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Abstract: Cane molasses is one of the main by-products of sugar refineries, which is rich in sucrose.
In this work, low-cost cane molasses was introduced as an alternative substrate for isomaltulose
production. Using the engineered Yarrowia lipolytica, the isomaltulose production reached the highest
(102.6 g L−1) at flask level with pretreated cane molasses of 350 g L−1 and corn steep liquor of 1.0 g L−1.
During fed-batch fermentation, the maximal isomaltulose concentration (161.2 g L−1) was achieved
with 0.96 g g−1 yield within 80 h. Simultaneously, monosaccharides were completely depleted,
harvesting the high isomaltulose purity (97.4%) and high lipid level (12.2 g L−1). Additionally,
the lipids comprised of 94.29% C16 and C18 fatty acids, were proved suitable for biodiesel production.
Therefore, the bioprocess employed using cane molasses in this study was low-cost and eco-friendly
for high-purity isomaltulose production, coupling with valuable lipids.
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1. Introduction

Cane molasses is one of the main by-products of sugar refineries, which contains saccharides
(primarily sucrose, glucose and fructose) and a small amount of nitrogenous compounds, vitamins,
and trace metal elements as well as colloids [1,2]. Sugarcane grows worldwide and mainly distributes
in Brazil, India, and China. The molasses production in China is around 400 million tons per year,
yet, large volumes of waste molasses are simply discharged, contributing to severe environmental
pollution [3]. Cane molasses can be used as an available source of quick energy for animal feed or feed
supplement [4]. However, livestock frequently suffers from some nervous symptoms and blindness
caused by molasses toxicity [5]. Given that available ingredients enrich in cane molasses, nowadays,
it is increasingly utilized as an alternative feedstock for microbial fermentation after a pretreatment
or as the raw material. Different high value-added metabolites have been harvested via microbial
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fermentation from molasses, such as astaxanthin [6], 5-hydroxymethylfurfural [7], ethanol [8,9], organic
acids [3,10–12], and enzymes [13].

As a functional sweetener from microbial fermentation, isomaltulose has attracted extensive
attention. Isomaltulose (or palatinose) is a structural isomer of sucrose, sharing similar sweet sense
and fine taste with sucrose. It has been approved that a safer sucrose substitute with some advantages,
including higher stability, lower digestibility, lower glycemic index and more tooth-friendly [14].
Isomaltulose can be converted from sucrose by sucrose isomerase (SIase) without any cofactors
due to the less free-energy of the process [15]. Several SIase-producing microbes were adopted
for isomaltulose production, such as Pantoea dispersa [16], Erwinia spp. [17], Enterobacter spp. [18],
and Serratia plymuthica [19]. However, they have not been considered to synthesize isomaltulose
commercially for lack of genetic background in food-grade level [2,20].

Recently, heterologous expression of SIases in non-pathogenic or food-grade strains, such
as Saccharomyces cerevisiae (S. cerevisiae), Yarrowia lipolytica (Y. lipolytica), Bacillus subtili (B. subtili),
and Lactococcus lactis (L. lactis), has been proved effective for isomaltulose production [2,18,21,22].
Noteworthily, the recombinant Y. lipolytica expressing SIase gene has exhibited a prominent
isomaltulose yield advantage over other hosts, which meets the requirement of isomaltulose
commercialization [22,23]. Since sucrose substrate takes a substantial part of the total production cost,
reusing low-cost materials rich in sucrose can be a feasible way to reduce the cost.

In traditional cane molasses fermentations using sucrose as the carbon source, sucrose was
hydrolyzed into monosaccharides and utilized by microorganisms. However, the strain used in this
study can just utilize monosaccharides, leaving sucrose not hydrolyzed for no sucrase generating.
The high sucrose content in cane molasses makes it a promising substrate for isomaltulose production.
On the other hand, the synthesis of isomaltulose from cane molasses can greatly improve the value
of cane molasses. In this study, pretreated cane molasses (PCM) was used as the only carbon source,
and corn steep liquor (CSL) was selected as substrate to replace yeast extract for the recombinant
Y. lipolytica S47, which is capable of expressing SIase and transforming monosaccharides to lipids as
shown. To further develop an economical fermentation and recycling efficiently by-products using
strain S47, fed-batch fermentation was also conducted.

