes. This allows us to simulate
patterns of LD and G4 through sampling of many pairs of
sites at given distances, which takes only a small fraction of
the computational power that would be needed to simulate
large segments of DNA. Approximate Bayesian computation
(Pritchard et al. 1999; Beaumont et al. 2002) was used to
perform inference under this bacterial population genomic
model. This approach offers great flexibility to implement
extensions of the model like the one we presented in Equa-
tion 3 to account for the biased recombination, simply by
modifying the way simulation is performed without the
need to compute a new likelihood function. We applied
our method to simulated data sets and a real data set con-
sisting of 13 whole genomes of B. cereus. We showed that
these data contain evidence that the recombination process
depends on the evolutionary distance between donors and
recipients and measured the strength of this relationship.
Our model is robust to slight misspecification of the clonal
genealogy, but gross inaccuracies would lead to misleading
results.

Evidence for a higher rate of recombination within than
between the three major clades of B. cereus was first pre-
sented using multilocus sequence typing data, by searching
for the most likely origin of ClonalFrame recombination seg-
ments (Didelot et al. 2009a). This approach was also applied
to genomic data from Salmonella enterica, and more recom-
bination was found within five lineages than between them
(Didelot et al. 2011). However, this method is not very pow-
erful, because ClonalFrame does not look for potential
donors of the recombination events and therefore is better
able to detect recombination coming from farther away
(Didelot and Falush 2007). A better approach is the one
implemented in ClonalOrigin (Didelot et al. 2010), where
the source of recombined fragments is inferred jointly with
the recombination events rather than relying on a postpro-
cessing step. By comparison of the number of recombination
events observed between pairs of branches and expected
under the prior model, recombination was found to happen
more often between members of the same B. cereus clades
(Didelot et al. 2010). Similar results have been obtained
using the same technique in other organisms, such as Sulfo-
lobus islandicus (Cadillo-Quiroz et al. 2012) and Escherichia
coli (Didelot et al. 2012). However, this is still not fully
satisfactory from a statistical point of view, since the analysis

Figure 6 Prediction of the future effect of mutation and recombination
on the genetic distance between pairs of B. cereus genomes. The heat
map at the top indicates the rate at which mutation will increase the
distance between all pairs of genomes (i.e., pairwise divergence). The
heat map at the bottom indicates the rate at which recombination will
decrease these same distances (i.e., pairwise convergence). For closely
related isolates, recombination leads to divergence, which is shown as
zero convergence. The rate at which mutation causes divergence is an
order of magnitude higher than the rate at which recombination leads to
convergence. Thus in these isolates, the overall short-term impact of re-
combination and mutation is divergence of the isolates.
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is done using a prior model where recombination does not
depend on evolutionary distance, which is proved to be in-
correct by the posterior distribution of events. For this rea-
son, this approach does not allow us to estimate the strength
of bias in recombination, since the posterior depends on
both the prior (where this parameter is zero) and the ob-
served data (which contain evidence that this parameter is
nonzero). The best statistical approach is therefore the one
we presented here, where the model explicitly incorporates
this important parameter, so that we can use Bayesian sta-
tistics to formally estimate its value.

We estimated the coefficient for the log-linear relation-
ship between recombination rate and the effective sequence
divergence to be �22 in B. cereus. This is slightly higher than
previous estimates based on laboratory experiments, which
were �20 (Fraser et al. 2007). This higher coefficient could
be due to the fact that laboratory experiments measure the
rate of recombination between two bacteria only when they
are brought into contact, whereas there are factors in na-
ture, such as geographical or ecological structuring of the
population, that would increase the sexual isolation be-
tween distantly related bacteria (Majewski 2001; Didelot
and Maiden 2010). Yet this coefficient is far lower than
the value of 300 predicted by population genetics models
to be required for recombination to be on one hand a strong
cohesive force between highly homologous bacteria and on
the other hand very rare between diverged bacteria, thus
resulting in clusters of diversity that could be considered
to represent separate species (Falush et al. 2006; Hanage
et al. 2006; Fraser et al. 2007, 2009; Achtman and Wagner
2008). To test this hypothesis further, we used a Monte
Carlo simulation to see the effect of the next evolutionary
events likely to happen to any one of the B. cereus genomes
in our data set. We found that for all except the most closely
related pairs of genomes, future recombination events
would result in convergence, i.e., a reduction of the genetic
distance (Figure 6, bottom). However, we also found that
mutation would increase the genetic distance between any
pair of genomes at a much higher rate than recombination
would reduce it (Figure 6, top). We therefore conclude that
all pairs of genomes are likely to diverge in the near future,
since the convergence effect of recombination will not be
sufficient to compensate for the divergence effect of muta-
tion. Convergence via recombination is likely to be restricted
to rare situations where strong selective or ecological factors
are involved, such as found in the convergence of S. enterica
serovars Typhi and Paratyphi A (Didelot et al. 2007) or the
convergence of Campylobacter jejuni and coli (Sheppard
et al. 2008).

