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Posttranscriptional gene regulation is a rapid and efficient process to adjust the proteome of a cell to a changing environment.
RNA-binding proteins (RBPs) are the master regulators of mRNA processing and translation and are often aberrantly expressed in
cancer. In addition to well-studied transcription factors, RBPs are emerging as fundamental players in tumor development. RBPs
and their mRNA targets form a complex network that plays a crucial role in tumorigenesis. This paper describes mechanisms by
which RBPs influence the expression of well-known oncogenes, focusing on precise examples that illustrate the versatility of RBPs
in posttranscriptional control of cancer development. RBPs appeared very early in evolution, and new RNA-binding domains and
combinations of them were generated in more complex organisms. The identification of RBPs, their mRNA targets, and their
mechanism of action have provided novel potential targets for cancer therapy.

1. Introduction

Traditionally, it has been well accepted that cancer develop-
ment is dictated in part by aberrant transcriptional events
and signaling pathways. More recently, it has become clear
that posttranscriptional regulation of gene expression also
controls cell proliferation, differentiation, invasion, metas-
tasis, apoptosis, and angiogenesis which influence initiation
and progression of cancer [1–4]. Regulation of already tran-
scribed messenger RNAs (mRNAs) is an efficient and rapid
way to alter gene expression and plays a crucial role in tumor-
igenesis.

After transcription, nascent mRNAs undergo several pro-
cessing steps including splicing, capping, 3′ end formation,
surveillance, nucleocytoplasmic transport, and, for many
transcripts, localization before being translated and finally
degraded [5, 6]. The mRNA does not exist alone in the
cell, and its metabolism is largely defined by bound RNA-
binding proteins (RBPs). RBPs, which regulate all steps of
RNA biogenesis, form dynamic units with the RNA, called
ribonucleoprotein complexes (RNPs) [7]. Different sets of
RBPs are associated to the mRNA at different time points
and in different compartments, thereby regulating the fate of
their target in a time- and space-dependent way. RBPs often
provide a landing platform for the recruitment of additional

factors and enzymes to the mRNA. RBPs are the master
regulators of post-transcriptional gene expression and, thus,
are expected to play important roles in cancer development
[1]. Besides RBPs, the discovery of microRNAs (miRNA) was
of great inspiration for the RNA field and provided a new
powerful tool to regulate gene expression. miRNAs associate
with RBPs to form microRNPs (miRNP) which regulate
translation and RNA stability by binding to complementary
sequences in target mRNAs. miRNPs have been found to
regulate expression of factors implicated in tumorigenesis,
but we will not discuss this mechanism here (for recent
reviews see [8, 9]).

RBPs bind to specific sequences or secondary structures
typically found in the untranslated regions (UTRs) but also
in the open reading frame (ORF) of target mRNAs [10, 11].
UTRs in particular have offered more flexibility to evolution,
as the constraints of encoding a protein product have not
been imposed upon them. As a consequence, diverse and
often conserved regulatory elements are present in the UTRs
[12]. In the 5′UTR, ribose methylation of the cap structure
as well as 5′ terminal polypyrimidine sequences or secondary
structures such as internal ribosome entry sites (IRESs)
control protein expression. Sequence elements in the 3′UTR
regulate the stability of the mRNA, its translational efficiency
and localization. Specific binding of regulatory proteins to
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these elements is achieved through RNA-binding domains
(RBDs). More than 40 RBDs have been identified. Among
them, the most prominent are the RNA recognition motif
(RRM), K-homology domain (KH), double stranded RNA-
binding domain (dsRBD), zinc finger, Arginine-rich domain,
cold-shock domain (CSD), and the PAZ and PIWI domains
[13]. An RNA-binding protein can contain combinations of
different RBDs, which allow a high flexibility for interaction
with different targets. RBP purification techniques followed
by high throughput proteomics will hopefully allow us in the
near future to identify new RNA-binding proteins as well as
new RNA-binding domains. Powerful techniques like CLIP-
seq (UV cross-linking and immunoprecipitation followed by
high throughput sequencing) are helping to identify new
RBP targets in a genome wide scale, as well as new RBP bind-
ing sites [14–16]. The list of RBPs, RBDs and their targets is
far from being complete. New technology is proving helpful
to unravel the complexity of post-transcriptional gene regu-
lation.