2. Results and Discussion

2.1. Isomaltulose Production Using PCM as Sole Carbon Source

Sucrose in cane molasses can be hydrolyzed into monosaccharides by microbial enzymes, which is
believed to be suitable for microbial growth and metabolite production [8,13]. In this study, to develop
a cost-effective fermentation, PCM was used for cells growth and isomaltose synthesis. As shown in
Table 1, isomaltulose production increased as the activity of SIase secreted from strain S47 improved,
based on the increase of PCM concentration. A maximal isomaltulose concentration (96.7 g L−1)
was obtained with the SIase activity of 3.6 U mL−1 at 350 g L−1 PCM, and the yield achieved
0.96 (g g−1). Although the SIase activity (3.6 U mL−1) was limited, which is lower than 5.2, 7.4
and 49.3 U mL−1 [2,23,24], this yield is identical to the same strain using sucrose as a substrate [23].
The results proved cane molasses as a suitable substrate for isomaltulose synthesis.

Table 1. Isomaltulose and lipid production from PCM of different concentrations.

PCM
(g L–1)

Isomaltulose
(g L−1)

SIase
(U mL−1)

Lipid Content
(g L−1)

Biomass
(g L−1)

Residual Sugar
(g L–1)

200 58.6 ± 2.3 3.3 ± 0.2 3.8 ± 0.2 9.9 ± 0.7 1.3 ± 0.1
250 73.3 ± 7.2 3.3 ± 0.1 4.6 ± 0.3 11.8 ± 0.6 1.6 ± 0.1
300 88.1 ± 6.6 3.6 ± 0.1 5.2 ± 0.2 12.6 ± 1.2 1.9 ± 0.2
350 96.7 ± 4.9 3.6 ± 0.2 5.3 ± 0.3 12.3 ± 0.5 8.6 ± 0.4
400 71.9 ± 6.3 3.5 ± 0.2 4.8 ± 0.2 11.8 ± 0.9 42.8 ± 2.7
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In addition, as strain S47 cells grew to the peak, intracellular lipids continuously accumulated and
reached 5.3 g L−1, which accounted for 43.1% (w/w) of cell dry weight, respectively (Table 1). When
PCM concentration exceeded 350 g L−1, isomaltulose and lipid productions both declined significantly,
so did isomaltulose yield and others, except for residual sugar content (Table 1). This might be the result
of cell dehydration and growth inhibition triggered by high PCM concentration, leading to suppressed
expression of SIase and several crucial lipid-synthesizing enzymes, such as delta-9 stearoyl-CoA
desaturase and acetyl-CoA carboxylase [2,25]. Generally, all the components in cane molasses can be
consumed by the yeast. The flow of sucrose was directed into SIase-catalyzing isomaltulose synthesis,
the byproducts of the SIase-catalyzing reaction were utilized by the yeast; monosaccharides in cane
molasses were consumed for cell growth and lipid production (Figure 1). However, the residual sugar
concentration (8.6 g L−1) presented might infer that yeast extract is not desirable nitrogen source in the
medium. Therefore, an alternative nitrogen source will be needed to solve the residual sugar.

Figure 1. The flow of different components in cane molasses during the fermentation process by the
engineered strain Y. lipolytica S47 (HXT-hexose transporter).

2.2. Effect of CSL on Enhancement of Isomaltulose and Lipid Production

CSL generally contains abundant nutritional ingredients. It has been evaluated to be favorable
for microbial growth and synthesis of natural products [26,27]. To further facilitate the conversion of
PCM effectively to isomaltulose and lipid production, CSL was utilized as organic nitrogen to avoid
the expensive yeast extract. Cell growth and fermentation at different concentrations of CSL media are
shown in Table 2. It showed that most sucrose in PCM was converted to isomaltulose (102.6 g L−1)
with 0.96 g g−1 yield, followed with enhanced SIase activity by 20.5% and biomass by 11.8% at the
optimal CSL concentration (1.0 g L−1) compared with those in control (Table 2). Meanwhile, a distinct
consumption of residual sugar was reduced by 73.3%. As a result, sugar reduction contributed to
improving isomaltulose production by 5.5%, and lipids (7.2 g L−1) by 35.8% with 44.7% (w/w) content
(Table 2). Enhancements of CSL for isomaltulose and lipid co-production indicated that CSL is more
suitable for strain S47 growth to produce target products than yeast extract, and it could act as an
economic alternative for yeast extract.