Acknowledgments

We thank Rory Bowden, Alison Etheridge, Richard Everitt,
Daniel Falush, Simon Myers, and Daniel Wilson for useful
ideas and helpful discussions. We also thank two anonymous
reviewers whose comments improved an earlier version of this

manuscript. M. Azim Ansari received a scholarship from the
Life Sciences Interface Doctoral Training Centre, which is
funded by the Engineering and Physical Sciences Research
Council. This study was partly funded by the UK Clinical
Research Collaboration (UKCRC) Modernising Medical
Microbiology Consortium, which is supported by theWellcome
Trust (grant 087646/Z/08/Z), and by the Medical Research
Council, the Biotechnology and Biological Sciences Research
Council, and the National Institute for Health Research on
behalf of the Department of Health (grant G0800778).

Literature Cited

Achtman, M., and M. Wagner, 2008 Microbial diversity and the
genetic nature of microbial species. Nat. Rev. Microbiol. 6: 431–
440.

Beaumont, M. A., 2010 Approximate Bayesian computation in
evolution and ecology. Annu. Rev. Ecol. Evol. Syst. 41: 379–406.

Beaumont, M. A., W. Zhang, and D. J. Balding, 2002 Approximate
Bayesian computation in population genetics. Genetics 162:
2025–2035.

Beaumont, M. A., J. M. Cornuet, J. M. Marin, and C. P. Robert,
2009 Adaptive approximate Bayesian computation. Biome-
trika 96: 983–990.

Brockwell, A. E., 2006 Parallel Markov chain Monte Carlo simu-
lation by pre-fetching. J. Comput. Graph. Stat. 15: 246–261.

Cadillo-Quiroz, H., X. Didelot, N. L. Held, A. Herrera, A. Darling
et al., 2012 Patterns of gene flow define species of thermo-
philic Archaea. PLoS Biol. 10: e1001265.

Cohan, F. M., 2002 Sexual isolation and speciation in bacteria.
Genetica 116: 359–370.

Csilléry, K., M. G. B. Blum, O. E. Gaggiotti, and O. François,
2010 Approximate Bayesian Computation (ABC) in practice.
Trends Ecol. Evol. 25: 410–418.

Darling, A. C. E., B. Mau, F. R. Blattner, and N. T. Perna,
2004 Mauve: multiple alignment of conserved genomic se-
quence with rearrangements. Genome Res. 14: 1394–1403.

Darling, A. E., B. Mau, and N. T. Perna, 2010 progressiveMauve:
multiple genome alignment with gene gain, loss and rearrange-
ment. PLoS ONE 5: e11147.

Didelot, X., and D. Falush, 2007 Inference of bacterial microevo-
lution using multilocus sequence data. Genetics 175: 1251–
1266.

Didelot, X., and M. C. J. Maiden, 2010 Impact of recombination
on bacterial evolution. Trends Microbiol. 18: 315–322.

Didelot, X., M. Achtman, J. Parkhill, N. R. Thomson, and D. Falush,
2007 A bimodal pattern of relatedness between the Salmo-
nella Paratyphi A and Typhi genomes: Convergence or diver-
gence by homologous recombination? Genome Res. 17: 61–68.

Didelot, X., M. Barker, D. Falush, and F. G. Priest,
2009a Evolution of pathogenicity in the Bacillus cereus group.
Syst. Appl. Microbiol. 32: 81–90.

Didelot, X., D. Lawson, and D. Falush, 2009b SimMLST: simula-
tion of multi-locus sequence typing data under a neutral model.
Bioinformatics 25: 1442–1444.

Didelot, X., D. Lawson, A. Darling, and D. Falush, 2010 Inference
of homologous recombination in bacteria using whole-genome
sequences. Genetics 186: 1435–1449.