In cancer cells, expression of numerous oncoproteins or
tumor suppressors is under the control of specific RBPs.
Splicing, stability, localization as well as translation of these
mRNAs are highly regulated, often in a tissue-specific man-
ner [6]. Many RBPs are aberrantly expressed in cancer cells
and have thus a cancer-specific regulatory activity [1, 17, 18].
Deregulation of RBP expression in cancer may have its origin
on epigenetic events or on miRNA-dependent controls, al-
though the detailed molecular mechanisms are often obscure
[19–21]. An additional layer of regulation is provided by
signaling: the phosphorylation status of some RBPs is defined
by signaling pathways that are deregulated in cancer, and this
phosphorylation controls RBP activity and subsequently the
expression of its target mRNAs [22, 23]. Signaling pathway
alterations occur in different stages of tumor formation and
are often correlated with tumor grade.

In this paper, we will summarize the different functions
of RBPs in post-transcriptional gene regulation and the
impact of aberrant regulation on tumorigenesis. In addition,
we will discuss the conservation of specific RBPs across
eukaryotes, which may yield hints on how diversity has been
generated.

2. RNA-binding Proteins Implicated in
Cancer Development

Post-transcriptional gene regulation implies factors which
act at different levels of mRNA metabolism, including alter-
native splicing, localization, stability of the mRNA or cap-de-
pendent and -independent translation. In this section I will
introduce a subset of RBPs involved in cancer development
which play key roles in each of the steps of RNA regulation,
namely, Sam68, eIF4E, La, and HuR to illustrate the powerful
RBP regulatory capacity in cancer.

2.1. Sam68 Regulates Alternative Splicing of Cancer-Related
mRNAs. Sam68 belongs to the evolutionarily conserved sig-
nal transduction and activation of RNA (STAR) family of
RBPs [4, 24, 25]. Sam68 is predominately nuclear but has also
been detected in the cytoplasm and exerts multiple activities
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Figure 1: Schematic representation of the 4 RBPs discussed in this
paper: Sam68, eIF4E, La, and HuR; RBDs are depicted in light
gray. RRM: RNA recognition motif; GSG: GRP33/SAM68/GLD-
1 domain, composed of a KH domain (KH) flanked by N-
terminal (NK) and C-terminal (CK) extensions; LA: La motif.
Phosphorylation sites of La are indicated in black (P0–P5). Nuclear
localization signals (NLSs) are represented in dark gray. The
number of amino acids of each protein is indicated.

in gene expression, from transcription and signaling to splic-
ing regulation [4, 26]. RNA binding is achieved by a KH
domain embedded in a highly conserved region called GSG
(GRP/Sam68/GLD1) domain [27] (Figure 1). RNA binding
is used for splicing regulation and is modulated by posttrans-
lational modifications, such as phosphorylation or acetyla-
tion [22, 25, 28] (Figure 2).

The role of Sam68 in alternative splicing seems directly
related to its oncogenic properties. Alternative splicing (AS)
allows the majority of human genes to encode for multiple
protein isoforms, which often play different or even opposite
roles [29]. In addition to the spliceosome, a set of RBPs are
necessary to control alternative splicing [7]. Aberrant expres-
sion of RBPs in cancer can lead to deregulation of splicing,
and subsequent changes in the proteome [30]. The splicing
targets of Sam68 support its involvement in tumor progres-
sion [4, 31]. Furthermore, the function of Sam68 in AS is
regulated by signaling pathways which are often deregulated
in cancer cells, establishing a link between signal transduc-
tion, alternative splicing, and gene expression during tumor-
igenesis [22, 32, 33] (Figure 2).