To date, CSL has been also employed to produce diverse metabolites [26,28,29]. The result in
table 2 showed that CSL played important roles in enhancing biomass generation and isomaltulose
production due to the high secreted SIase activity, which is consistent with their positive changes
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in CSL-added media [2,27]. Nitrogen sources affect cell growth and metabolites formation during
microbial fermentation. The components of amino acids, vitamins and trace elements in CSL may help
boost initial biomass formation, while amino acids and/or biotin could also start releases of related
enzymes for synthesizing metabolites [29]. The reports would probably account for improvements of
biomass, SIase activity and isomaltulose production in this study. Besides, during CSL fermentation,
intermediates (e.g., citric acid and poly malic acid) required for lipid accumulation have been enhanced
in previous studies resulting from overexpression of crucial enzymes, i.e., citric acid synthetase (CS),
malic enzymes (ME) and pyruvate carboxylase (PYC) [26]. We deduce that these enzymes (CS, ME
and PYC) would perform at higher levels and synthesize more citric acid and poly malic acid in this
study, further facilitating intracellular lipid accumulation. Moreover, significant sugar consumption
and transformation during CSL fermentation suggest monosaccharides might flow mainly to lipid
accumulation and cell growth, and a small share for isomaltulose production.

Table 2. Isomaltulose and lipid production with different CSL concentrations.

CSL
(g L−1)

Isomaltulose
(g L−1)

SIase
(U mL−1)

Lipid Content
(g L−1)

Biomass
(g L−1)

Residual Sugar
(g L−1)

Control 96.7 ± 7.2 3.6 ± 0.2 5.3 ± 0.3 12.3 ± 0.4 8.6 ± 0.5
0.5 102.6 ± 5.4 3.9 ± 0.1 6.7 ± 0.4 14.4 ± 0.8 2.3 ± 0.1
1.0 102.6 ± 4.9 4.7 ± 0.1 7.2 ± 0.3 16.1 ± 0.6 2.3 ± 0.1
1.5 102.6 ± 6.7 4.9 ± 0.2 6.2 ± 0.4 19.7 ± 0.7 2.3 ± 0.1

2.3. Fed-Batch Fermentation for Isomaltulose and Lipid

High osmotic pressure strongly affects product biosynthesis of Y. lipolytica cells [30]. To reduce
high osmotic pressure in the optimized medium and to improve isomaltulose production, fed-batch
fermentation was conducted using a two-stage bioprocess in a 10-L bioreactor. Figure 2 shows that
cell growth, SIase activity and isomaltulose production were all detected to increase slowly when
the process was close to 32 h in the first stage. Remarkably, during the second stage after 200 g L−1

PCM supplemented, cell growth and isomaltulose concentration were both switched to increase and
achieved the maximal values of 21.3 g L−1 and 161.2 g L−1 at 80 h accompanied by higher SIase
activity (5.7 U mL−1), respectively (Figure 2). Generally, the higher yield and higher production are
the key factors of saving cost. The yield derived from PCM and CSL in the bioreactor maintained
0.96 g g−1, which reaches the same level from engineered Y. lipolytica strains both expressing SIase
using sucrose as the substrate [23,24]. The isomaltulose concentration (161.2 g L−1) was also evidently
higher compared with those (36, <4, <33.5 g L−1) from strains L. lactis, S. cerevisiae and S. plymuthica
using sucrose or molasses as the substrate, respectively (Table 3). It indicates that sucrose in PCM was
almost converted completely at the end of the fermentation. In fact, Li et al. (2013) revealed that high
SIase activity (48 U mL−1) was achieved by a recombinant Escherichia coli expressing SIase using cane
molasses and CSL substrates, while it lacks isomaltulose concentration and yield [31].

Table 3. Isomaltulose production obtained from different substrates by diverse engineered food-grade
strains.

Strains Substrate Isomaltulose
Production (g L−1)

Yield
(g g−1)

Isomaltulose
Proportion (%)

Other Products
(g L−1) References

L. lactis Sucrose 36 0.72 <90 - [18]
S. cerevisiae Sucrose <4 0.074 <10 - [21]
Y. lipolytica Sucrose 572.1 0.96 97.8 Lipid, 8.1 [23]
Y. lipolytica Sucrose 620.7 0.96 - - [24]

S. plymuthica Molasses <33.5 0.84 80.4 - [20]
B. subtilis Molasses 212.6 0.92 <92.4 - [2]

Y. lipolytica Molasses 161.2 0.96 97.4 Lipid, 12.2 This study

”-” represented that no other products produced or the products did not get detected.
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Figure 2. Time course of PCM biotransformation towards isomaltulose and lipid using CSL substrate
by Y. lipolytica S47 in a 10-L bioreactor. Data are given as means ± standard deviation, n = 3.