Didelot, X., R. Bowden, T. Street, T. Golubchik, C. Spencer et al.,
2011 Recombination and population structure in Salmonella
enterica. PLoS Genet. 7: e1002191.

Didelot, X., G. Méric, D. Falush, and A. E. Darling, 2012 Impact of
homologous and non-homologous recombination in the geno-
mic evolution of Escherichia coli. BMC Genomics 13: 256.

264 M. A. Ansari and X. Didelot



Falush, D., M. Stephens, and J. K. Pritchard, 2003 Inference of
population structure using multilocus genotype data: linked loci
and correlated allele frequencies. Genetics 164: 1567–1587.

Falush, D., M. Torpdahl, X. Didelot, D. F. Conrad, D. J. Wilson et al.,
2006 Mismatch induced speciation in Salmonella: model and
data. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361: 2045–2053.

Fearnhead, P., 2007 Computational methods for complex sto-
chastic systems: a review of some alternatives to MCMC. Stat.
Comput. 18: 151–171.

Feil, E. J., and B. G. Spratt, 2001 Recombination and the popula-
tion structures of bacterial pathogens. Annu. Rev. Microbiol. 55:
561–590.

Fraser, C., W. P. Hanage, and B. G. Spratt, 2007 Recombination
and the nature of bacterial speciation. Science 315: 476–480.

Fraser, C., E. J. Alm, M. F. Polz, B. G. Spratt, and W. P. Hanage,
2009 The bacterial species challenge: making sense of genetic
and ecological diversity. Science 323: 741–746.

Gelman, A., X.-L. Meng, and H. Stern, 1996 Posterior predictive
assessment of model fitness via realized discrepancies. Stat. Sin.
6: 733–759.

Guttman, D., and D. Dykhuizen, 1994 Clonal divergence in Es-
cherichia coli as a result of recombination, not mutation. Sci-
ence 266: 1380–1383.

Guttman, D. S., 1997 Recombination and clonality in natural pop-
ulations of Escherichia coli. Trends Ecol. Evol. 12: 16–22.

Hanage, W. P., B. G. Spratt, K. M. E. Turner, and C. Fraser,
2006 Modelling bacterial speciation. Philos. Trans. R. Soc.
Lond. B Biol. Sci. 361: 2039–2044.

Harris, S. R., E. J. Feil, M. T. G. Holden, M. A. Quail, E. K. Nickerson
et al., 2010 Evolution of MRSA during hospital transmission
and intercontinental spread. Science 327: 469–474.

Hill, W. G., and A. Robertson, 1968 Linkage disequilibrium in
finite populations. Theor. Appl. Genet. 38: 226–231.

Hudson, R. R., and N. L. Kaplan, 1985 Statistical properties of the
number of recombination events in the history of a sample of
DNA sequences. Genetics 111: 147–164.

Ivanova, N., A. Sorokin, I. Anderson, N. Galleron, B. Candelon
et al., 2003 Genome sequence of Bacillus cereus and compar-
ative analysis with Bacillus anthracis. Nature 423: 87–91.

Kingman, J. F. C., 1982 The coalescent. Stoch. Proc. Appl. 13:
235–248.

Majewski, J., 2001 Sexual isolation in bacteria. FEMS Microbiol.
Lett. 199: 161–169.

Majewski, J., P. Zawadzki, P. Pickerill, F. M. Cohan, and C. G.
Dowson, 2000 Barriers to genetic exchange between bacterial
species: Streptococcus pneumoniae transformation. J. Bacteriol.
182: 1016–1023.

Marjoram, P., and J. D. Wall, 2006 Fast “coalescent” simulation.
BMC Genet. 7: 16.

Marjoram, P., J. Molitor, V. Plagnol, and S. Tavare, 2003 Markov
chain Monte Carlo without likelihoods. Proc. Natl. Acad. Sci.
USA 100: 15324–15328.

Maynard Smith, J., 1999 The detection and measurement of re-
combination from sequence data. Genetics 153: 1021–1027.

Maynard Smith, J., and N. H. Smith, 1998 Detecting recombina-
tion from gene trees. Mol. Biol. Evol. 15: 590–599.

Maynard Smith, J., N. H. Smith, M. O’Rourke, and B. G. Spratt,
1993 How clonal are bacteria? Proc. Natl. Acad. Sci. USA 90:
4384–4388.