Sam68 is overexpressed in breast, prostate, renal, and cer-
vical cancer cells [26, 34–36] and is also frequently upregu-
lated in tumors [34, 37].

The first hard evidence that Sam68 is involved in regula-
tion of alternative splicing with an impact on tumorigenesis
was provided by the demonstration that it promotes inclu-
sion of exon v5 in the CD44 pre-mRNA [33]. CD44 encodes
a cell surface molecule involved in cancer cell proliferation.
CD44 transcript isoforms are alternatively generated by the
inclusion of 10 variant exons, which are decisive in tumor
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Figure 2: Overview of posttranscriptional gene regulation by Sam68, eIF4E, La, and HuR in tumorigenesis. In cancer cells, RBPs are
posttranslationally modified by aberrantly active signaling pathways that activate their binding to targets encoding proteins implicated in
tumorigenesis. The steps of mRNA metabolism regulated by RBPs are indicated. (+) and (–) specify up- or downregulation. P and CH3–CO
indicate phosphorylation and acetylation of RBPs. EMT: epithelial to mesenchymal transition.

progression [38]. Depletion of Sam68 strongly reduces the
inclusion of several variable exons. Interestingly, Sam68
activity is controlled by the Ras signaling pathway, and
Sam68 phosphorylation by ERK is needed to promote v5
inclusion [33].

Sam68 also regulates AS of cyclin D1, a protooncogene
frequently deregulated in cancer cells [39, 40]. In addition,
Sam68 promotes the generation of a stable SF2/ASF, isoform
through regulation of splicing. The protooncogene SF2/ASF,
also a splicing factor, is in turn responsible for processing of
ΔRon pre-mRNA, which encodes a factor involved in EMT
in colon cancer cells [41].

Another connection of Sam68 with cancer could be
provided by the control of AS of the Bcl-x transcript. The
Bcl-x gene can yield the antiapoptotic Bcl-x(L) factor or the
proapoptotic Bcl-x(S) [22, 42]. Some studies have reported
that Sam68 overexpression causes the accumulation of
proapoptotic Bcl-x(s) in a manner that depends on the RNA-
binding activity of Sam68 [22, 42]. However, the observation
that Sam68 and the antiapoptotic Bcl-x(L) are upregulated
in prostate cancer cells is at odds with a proposed activity
of Sam68 in Bclx(S) upregulation [34, 43]. This apparent
contradiction was resolved by the finding that the activity of
Sam68 on Bcl-x AS depends on its phosphorylation status,
which can switch Sam68 function from proapototic to anti-
apoptotic in cancer cells. Indeed, Src-like kinase, which is
often activated in cancer, phosphorylates Sam68 and thereby
promotes splicing of the antiapoptotic Bcl-x(l) variant which
inhibits cell death [22].

Intriguingly, in advanced breast and renal tumors, Sam68
was found to localize in the cytoplasm [26, 35]. These

observations suggest a potential function of Sam68 in
translational control in advanced stages of tumorigenesis. In
accordance with a potential role of Sam68 in translation,
it was previously proposed to regulate the translation of
selected mRNAs in male germ cells and neurons [44, 45].

Other RBPs regulating splicing in cancer cells are
hnRNPs (A/B) H, SR proteins (ASF/SF2), RBM5, HuR, and
PTB. The interested reader can refer to the following reviews
and articles [30, 46].

2.2. eIF4E Overexpression in Cancer Enhances Translation Ini-
tiation of Specific mRNAs. Translation initiation is a critical
step of protein synthesis and is highly regulated [47]. One of
the most crucial regulators is the cap-binding protein eIF4E
(eukaryotic initiation factor 4E) [48]. In the cytoplasm,
eIF4E binds directly to the m7GTP-cap structure present at
the 5′end of all mRNAs and interacts with eIF4G, which in
turn recruits the 43S ribosomal complex during initiation of
translation. eIF4E and eIF4G together with the RNA helicase
eIF4A form the eIF4F complex, which is often targeted for
translational regulation [47].