In addition, lipids accumulated to 12.2 g L−1 and the content reached 57.3% (w/w) during the
two–stage fermentation (Figure 2), which is enhanced markedly than 7.2 g L−1 production at flask
level above and that (8.1 g L−1) produced by the same strain from sucrose [23]. The lipid content
(57.3%) obtained is much higher than those from Rhodotorula kratochvilovae (25%, w/w) and engineered
Ashbya gossypii (38.25%, w/w) using cane molasses, respectively [32,33]. Strain S47 can be regarded
as an oleaginous yeast due to the lipid content over 20% [26]. It also exhibits a significant advantage
over liquid contents (23.4–49.6%) of other specially engineered Y. lipolytica strains and Aureobasidium
melanogenum, and even co-cultured strains using other substrates [25,26,34,35]. Consequently, lipid
accumulation coupled with isomaltulose production by strain S47 was demonstrated to be economical
and valuable.

It is noteworthy that original monosaccharides and bits of them produced by SIase catalysis
from strain S47 were depleted and only small amounts of trehalulose were detected, leading to
produce a high isomaltulose purity of 97.4%. This purity is comparable with that (97.8%) by strain
S47 using sucrose [23]. In fact, isomaltulose is difficult to separate completely from a fermented
mixture including trehalulose, glucose, fructose and residual sucrose [22,27]. However, high-value
lipid accumulation in this work was testified to benefit isomaltulose purity due to the consumption of
undesirable by-products. The results suggest that high-purity isomaltulose can be achieved successfully
via coupling with considerable lipid accumulation by the food-grade strain Y. lipolytica S47 using
PCM and CSL substrates in fed-batch fermentation, thus, avoiding the effect of residual sugar on
isomaltulose crystal.

2.4. Fatty Acids Composition of Intracellular Lipids and Biodiesel Production

After transmethylated fatty acids were detected, the main fatty acids of intracellular lipids were
C14:0, C16:0, C16:1, C18:0, C18:1 and C18:2, especially C18:1 (45.14%) (Table 4). This is similar to those
produced by Rhodotorula glutinis TR29 cultivated in molasses medium, with producing 63.5% C18:1

fatty acid [36]. Moreover, many microbes such as A. melanogenum, Rhodosporidium toruloides, and other
engineered Y. lipolytica strains are capable of generating fatty acids of intracellular lipids that primarily
contain C16–C18 and the largest share of C18:1 using other substances [25,26]. Indeed, 94.29% of fatty
acids of lipids from strain S47 cells in this study were C16 and C18. It reveals that lipids accumulated in
Y. lipolytica S47 cells from cane molasses are suitable for biodiesel production that requires C16 and C18

fatty acids [36,37].
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Table 4. The fatty acid composition of intracellular lipids from Y. lipolytica S47 cells.

Fatty Acids C14:0 C16:0 C16:1 C18:0 C18:1 C18:2

Percentage (%) 5.71 16.55 12.67 6.82 45.14 13.11

Biodiesel was prepared from the transesterification of obtained intracellular lipids. In this work,
the conversion rate of lipids into biodiesel reached near 83.2% (data not shown), which is comparable
with others (85–86.7%) [25,38], indicating that intracellular lipids produced from Y. lipolytica S47 cells
is a promising feedstock for biodiesel production.

3. Materials and Methods

3.1. Strain and Cane Molasses Fermentation

The recombinant Y. lipolytica S47 was previously constructed and cultivated as seed culture in
YPD medium (yeast extract 1%, peptone 2%, and dextrose 2%) [23]. The promoter for expression
of SIase gene was constitutive, thus, recombinant SIase can be secreted extracellularly without any
induction [23]. Furthermore, strain S47 was derived from the typical oleaginous yeast Y. lipolytica
ACA-DC 50109, which can transform extracellular sugars into cellular lipid [23]. Cane molasses was
obtained from a sugar refinery in Guangxi and it was pretreated as described in the methods [24].
The composition of pretreated cane molasses (PCM) consisted of sucrose (30.55%, w/v), glucose (5.71%)
and fructose (7.78%). Glucose potassium phosphate buffer (GPPB) medium with added different
concentrations of PCM (200, 250, 300, 350, 400 g L−1) instead of glucose was optimized to improve
isomaltulose production by strain S47 at 30 ◦C for 96 h, pH was adjusted to 6.0 [23]. By the action of
phosphate buffer in the medium, pH can be stable.