McVean, G., P. Awadalla, and P. Fearnhead, 2002 A coalescent-
based method for detecting and estimating recombination from
gene sequences. Genetics 160: 1231–1241.

McVean, G. A. T., and N. J. Cardin, 2005 Approximating the co-
alescent with recombination. Philos. Trans. R. Soc. Lond. B Biol.
Sci. 360: 1387–1393.

Medini, D., D. Serruto, J. Parkhill, D. A. Relman, C. Donati et al.,
2008 Microbiology in the post-genomic era. Nat. Rev. Micro-
biol. 6: 419–430.

Morelli, G., X. Didelot, B. Kusecek, S. Schwarz, C. Bahlawane et al.,
2010 Microevolution of Helicobacter pylori during prolonged
infection of single hosts and within families. PLoS Genet. 6:
e1001036.

Namouchi, A., X. Didelot, U. Schöck, B. Gicquel, and E. P. C. Rocha,
2012 After the bottleneck: genome-wide diversification of the
Mycobacterium tuberculosis complex by mutation, recombina-
tion, and natural selection. Genome Res. 22: 721–734.

Nübel, U., P. Roumagnac, M. Feldkamp, J.-H. Song, K. S. Ko et al.,
2008 Frequent emergence and limited geographic dispersal of
methicillin-resistant Staphylococcus aureus. Proc. Natl. Acad.
Sci. USA 105: 14130–14135.

Pritchard, J. K., M. T. Seielstad, A. Perez-Lezaun, and M. W. Feldman,
1999 Population growth of human Y chromosomes: a study of Y
chromosome microsatellites. Mol. Biol. Evol. 16: 1791–1798.

Roberts, M. S., and F. M. Cohan, 1993 The effect of DNA se-
quence divergence on sexual isolation in Bacillus. Genetics
134: 401–408.

Sheppard, S. K., N. D. McCarthy, D. Falush, and M. C. J. Maiden,
2008 Convergence of Campylobacter species: implications for
bacterial evolution. Science 320: 237–239.

Takuno, S., T. Kado, R. P. Sugino, L. Nakhleh, and H. Innan,
2012 Population genomics in bacteria: a case study of Staph-
ylococcus aureus. Mol. Biol. Evol. 29: 797–809.

Thomas, C. M., and K. M. Nielsen, 2005 Mechanisms of, and
barriers to, horizontal gene transfer between bacteria. Nat.
Rev. Microbiol. 3: 711–721.

Thornton, K., and P. Andolfatto, 2006 Approximate Bayesian in-
ference reveals evidence for a recent, severe bottleneck in
a Netherlands population of Drosophila melanogaster. Genetics
172: 1607–1619.

Vos, M., 2009 Why do bacteria engage in homologous recombi-
nation? Trends Microbiol. 17: 226–232.

Vos, M., and X. Didelot, 2009 A comparison of homologous re-
combination rates in bacteria and archaea. ISME J. 3: 199–208.
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Figure S1. Clonal genealogy simulated under the coalescent and used for Figure 3.
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Figure S2. Clonal genealogy simulated under the coalescent and used for Figure S3.
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Figure S3. Relationship between the summary statistics and model parameters when
simulating using the clonal genealogy in Figure S2.
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Figure S4. Clonal genealogy simulated under the coalescent and used for the
application on simulated data.
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Figure S5. LD and G4 plots for the simulated dataset.
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Figure S6. Posterior marginal densities for five simulated data sets on a range of
parameters. The correct value is in green, the prior in red and the posterior in blue.
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Figure S7. Posterior marginal densities for six simulated data sets on a range of
parameters. The correct value is in green, the prior in red and the posterior in blue.
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Figure S8. The two incorrect clonal genealogies used for testing robustness.
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Figure S9. Comparison of posterior marginal density obtained using the correct, and
the two incorrect clonal genealogies.
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Figure S10. Clonal genealogy of the Bacillus cereus dataset inferred by ClonalFrame.
The blue bars represent the uncertainty on the age of the internal nodes.
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Figure S11. Posterior density of r/m for the Bacillus cereus dataset.
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Figure S12. Posterior predictive distributions of the three additional summary statistics
for the application to the Bacillus cereus dataset. The green lines represent the observed
values.
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