Early findings indicated that eIF4E overexpression leads
to malignant transformation of fibroblasts [49, 50]. Since
then, numerous studies have reported overexpression of
eIF4E in different tumor types (e.g., breast, prostate, gastric
colon, lung, skin, and lymphomas) [51]. Elevated expres-
sion of eIF4E often correlates with malignancy and poor
prognosis [52, 53]. Surprisingly, overexpression of eIF4E
does not induce a global increase in protein synthesis but
augments translation of a subset of mRNAs encoding mostly
prooncogenic proteins [2, 54] (Figure 2). mRNAs regulated
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by eIF4E overexpression include those encoding components
of the cell cycle machinery (cyclin D1, CDK2, c-myc, RNR2,
ODC, surviving, Mcl-1, Bcl-2) or factors implicated in
angiogenesis (VEGF, FGF-2, PDGF) and invasion (MMP9)
[2, 51, 55, 56].

It has been proposed that mRNAs coding for proteins
upregulated in oncogenesis contain long and highly struc-
tured 5′UTRs [10]. mRNAs bearing stable secondary struc-
tures in the 5′UTR are poorly translated in normal con-
ditions and may be particularly dependent on the eIF4F
complex and the unwinding capacity of the eIF4A helicase
to initiate translation. Thus eIF4E overexpression may lead
to enhanced translation of otherwise inefficiently translated
transcripts involved in tumorigenesis [2]. Interestingly,
eIF4E seems to be implicated in nucleocytoplasmic transport
of mRNAs (e.g., cyclin D) and thus may regulate expression
of some genes in an initiation-independent way [57].

eIF4E activity is regulated by signaling pathways ampli-
fied in human cancers (Figure 2). The protein kinase mTor
phosphorylates eIF4E-binding proteins (4E-BP). In their
unphosphorylated state, 4E-BPs bind to eIF4E on the same
site recognized by eIF4G, blocking the formation of the cap-
binding complex. Phosphorylation of 4E-BP leads to loss of
affinity for eIF4E and increases translation [2]. In addition,
eIF4E phosphorylation by MAPK-integrating kinases MNK1
and MNK2 enhances cap-dependent initiation [47, 54].

Given the important role of eIF4E in tumorigenesis,
reducing either eIF4E activity or levels in cancer cells has
become an attractive anticancer strategy [51, 58]. Many com-
pounds inhibiting mTor kinase activity have proven to be
efficient. For example, PP242, Tonin1, and INK128 are ATP
active site inhibitors of mTOR and block the phosphoryla-
tion of all mTor targets including 4E-BP [51]. Unfortunately,
cells of some cancer types are insensitive to treatment with
mTor inhibitors [59]. As an alternative strategy, inhibiting
eIF4E expression with antisense oligonucleotides (AON) has
given promising results in suppressing tumor growth in vivo
[60].

2.3. La Is an ITAF Implicated in Cancer. The multifunctional
RNA-binding protein La is primarily nuclear but can shuttle
between the nucleus and the cytoplasm [61, 62]. According
to its localization, La functions in small RNA processing
[63] and in translation of mRNAs [64–66]. La can be
divided into three regions: the N-terminus, which contains
the conserved La motif; a less conserved RNA recognition
motif (RRM); and a weakly conserved C terminus, which
contains an RRM, and a nuclear localization signal (NLS)
[67] (Figure 1). The La motif folds into an RRM and its
high conservation suggests that it carries out a specific
function [68, 69]. La interacts with cellular and viral mRNAs
and regulates IRES and cap-dependent translation initiation
[64, 66, 70–73]. An IRES is a nucleotide sequence folding
in a specific secondary structure that recruits ribosomes
independently of the cap structure [74]. During cellular
stress, cap-dependent translation is downregulated, and
IRES-dependent translation of many mRNAs is favored [75].
For example, under the hypoxic conditions usually found
in the interior of a tumor, IRES-mediated translation of the

angiogenic factor VEGF is favored leading to vascularization
of the tumor [76]. Specific RNA-binding proteins termed
IRES transacting factors (ITAFS) are required to regulate
IRES-dependent translation in cancer development [74]. La
is an ITAF that regulates the IRES-dependent translation
of mRNAs involved in cell proliferation, angiogenesis and
apoptosis [64, 77, 78] (Figure 2).