3.2. CSL Optimization for Enhancement of Isomaltulose and Lipid Co-Production

Corn steep liquor (CSL) was derived from a local corn processing facility, which was used as a
substitute for yeast extract in the fermentation medium. The fermentation was performed at different
concentrations of CSL (0.5, 1.0, 1.5 g L−1) to enhance isomaltulose production and purity, together
with lipid synthesis compared to those from strain S47 fermentation using 0.5 g L−1 yeast extract. pH
was adjusted to 6.0.

3.3. Fed-Batch Fermentation in a 10-L Fermentor

Fermentation was scaled up in a 10-L Biostat fermentor (B. Braun Biotech International,
Melsungen, Germany) with the obtained medium (6.0 L), which contained optimized PCM (350 g L−1)
and CSL (1.0 g L−1). After inoculation (5.0%, v/v), the strain fermented to secrete SIase for isomaltulose
synthesis and express some enzymes like ATP citrate lyase to accumulate intracellular lipids under
the conditions of aeration rate (50 L min−1), rotate speed (300 rpm), and temperature (30 ◦C) [23].
Fed-batch fermentation was carried out by adding 200 g L−1 PCM at the initial 32 h of fermentation.
During bioprocess, samples (50 mL) were taken at intervals of 7 h to detect isomaltulose and lipid
contents, SIase activity and monosaccharides as well as biomass. pH was controlled at 6.0.

3.4. Enzyme Assay and Determination for Isomaltulose and Lipid Contents, Residual Sugar

The fermented broth from strain S47 was centrifuged at 5000× g to obtain the supernatant,
and SIase activity was measured according to previous methods [16,22]. Briefly, the supernatant was
added to a sucrose solution (100 g L−1) that dissolved in phosphate buffer (50 mM and pH 6.0) in a
ratio of 1:1; the mixture was then incubated at 30 ◦C for 10 min. The process was terminated through
boiling for 10 min and centrifuged (10,000× g, 20 min) to eliminate denatured proteins. Finally, the new
supernatant was filtered through 0.22 µm membrane and properly diluted for high-performance liquid
chromatography (HPLC) analysis using Agilent 1200 system (Agilent Technologies, Palo Alto, CA,
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USA). One unit (U) of enzyme activity was calculated as the SIase amount responsible for the release
of 1.0 µmol isomaltulose per min at 30 ◦C and pH 6.0 [23]. The fermented supernatant was boiled
before mixing as the control.

The contents of isomaltulose, trehalulose, residual glucose and fructose in fermentation
supernatant were also determined using HPLC after membrane (0.22 µm) filtration. Biomass and
quantification of intracellular lipids were gravimetrically detected [25]. All tests above were performed
in triplicate.

3.5. Determination of Lipid Composition and Preparation for Biodiesel

Lipid was extracted and fatty acid esters were determined using gas chromatography (GC) [26].
1 µL of sample was injected in a 10:1 split mode at 275 ◦C, using helium as the carrier gas at a flow
rate of 1 mL/min. The GC oven temperature was held at 150 1C for 1 min and ramped to 230 ◦C (rate:
15 ◦C /min, hold: 2 min) for a total run time of approximate 13.5 min. Different fatty acid methyl
esters were identified and characterized using the authentic fatty acid methyl ester (FAME) standards.
Biodiesel was prepared and detected using H2SO4 solution (in methanol) through thermocatalytic
treatment as described in previous research [25].

3.6. Statistical Analysis

The results obtained above were subjected to a one-way analysis of variance (ANOVA) using
SPSS 22.0 software (SPSS Inc., Chicago, MI, USA), and presented as the mean ± standard deviation.
Statistically significant differences between groups were showed as p < 0.05 (*) and p < 0.01 (**).

4. Conclusions

An efficient, economical strategy to produce isomaltulose from cane molasses was established.
During the fed-batch fermentation, the maximal isomaltulose concentration achieved 161.2 g L−1 and
yielded 0.96 g g−1. Monosaccharides were completely consumed and transformed into intracellular
lipids and biomass, which resulted in a high isomaltulose purity of 97.4% and 12.2 g L−1 lipids.
The lipids produced from Y. lipolytica S47 cells have potential as a candidate for biodiesel production.
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