As an ITAF, La interacts directly with the IRES of the
mRNA encoding the proapoptotic factor XIAP [64]. In
addition, La regulates IRES-dependent translation of LamB1,
a factor that drives invasion, angiogenesis and metastasis
[79, 80]. La also binds to the IRES of cyclin D1 (CCND1)
in cervical cancer tissues, and its overexpression correlates
with upregulation of cyclin D1 while its depletion leads to a
reduction of cyclin D1 levels and a defect in cell proliferation
[77].

La is overexpressed in chronic myeloid leukemia, cervical
cancer tissues, oral squamous cell carcinoma (SCC), and in
a number of cancer cell lines compared to nontumorigenic
cells [66, 77, 78, 81]. In SCC, La is required for expression
of β-catenin and MMP-2, proteins implicated in cell-cell
adhesion and cell motility, respectively [78]. In leukemia,
increased levels of La correlate with upregulation of MDM2
(an oncogenic tyrosine kinase). La interacts directly with the
5′UTR of mdm2 mRNA and enhances its translation [66].

Using mouse glial progenitor cells, Brennet proposed that
La functions as a translational regulator during KRas/Akt
oncogenic signaling [62]. Ras and Akt pathways are aber-
rantly active in cancer cells and play a pivotal role in the for-
mation and regulation of glioblastoma [82]. In this tumor
type La is phosphorylated by Akt, and this changes its dis-
tribution from the nucleus to the cytoplasm leading to asso-
ciation of a subset of La-bound mRNAs to polysomes. Many
of these mRNAs encode factors implicated in oncogenesis
such as Cyclin G2, Bcl2, and PDGFA [62].

The number of known La mRNA targets is still limited
and further studies are necessary to understand its function
in tumorigenesis. However, La already represents a promising
target for cancer therapy. As an example, La activity has been
efficiently blocked by a synthetic peptide corresponding to
amino acids 11 to 28 of La. By competition, the peptide
inhibits IRES-driven translation of Hepatitis C without
affecting cap-dependent translation of cellular mRNAs [83].
This peptide could also be used to block expression of cancer
related mRNA targets of La.

Other ITAFs implicated in cancer are PTB, hnRNP A1,
hnRNP E1, hnRNP E2, and YB1. The interested reader can
refer to the following reviews and articles [84, 85].

2.4. HuR Regulates the Stability and Translation of Cancer-
Related Transcripts. The human antigen R (HuR) is the
most prominent RBP known to be implicated in tumori-
genesis [3]. Overexpression of HuR has been observed in
lymphomas, gastric, breast, pancreatic, prostate, oral, colon,
skin, lung, ovarian, and brain cancers [86–91]. Elevated
cytoplasmic accumulation of HuR correlates with high-
grade malignancy and serves as a prognostic factor of poor
clinical outcome in some cancer types [92–95]. Localized
in the nucleus of normal cells, HuR often translocates to
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the cytoplasm in transformed cells [96, 97]. HuR’s subcel-
lular localization is regulated by posttranslational modifica-
tions, and the enzymes modifying HuR are all implicated
in cancer [97] (Figure 2). In the cytoplasm, HuR binds to
adenine- and uridine-rich elements (AU-rich elements or
AREs) located in 3′UTR of target mRNAs [98]. AU-rich
elements serve as binding sites for a variety of RBPs that
modulate mRNA half-life [11]. An estimated 10% of all
mRNAs bear AU-rich sequences [99]. The minimal func-
tional ARE sequence is a nonamer UUAUUUAWW [100].
Most RBPs binding to AREs promote rapid deadenylation
and degradation of substrate mRNAs by targeting them to
the exosome (e.g., TTP, AUF1, CUGBP2) [101]. On the
contrary, HuR most often enhances the stability of its target
mRNAs [3]. In addition, HuR can also regulate the splicing
of a certain number of targets [102].

HuR is a member of the embryonic lethal abnormal
vision (ELAV) family of proteins and contains three RRMs
that provide high-affinity RNA binding [103] (Figure 1).
HuR target mRNAs encode products that promote prolifer-
ation, inhibit apoptosis, increase angiogenesis, and facilitate
invasion and metastasis. For an extensive list of HuR targets,
see [3]. Below I will give an overview of HuR targets and
will summarize the different mechanisms by which HuR
regulates their expression.

Upon binding to the 3′UTR, HuR stabilizes the mRNAs
coding for cyclins (cyclin D1, E1, A2, B1), favoring cell
cycle progression and promoting proliferation of cancer
cells [104–106]. HuR also promotes cancer cell survival by
stabilizing transcripts encoding antiapoptotic factors like
Bcl-2, Mcl-1, SIRT1, and p21 [90, 107–110]. mRNAs coding
for proteins implicated in invasion and metastasis (MMP-9)
[111, 112], cell migration and adhesion (Urokinase A and
uPA receptor) [113] or EMT (snail) are also stabilized by
HuR [114]. Expression of the proangiogenic factors VEGF
and HIF-1α is controlled by HuR. Regulation of HIF-1α
mRNA is interesting, as HuR binds to both the 5′ and 3′UTRs
and promotes translation and stability [115, 116]. The
mechanism by which HuR stabilizes its targets is still unclear,
but recent studies have proposed an interplay between HuR
and miRNAs [117]. HuR is able to suppress activity of
miRNAs, by inhibiting their recruitment to the mRNA or
even by promoting their downregulation. Some examples of
cross-talk between HuR and miRNAs will be given in the next
paragraph.

ERBB-2 overexpression is associated with development
and progression of prostate cancer. HuR enhances ERBB-
2 expression using a miRNA-dependent mechanism. HuR
binds to a uridinerich element (URE) in the 3′UTR of ERBB-
2 and inhibits action of miR-331-3p to a nearby site [118].
The presence of HuR on the mRNA does not alter miR-
331-3p binding, which leads to the hypothesis that HuR
may rather reduce association between ERBB-2 mRNA and
the RNA silencing complex [118]. In colorectal cancer, HuR
overexpression and localization in the cytoplasm correlate
with decreased levels of miR-16, a miRNA that binds to
the 3′UTR of COX-2 mRNA and inhibits its expression
by mRNA decay [119]. Intriguingly, HuR interacts with
miR-16 and promotes its downregulation in an mRNA

ligand-dependent manner. Thus, HuR stabilizes COX-2
mRNA by binding to the ARE and by downregulating miR-
16 [119].

Interestingly, HuR is able to repress the translation of the
proapoptotic factor c-Myc by recruiting the let-7 miRNP to
the 3′UTR [120]. HuR is not the only RBP which assists in
targeting miRNPs to the 3′UTR of mRNAs, as was shown
with the example of TTP [121].

HuR also represses the translation of some of its targets
by binding to the 5′UTR. This is the case for p27, which
prevents cell proliferation [122].

It has been recently shown that HuR can act as an ITAF
binding to the IRES of XIAP mRNA, which encodes an anti-
apoptotic factor [123]. HuR stimulates the translation of
XIAP mRNA by binding to XIAP IRES and enhancing its
recruitment into polysomes.

Interestingly in the case of the antiapoptotic factor
prothymosin alpha (ProTα), HuR binding to its 3′UTR
enhances nuclear export of the mRNA followed by induced
translation upon UV irradiation [124].

In summary, the majority of HuR mRNA targets are
stabilized upon binding, and translation is enhanced. As an
ITAF, HuR binds to IRES structures and enhances transla-
tion. HuR is also able to inhibit translation by binding to
5′UTR or by recruiting miRNPs to the 3′UTR. On the other
hand, HuR also inhibits miRNA binding to the 3′UTR of
its target mRNAs. Finally, HuR is increasing cytoplasmic
abundance of target mRNAs probably via enhanced mRNA
nulear export. These examples illustrate the complexity of
HuR regulatory activity.

The large spectrum of mRNA targets regulated by HuR
confirms its potential to coordinate nearly all steps of tumor-
igenesis. Overexpressed in a high number of cancer types,
HuR provides a good candidate for therapy design. Surpris-
ingly, however, a recent study showed that elevated levels of
HuR may be advantageous for cancer therapy. In pancreatic
ductal adenocarcinoma, HuR levels modulate the therapeutic
activity of gemcitabine (GEM), a common chemotherapeutic
agent [125]. GEM exposure to cancer cells increases the
amount of cytoplasmic HuR and promotes its association
with dCK mRNA, which encodes the enzyme that activates
GEM, establishing a positive feedback loop that improves its
therapeutic efficacy. This example shows that therapies that
reduce the level of HuR have to be designed carefully, and
perhaps in a tumor type-dependent manner [126].

Besides HuR, a number of other factors can regulate the
stability and expression of mRNAs bearing AREs [127]. The
TIS11 family of RBPs composed of Tristetraprolin (TTP)
and butyrate response factors 1 and 2 (BRF-1 and-2) bind
and target ARE-containing mRNAs for rapid degradation
[101]. AUF1 is able to stabilize or destabilize ARE-containing
mRNAs [128]. The CELF family of RNA-binding proteins is
composed of 6 members, which promote either mRNA decay
or translation of its target mRNAs [129, 130]. For example
CUGBP2 binds COX-2 mRNA which is then stabilized but
translationally repressed [131]. T-cell intracellular antigen-1
(TIA-1) and TIA-1-related (TIAR) proteins are translational
silencers [132]. Some of these factors have common targets
and compete for binding depending on cellular conditions.
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3. Conservation of RBPs across Eukaryotes

Post-transcriptional gene regulation is a coordinated, effi-
cient, rapid and flexible mechanism to control the proteome
of the cell in response to different physiological conditions.
It is thus not surprising that some organisms have become
highly dependent on post-transcriptional mechanisms to
regulate gene expression, like, for example, the protozoan
parasite, trypanosome [133–135]. The trypanosome genome
encodes very few potential regulatory transcription factors,
and gene regulation relies mostly on RNA-binding proteins
[136]. It has been proposed that 3–11% of the proteome in
bacteria, archea and eukaryotes are putative RNA-binding
proteins [137]. The large number of RBPs suggests that RNA
metabolism may be a central and evolutionarily conserved
contributor to cell physiology. Most of the RNA-binding
domains known today are present in early stages of evolution.
Interestingly, several new eukaryotic-specific RNA-binding
domains have emerged, like the RRM, which suggests that
post-transcriptional gene regulation became more complex
with evolution [137].

The RNA-binding proteins described in this paper are
widely conserved across eukaryotes (Figure 3). We could de-
tect homologues of HuR only in metazoa and not in fungi
and plants. Human HuR is the most divergent family mem-
ber of the ELAV proteins. While the other members, HuD,
HuC, and Hel-N1, present a neuron- and brain-specific
expression, where they are mostly implicated in alternative
splicing, HuR is ubiquitously expressed and fulfills numerous
functions [138, 139].

Sam68 homologues exist in all eukaryotes except fungi
(Figure 3). In the STAR protein family, the Sam68 subfamily
is composed of Sam68 (SRC-associated in mitosis, 68 kd) and
the Sam68-like mammalian proteins 1 and 2 (SLM-1 and
SLM-2, also named T-STAR in humans) [140–143]. As in
the case of HuR, Sam68 is ubiquitously expressed, whereas
SLM-1 and SLM-2 expression is restricted to few cell types
or tissues [144]. In humans, Sam68 has acquired a larger
spectrum of functions and plays a major role in signaling and
splicing in different tissues.

Contrary to HuR and Sam68, La homologues can be
identified in all three phyla: metazoa, fungi, and plants
(Figure 3). La was first characterized as a human protein, and
homologues have been identified in a wide variety of other
eukaryotes [63]. The N-terminal part containing the La motif
is highly conserved, in contrast to the C-terminal domain
which varies both in size and sequence between species,
ranging from 70 amino acids in the yeasts S. cerevisiae and S.
pombe to more than 220 amino acids in vertebrates. Human
La is phosphorylated at different sites, all located in the C
terminus [63] (Figure 2). Interestingly these sites are only
conserved in vertebrate La proteins. The presence of an
additional C-terminal region including different functional
domains and phosphorylation sites shows that La has
evolved to a highly regulated and multifunctional factor in
vertebrates.

The translation initiation factor eIF4E is highly con-
served across eukaryotes. Sequence comparisons revealed
a phylogenetically conserved 182 amino acid C-terminal

H. sapiens

D. melanogaster

A. thaliana

N. crasa

S. cerevisiae

C. elegans

O. sativa

Sam68 eIF4E La HuR

Figure 3: Conservation of Sam68, eIF4E, La, and HuR in different
phyla. Phylogenetic tree of the RBPs described in this paper. The
presence of homologues is indicated.

region [145, 146]. In contrast, the N-terminal region is
poorly conserved and is not required for cap-dependent
translation [145]. Functional conservation has also been
demonstrated, as mammalian eIF4E can rescue the lethality
caused by disruption of the yeast eIF4E gene [147]. The
crystallographic structure of eIF4E in mouse, yeast, human,
and wheat has been solved [145, 148–150]. The three-
dimensional structure of the C-terminal part of murine
eIF4E demonstrates that the surface of the molecule resem-
bles a cupped hand that contains a narrow cap-binding slot.
The remarkable level of sequence identity across phylogeny
suggests that all known eIF4Es share the same structure in
their conserved C-terminal region [145]. eIF4E thus does
not contain a canonical RBD but adopts a conserved three-
dimensional structure which interacts with the cap.

Interestingly most eukaryotic organisms express multiple
eIF4E family members, and it has been proposed that
a ubiquitously expressed member of the family may be
implicated in general translation initiation while others
could be involved in specialized functions [151, 152]. eIF4E
family members may provide an additional layer of control
in translation and may regulate specific subsets of mRNAs,
which could be linked to cancer development.

4. Concluding Remarks

In cancer research, the impact of post-transcriptional gene
regulation has been considered only since a few years. Today,
it is well established that a subset of RBPs are key regulators
of processes involved in tumorigenesis. The genome wide
analysis of RBPs and their RNA targets has allowed a better
understanding of the complex world of mRNA metabolism
and the connections existing between different RBPs. Ac-
cording to the “RNA operon” concept, mRNAs encoding
functionally related proteins are coregulated by specific
RBPs, ensuring an efficient, flexible, and coordinated re-
sponse to cellular need [144, 153, 154]. RNA operons can be
interconnected. HuR and eIF4E for example, share common
mRNA targets like c-myc, cyclin D1 and VEGF, suggesting an
orchestrated regulation of the expression of genes implicated
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in tumorigenesis [155, 156]. In addition, HuR regulates
expression of eIF4E in cancer cells [156]. These observations
show that post-transcriptional regulation events are highly
linked and provide a powerful mechanism to control the fate
of a cell.

RBPs are highly versatile factors that can bind to multiple
RNA targets and regulate their fate by a variety of mecha-
nisms. The fact that every step of the mRNA life cycle is nar-
rowly controlled allows RBPs to fine tune expression in a very
precise manner. The conservation of RBPs across eukaryotes
and the emergence of more complexity along evolution also
point to an essential role of RBPs. Post-transcriptional gene
regulation is a central mechanism of emerging importance in
cancer research which is expected to provide novel targets for
therapy design.
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